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Abstract. In 2000, Viswanath showed that random Fibonacci sequences grow exponen-
tially and calculated the rate at which they grow assuming the coin flipped was fair. In this
paper, we explore the Fibonacci sequences generated by finite, repeating sequences of pluses
and minuses. The main results of this paper will be to show the necessary conditions for
a sequence to be periodic, as well as to show all the possible periods of the sequences. It
will be clear that the set of periodic random Fibonacci sequences is a subset of measure 0
of random Fibonacci sequences.

In his 2000 paper, Viswanath [4] examined the growth properties of random Fibonacci
sequences generated with a fair coin flip; his paper resulted in a new mathematical constant,
1.13198824.... His result was a specific, computed case of an earlier result due to Furstenberg
and Kesten [2]. Here we will examine the properties of the subset of random sequences
that are periodic. We will show that these sequences can only occur when the plus minus
sequence generated by the coin flips, which corresponds to a Bernoulli sequence, is itself
periodic. This, of course, happens with probability 0, but we will study the properties of
these finite sequences of pluses and minuses acting on the integers.

Suppose we have a recursion, R1 defined as

R1 : Xn+1 = Xn−1 + Xn.

We can think of Xn+1 as a vector,

−→
X n+1 =

(
Xn+1

Xn

)
=

(
Xn−1 + Xn

Xn

)
=

(
1 1
1 0

)(
Xn

Xn−1

)
.

Let

M1 =

(
1 1
1 0

)
,

then
−→
X n+1 = M1

(
Xn

Xn−1

)
.

Similarly, if we define a second recursion, R2 as

R2 : Xn+1 = Xn−1 −Xn,

we have
−→
X n+1 =

(
Xn+1

Xn

)
=

(
Xn−1 −Xn

Xn

)
=

( −1 1
1 0

)(
Xn

Xn−1

)
.

Letting

M2 =

( −1 1
1 0

)
,
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we have
−→
X n+1 = M2

(
Xn

Xn−1

)
.

Finally, let Ω = {ω | ω = ω1ω2 · · ·ωn · · · ωi = 1 or ωi = 2}, then we have that Ω ' {f | f :
N→ {1, 2}}.
Definition 1. We say {Xi}∞i=1 is a random Fibonacci sequence if

(1) f ∈ Ω

(2)
−→
X n = Mf(n)

−→
X n−1

i.e.

−→
X n =

(
1∏

i=n

Mf(i)

)
−→
X 1.

Note that because of the way this is defined here we needed to have i decreasing. In general,
this won’t be the case.

Definition 2. With M1,M2 as before, and f ∈ Ω, we say σ is a motif if σ =
∏n

i=1 Mf(i).
We will use |σ| = n to denote the length of the motif, which is the number of pluses and
minuses, or equivalently, the number of matrices multiplied together.

Definition 3. Suppose σ is a motif, then σ is periodic if there exists a minimal k ∈ N such
that σk = I, the identity matrix. We will use p(σ) = k as notation. Let M be the collection
of all periodic motifs.

Example 1. Consider the motif

σ = M2M1 =

(
0 1
−1 1

)
,

which is one plus, followed by one minus. We see that (M1M2)
6 = I, and since 6 is the

smallest number to do this, p(σ) = 6.

It will prove useful later to have another version of this example. We can look at the seed

vector to this sequence,
(

x
y

)
and explicitly list the terms in the sequence until we see the

periodicity. The result is

x, y︸︷︷︸, x + y,−x, y,−x− y,−x,−y,−x +−y, x,−y, x + y, x, y︸︷︷︸ . . .

and we see that σ is periodic with period 6 because we have the seeds repeated at the end
of σ after 6 repetitions.

Proposition 1. Suppose σ is a motif that gives a bounded sequence, then the sequence is
periodic.

Proof. Since the sequence of integers is bounded, we can plot the sequence on a finite integer
lattice. The sequence has two seeds, corresponding to a point in the lattice, (x0, y0). As
the sequence progresses, we move around the integer lattice, arriving at (xn, yn) on the nth
step. Let |σ| = m. By the pigeon hole principle, there exists a k such that (xk, yk) = (x0, y0)
where k ≡ 0 (mod m), as required. We note further that p(σ)|k. ¤
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Proposition 2. Suppose σ ∈M, f ∈ Ω, and σ =
∏n

i=1 Mf(i), then if

τ =

(
n∏

i=l

Mf(i)

)(
l−1∏
j=1

Mf(j)

)
,

we have τ ∈M. This simply means that if σ is periodic, then the periodicity is independent
of the starting point within the motif.

Proof. For simplicity of notation, we will let p(σ) = 1; it will be clear that the proof holds for

p(σ) > 1. Let
∏n

i=l Mf(i) = A and
∏l−1

j=1 Mf(j) = B, then we see that σ = BA and τ = AB.

Since p(σ) = 1, BA = I, and we need to show τ = AB = I. Since det(Mf(k)) = ±1 for all
k, we see that det(B) = ±1, therefore, B−1 exists. Thus, we have A = B−1I = IB−1, thus,
AB = I as required. If p(σ) = k > 1, then we have σk = AB . . . AB︸ ︷︷ ︸

ktimes

= I and must simply

repeat the argument to obtain the result. ¤

Theorem 1. Suppose σ ∈ M , p(σ) = k and |σ| = m then mk ≡ 0 (mod 3).

Proof. We revisit Example 1 for a hint on how to prove this. In the example, we let σ =
{+,−} and let it act on x, y. The result was

x, y, x + y,−x, y,−x− y,−x,−y,−x +−y, x,−y, x + y, x, y . . .

which showed us periodicity with period 6. If we look at this same example, but don’t
combine the terms after each step, we see the first few terms are

x, y, x + y, y − x− y, x + y + y − x− y, y − x− y + x− y − y + x + y . . .

What this shows us is that at the nth step, we have F(n− 2) x terms and F(n− 1) y terms,
where F(n) is the standard Fibonacci sequence. This pattern clearly holds for general σ.

Using this, we see that in order for the sequence to be periodic, we need x, y to repeat at
step n, n + 1, thus, we need two consecutive odd Fibonacci numbers so all but one x and all
but one y can cancel each other out. Furthermore, we require that when the number of x’s
is odd, the number of y’s be even, and vice versa. That is, if mk − 1 = n, where |σ| = m
and p(σ) = k, we need

F (mk) = F (n− 1) ≡ 1 (mod 2) and F (mk) = F (n− 2) ≡ 0 (mod 2)

F (mk − 1) = F (n− 2) ≡ 1 (mod 2) and F (mk − 1) = F (n− 1) ≡ 0 (mod 2)

By the odd, odd, even structure of the Fibonacci sequence, if F (n− 1) ≡ 0 (mod 2), F (n−
2) ≡ 1 (mod 2), then n ≡ 1 (mod 3). Thus, we need mk ≡ 0 (mod 3). Furthermore, at
step mk + 1, we need F (n − 1) ≡ 1 (mod 2) and F (n − 2) ≡ 0 (mod 2). This gives n ≡ 2
(mod 3). Thus, since mk − 1 = n ≡ 2 (mod 3), mk ≡ 0 (mod 3) as required. ¤

Lemma 1. Suppose σ ∈ M, p(σ) = k, then there exists τ ∈ M such that p(τ) = d(k),
where d(k) is a divisor of k, for all d(k).

Proof. By the hypotheses, σ is periodic, with period k. Suppose |σ| = m and d|k. We can
see that if we take the motif σk, it is periodic of period 1. Suppose further we take the motif
σd. We can see that if dl = k, then (σd)l = σk. Thus, σd is periodic of period l. ¤
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In the coming 2 lemmas, we will need the following identity. Suppose A is a 2 × 2 matrix
with positive integer entries, and A4 = I. If

A =

(
a b
c d

)
,

then standard matrix multiplication tells us that

A4
2,2 = a2bc + bcd2 + 2abcd + b2c2 + 2bc3 + c4 = 1. (1)

Lemma 2. Suppose σ ∈M, and σ4 = I. If the eigenvalues of σ are ±1, then p(σ) = 2.

Proof. Let

σ =

(
a b
c d

)
,

then the characteristic equation, λ2 − 1 = 0 causes det(σ) = ad − bc = −1 and a = −d.
Using these identities, and matrix multiplication, we have

(1) σ2
1,1 = a2 + bc = a2 + 1− a2 = 1

(2) σ2
1,2 = ab + bd = b(a + d) = b(0) = 0

(3) σ2
2,1 = ac + cd = c(a + d) = c(0) = 0

(4) σ2
2,2 = 1− a2 + c2.

It remains to show that the fourth item is equal to 1 by showing that a2 = c2. We do this
by using Equation (1) along with our derived identities.

σ4
2,2 = a2bc + bcd2 + 2abcd + b2c2 + 2bc3 + c4 = 1

σ4
2,2 = (1− a2) + 2(1− a2)c2 + c4 = 1.

The only solutions to this are a = ±c and a =
√

c2 − 2. Since
√

c2 − 2 6∈ Z, we need only
concern ourselves with a = ±c, which gives us a2 = c2. Therefore, σ2,2 = 1, completing the
proof that p(σ) = 2. ¤
Lemma 3. Suppose σ ∈M, then p(σ) 6= 4.

Proof. By Lemma 2, we know that if the eigenvalues of σ are ± 1, then the period is 2, so we
consider the only other case here. Assume for a contradiction that p(σ) = 4. Suppose the
eigenvalues of σ are ±i. Thus, the characteristic equation is λ2 + 1 = 0, and consequently,
we have a = −d and det(σ) = ad− bc = 1. This gives us the useful identity bc = −(a2 + 1).
Exploiting (1) again, we reduce as we did before.

σ4
2,2 = a2bc + bcd2 + 2abcd + b2c2 + 2bc3 + c4 = 1

σ4
2,2 = −a2(a2 + 1)− a2(a2 + 1) + 2a2(a2 + 1) + (a2 + 1)2 − 2c2(a2 + 1) + c4 = 1

σ4
2,2 = (a2 + 1)2 − 2c2(a2 + 1) + c4 = 1.

Again we have a = ±c with the a =
√

c2 − 2 thrown out. Consequently, if p(σ) = 4, and
the eigenvalues are ±i, we have 2 cases:

(1) σ =

(
a b
a −a

)

(2) σ =

(
a b
−a −a

)
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To show neither of these cases are valid, consider the parity of our matrices M1 and M2.
Then we have

M1 =

(
1 1
1 0

)
and M2 =

(
1 1
1 0

)
.

It is easy to see that the parity of M3
1 is the identity matrix, which is also clear for M2.

Thus, we have only 3 options for the parity of any matrix representation of a motif, namely

M1 =

(
1 1
1 0

)
, M2

1 =

(
1 0
0 0

)
, and M3

1 =

(
1 0
0 1

)
.

We see now that using the parity argument, if p(σ) = 4, then σ4
1,1 = σ4

2,1 = σ4
2,2, but

that doesn’t occur in any of our three possibilities. This contradicts the assumption that
p(σ) = 4, thus completing the proof. ¤
Theorem 2. If σ ∈M, p(σ) = k, then k is a divisor of 6.

Proof. To prove this, we will examine the eigenvalues of σ. Suppose p(σ) = k, then σk = I,
therefore, if λ1, λ2 are the eigenvalues of σ, then λk

1 = λk
2 = 1, since the eigenvalues of I are

both 1. This tells us that the eigenvalues of σ must be two kth roots of unity. Furthermore,
we see that if λ1 = a+bi, then λ2 = a−bi since tr(σ) ∈ Z. Furthermore, we have tr(σ) = 2a.
But we see |a| ≤ 1, therefore, |a| = 1, or |a| = m

2
where m ∈ Z. If λ1 = λ2 = ±1, we have

that k = 2. We examine further the case where |a| = m
2
.

With polar coordinates, we have λ1 = eiθ and we know cos(θ) = a = m
2
, but m ∈ Z, thus

the only valid solution for (m, θ) is (−1, 2π
3

) and (1, π
3
). This gives us k = 3 and k = 6,

respectively. Notice that if k is a prime greater than 3, or if k = 9, we do not have the
proper conditions for the eigenvalues. Namely, the lack of the θ = 2π

3
ray in the geometric

interpretation of the roots of unity. Also, by Lemmas 2 and 3, we have no motifs of order 4.
However, if we multiply 3 by powers of 2, we see that we maintain the required rays, thus
we have the possibility of k = 3(2n) for some n. However, this leads to a contradiction by
Lemmas 1 and 3. Namely, for n ≥ 2, 4 is a divisor by Lemma 1, but this isn’t possible by
Lemma 3.

We have exemplified periods of 1, 2, 3, and 6, and it is clear that for all k > 6, one of the
following is true:

(1) k is prime
(2) k has a prime divisor greater than 3
(3) 4|k
(4) 9|k

We have seen that in any of these cases, a period of length k is impossible, thus completing
the proof. ¤

The following is an alternate, shorter proof to this theorem.

Proof. It is well-known that in the group GL(2,Z), any element of finite order has order 1,
2, 3, 4, or 6 as seen in Lemma 2.11 of [3]. Let M =< M1,M2 > be the group of motifs under
standard matrix multiplication. It is clear that M ≤GL(2,Z). Thus, all elements of finite
order in M have order 1, 2, 3, 4, or 6. By Lemma 3, no motif of order 4 exists. Computations
show the existence of motifs of order 1, 2, 3, and 6. ¤

Within the first proof of this theorem is most of the proof concerning the elements of finite
order of GL(2,Z), so the alternate proof is just a slimmed down version for those already
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familiar with the fact. In conclusion, we see that if a motif gives rise to a periodic sequence,
then the period of that sequence must be a divisor of 6, and 3 divides the product of the
length of the motif and the period. An interesting corollary to these results is the generation
of the infinite group M of matrices generated by M1 and M2. In M, if an element has finite
order, that order is a divisor of 6, otherwise, the element has infinite order. It can be seen
that M ≤GL(2,Z), and further research may reveal a stronger connection, or new facts
altogether.
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