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Abstract. In this note, we resolve the Diophantine equation x2+2a ·11b = yn with coprime
positive integers x, y and positive integers n ≥ 3.

1. Introduction

The history of the Diophantine equation

x2 + C = yn, x ≥ 1, y ≥ 1, n ≥ 3 (1)

goes back to the 1850’s. In 1850, Lebesque [24] proved that the Diophantine equation (1)
has no solutions when C = 1. For a fixed value of n, the Diophantine equation (1) is actually
a special case of the Diophantine equation ay2 + by+ c = dxn, where a, b, c and d are integers
with a 6= 0, b2 − 4ac 6= 0 and d 6= 0, which has only a finite number of solutions in integers
x and y when n ≥ 3 [22]. Cohn [17] solved the Diophantine equation (1) for most values of
C in the range 1 ≤ C ≤ 100. In [29], Mignotte and de Weger found all the positive integer
solutions (x, y) of the two Diophantine equations x2 +74 = y5 and x2 +86 = y5, respectively,
thus covering some of the cases left over by Cohn. In [14], Bugeaud, Mignotte and Siksek
covered the remaining cases.

Variations of the Diophantine equation (1) were also considered by various mathemati-
cians. For theoretical upper bounds for the exponent n we refer to [16] or [21], however,
these estimates are based on Baker’s theory, so they are huge. In [32], all the positive integer
solutions (x, y, n) of the Diophantine equation x2 + B2 = 2yn with B ∈ {3, 4, . . . , 501} were
found under the conditions that n ≥ 3 and that gcd(x, y) = 1. The equation x2 + C = 2yn

with C a fixed positive integer and under the similar restrictions n ≥ 3 and gcd(x, y) = 1
was studied in [2].

Yet a different variant of this problem when C is an arbitrary power of a fixed prime
was studied by various authors. In [10], the positive integer solutions (x, y, k, n) of the
Diophantine equations x2 + 2k = yn satisfying certain conditions have been found. In [23],
Le verified a conjecture of Cohn from [18] proving that all the solutions of the Diophantine
equation x2 + 2k = yn in positive integers x, y, k, n with 2 - y and n ≥ 3 are

(x, y, k, n) = (5, 3, 1, 3), (7, 3, 5, 4), (11, 5, 2, 3).

All the integer solutions (x, y, m, n) of the Diophantine equation x2 + 3m = yn with n ≥ 3
were found in [9] (for odd m) and in [26] (for even m). For various results on other particular
cases of the Diophantine equation x2 +pm = yn, where p is a fixed prime, see [4, 6, 7, 8, 27].
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The last variant of the Diophantine equation (1) that we mention is when C is a product
of powers of a few fixed primes. For example, all the positive integer solutions of the Dio-
phantine equation (1), again under the assumptions that n ≥ 3 and x and y are coprime
with C of the forms C = 2a · 3b, 2a · 5b, 5a · 13b, 2a · 5b · 13c were found in [3, 20, 25] and [28],
respectively. Pink [30] has obtained some results on the case C = 2a · 3b · 5c · 7d. Recently,
Bérczes and Pink [12] resolved (1) with C = p2k where 2 ≤ p < 100 prime, gcd(x, y) = 1
and n ≥ 3. A more exhaustive survey on this type of problem is [5].

Here, we add to the existing literature on this last type of Diophantine equation by study-
ing the Diophantine equation

x2 + 2a · 11b = yn, x ≥ 1, y ≥ 1, gcd(x, y) = 1, n ≥ 3, a ≥ 0, b ≥ 0, (2)

again under the assumptions that n ≥ 3 and that x and y are coprime. Our result is the
following.

Theorem 1. The only solutions of the Diophantine equation (2) are

n = 3, (x, y, a, b) ∈ {(2, 5, 0, 2), (4, 3, 0, 1), (5, 3, 1, 0), (5, 9, 6, 1),

(9, 5, 2, 1), (11, 5, 2, 0), (58, 15, 0, 1), (117, 25, 4, 2), (835, 89, 6, 2),

(5497, 785, 8, 6), (5805, 323, 1, 2), (6179, 345, 18, 1), (9324, 443, 0, 3),

(9959, 465, 10, 3), (404003, 5465, 12, 2)};
n = 4, (x, y, a, b) = (7, 3, 5, 0);

n = 5, (x, y, a, b) = (1, 3, 1, 2), (241, 9, 3, 2);

n = 6, (x, y, a, b) = (5, 3, 6, 1), (117, 5, 4, 2);

n = 10, (x, y, a, b) = (241, 3, 3, 2).

One can deduce from the above result the following corollary.

Corollary 2. The only integer solutions of the Diophantine equation

x2 + 11c = yn, x ≥ 1, y ≥ 1, gcd(x, y) = 1, n ≥ 3, c > 0

are (x, y, c, n) = (2, 5, 2, 3), (4, 3, 1, 3), (58, 15, 1, 3), (9324, 443, 3, 3).

Several cases of the Diophantine equation (2) have been dealt with previously. For ex-
ample, for a = 0 and odd b, all solutions have been found in [31] by using an elementary
method, while for a = 0 and even b they appear in [12]. The fact that there are no solutions
when a ≥ 3 and n ≥ 13 follows from Theorem 1.3 in [11], where the method used was the
modular approach à la Wiles’ proof of Fermat’s Last Theorem. The remaining cases seem
to be new.

For the proof, we apply the method used in [3]. We first treat the cases n = 4 and
n = 3. This is done by transforming equation (2) into several elliptic equations written
in quartic models and cubic models, respectively, for which we need to determine all their
{2, 11}-integer points. At this stage we note that in [19] Gebel, Hermann, Pethő and Zimmer
developed a practical method for computing all S-integral points on elliptic curves. Their
method is implemented in MAGMA as a routine under the name SIntegral Points. In the
last section, we study the remaining cases by using primitive divisors of Lucas sequences.
All the computations are done with MAGMA [15] and Cremona’s program mwrank.

Before starting, we note that since n ≥ 3, it follows that n is either a multiple of 4 or a
multiple of an odd prime p. Furthermore, if d | n is such that d ∈ {4, p} with p an odd prime
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and (x, y, a, b, n) is a solution of our equation (2), then (x, yn/d, a, b, d) is also a solution of
our equation satisfying the same restrictions. Thus, we may replace n by d and y by yn/d

and from now on assume that n ∈ {4, p}. Furthermore, note that when b = 0, then our
equation reduces to the equation x2 + 2a = yn, all whose solutions are already known from
[23]. Thus, we shall assume that b > 0. Since 11b ≡ 3, 1 (mod 8) according to whether b is
odd or even, respectively, it follows by considerations modulo 8 that either a > 0, or that x
is even, for otherwise with a = 0 and x odd we would get that x2 + 11b ≡ 2, 4 (mod 8), and
this last even number cannot be a perfect power of exponent ≥ 3 of some integer.

2. The Case n = 4

Here we have the following result.

Lemma 3. The Diophantine equation (2) has no solution with n = 4 and b > 0.

Proof. Equation (2) can be written as
( x

z2

)2

+ A =
(y

z

)4

,

where A is fourth-power free and defined implicitly by 2a ·11b = A ·z4. Clearly, A = 2a1 ·11b1 ,
where a1, b1 ∈ {0, 1, 2, 3}. We recall here that if S is a finite set of prime numbers, then
an S-integer is a rational number of the form r/s with coprime integers r and s > 0 such
that all the prime factors of s are in S. Thus, the problem is reduced to determining all the
{2, 11}-integer points (U, V ) = (y/z, x/z2) on the 16 elliptic curves in quartic models

V 2 = U4 − 2a1 · 11b1 ,

with a1, b1 ∈ {0, 1, 2, 3}. We use the subroutine SIntegralLjunggrenPoints of MAGMA
[15] to determine the {2, 11}-integral points on the above elliptic curves and we only find
the following solutions

(U, V, a1, b1) = (±1, 0, 0, 0, ), (±3/2,±7/4, 1, 0).

They do not lead to solutions of our original equation with b > 0. ¤

3. The Case n = 3

Lemma 4. The only solutions (x, y, a, b) to equation (2) with n = 3 and b > 0 are

(2, 5, 0, 2), (4, 3, 0, 1), (5, 9, 6, 1), (9, 5, 2, 1), (58, 15, 0, 1), (117, 25, 4, 2),

(835, 89, 6, 2), (5497, 785, 8, 6), (5805, 323, 1, 2), (6179, 345, 18, 1),

(9324, 443, 0, 3), (9959, 465, 10, 3), (404003, 5465, 12, 2).

Proof. We proceed as in the previous section except that now we create cubic models of
elliptic equations. Namely, we rewrite equation (2) as

( x

z3

)2

+ A =
( y

z2

)3

,

where A is sixth-power free and defined implicitly by 2a ·11b = A·z6. Certainly, A = 2a1 ·11b1 ,
where a1, b1 ∈ {0, 1, 2, 3, 4, 5}. We thus get

V 2 = U3 − 2a1 · 11b1 ,
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and we need to determine all the {2, 11}-points (U, V ) on the above 36 elliptic curves. Using
SIntegralPoints subroutine of MAGMA and checking the rank of elliptic curves using
mwrank, we find that (U, V, a1, b1) must be one of the following quadruples:

(1, 0, 0, 0), (3, 4, 0, 1), (15, 58, 0, 1), (9/4, 5/8, 0, 1), (345/64, 6179/512, 0, 1),

(5, 2, 0, 2), (89/4, 835/8, 0, 2), (5465/16, 404003/64, 0, 2), (11, 0, 0, 3),

(443, 9324, 0, 3), (3, 5, 1, 0), (11, 33, 1, 2), (323, 5805, 1, 2), (33/4, 143/8, 1, 2),

(2, 2, 2, 0), (5, 11, 2, 0), (785/484, 5497/10648, 2, 0), (5, 9, 2, 1), (82, 702, 2, 4),

(2, 0, 3, 0), (33, 187, 3, 2), (22, 0, 3, 3), (25, 117, 4, 2), (33, 121, 4, 3),

(465/4, 9959/8, 4, 3), (473, 10285, 5, 3), (2057, 93291, 5, 4).

Identifying the coprime positive integers x and y from the above list and checking the con-
dition b > 0, one obtains the solutions listed in the statement of the lemma (note that not
all of them lead to coprime values for x and y). ¤

From the above lemma, we can also read the solutions for which n > 3 is a multiple of 3.
Namely, they are obtained from the above list when y is a perfect power. A quick inspection
of the list reveals that the only such cases is when n = 3 and y = 9 or 25 leading to the
solutions (x, y, a, b, n) = (5, 3, 6, 1, 6) or (117, 5, 4, 2, 6), respectively.

4. The Case n > 3 Is A Prime

Lemma 5. If n > 3 is a prime, then all the solutions to equation (2) are (x, y, a, b, n) =
(1, 3, 1, 2, 5) and (241, 9, 3, 2, 5).

Proof. For the beginning of the argument, we only assume that n is not a power of 2.
Rewrite equation (2) as

x2 + dz2 = yn,

where d = 1, 2, 11, 22 according to the parities of the exponents a and b. Here, z = 2α · 11β

for some nonnegative integers α and β. Thus, our equation becomes

(x + i
√

dz)(x− i
√

dz) = yn. (3)

Write K = Q[i
√

d]. Observe that since b > 0 and either a > 0 or x is even, it follows that

y is always odd. Thus, the two ideals (x + iz
√

d)OK and (x− iz
√

d) OK are coprime in the
ring of integers OK. Indeed, if I is some ideal dividing both the above principal ideals, then
I divides both 2x = (x + i

√
dz) + (x − i

√
dz) and y, which are two coprime integers, so

I = OK. Moreover, the class number of K is always 1 or 2 and n is coprime to both the class
number of K and to the cardinality of the group of units of OK, which is 4 or 2 according
to whether d = 1 or d > 1, respectively, because n is an odd prime. Furthermore, {1, i

√
d}

is always an integral basis for OK except when d = 11 in which case an integral basis is
{1, (1+ i

√
11)/2}. It thus follows that equation (3) entails that there exist u and v such that

x + i
√

dz = (u + i
√

dv)n. (4)

Here, either both u and v are integers, or 2u and 2v are both odd integers, and this last case
can occur only when d = 11. Writing λ = u + i

√
dv, conjugating the above relation and

eliminating x from the resulting equations, we get that

2i
√

dz = λn − λ
n
,
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yielding

2α · 11β

v
=

λn − λ
n

λ− λ
. (5)

Let us now recall that if λ and λ are roots of a quadratic equation of the form x2−rx−s = 0
with nonzero coprime integers r and s and such that λ/λ is not a root of unity, then the
sequence (Lm)m≥0 of general term

Lm =
λm − λ

m

λ− λ
for all m ≥ 0

is called a Lucas sequence. It can also be defined inductively as L0 = 0, L1 = 1 and
Lm+2 = Lm+1 + Lm. Let us verify that our pair of numbers (λ, λ) satisfies the necessary
conditions to insure that the right hand side of equation (5) is the nth term Ln of a Lucas
sequence. Note that λ and λ are the roots of

x2 − (λ + λ)x + |λ|2 = x2 − (2u)x + y,

and 2u and y are coprime integers. Indeed, for if not, since y is odd, it follows that there
exists an odd prime q dividing both 2u and y = u2+dv2. Thus, q divides 4y = (2u)2+d(2v)2,
and since q divides the integer 2u, it follows that q divides either d or 2v. In either case, we
get that q divides both algebraic integers

(2u± i
√

d(2v))n = 2n(x± i
√

dz).

In particular, q divides the sum of the above two algebraic numbers which is 2n+1x, and
since q is odd, we get that q divides x. This contradicts the fact that x and y are coprime.

Next, we check that λ/λ is not a root of unity. Assume otherwise. Since this number is
also in K, it follows that the only possibilities are λ/λ = ±1, or ±i. The first possibilities
give u = 0, or v = 0, leading to x = 0, or z = 0, respectively, which are impossible. The
second possibility leads to u = ±v, therefore y = u2 + v2 = 2u2, or 2y = (2u)2. This is
again impossible since y is odd and 2u is an integer. Hence, indeed the right hand side of
equation (5) is the nth term of a Lucas sequence. For any nonzero integer k, let us define
P (k) as the largest prime dividing k with convention that P (±1) = 1. Equation (5) leads to
the conclusion that

P (Ln) = P

(
2α · 11β

v

)
≤ 11. (6)

Let us now recall that a prime factor q of Lm is called primitive if q - Lk for any 0 < k < m
and q - (λ− λ)2 = −4dv2. It is known that when q exists, then q ≡ ±1 (mod m), where the
sign coincides with the Legendre symbol (−d | q). We now recall that a particular instance
of the Primitive Divisor Theorem for Lucas sequences implies that, if n ≥ 5 is prime, then
Ln always has a prime factor except for finitely many exceptional triples (λ, λ, n), and all of
them appear in Table 1 [13] (see also [1]).

Let us first assume that we are dealing with a number Ln without a primitive divisor.
Then a quick look at Table 1 in [13] reveals that this is impossible. Indeed, all exceptional
triples have n = 5, 7 or 13; of these, there is one example with n = 5 such that λ ∈ Q[

√−d]
with d ∈ {1, 2, 11, 22}, which is λ = ±(1 ± i

√
11)/2. With such a value for λ, we get that

y = |λ|2 = 3, d = 11, therefore the equation is x2 + C = 35, where C = 2a · 11b, with a even
and b odd. Since 113 > 35, we get that b = 1, and next that a ∈ {0, 2, 4}, but none of these
possibilities yields an integer value for x.
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Now let us analyze the possibility when the Lucas number Ln appearing in the right hand
side of equation (5) has a primitive divisor. Since n ≥ 5, it follows that P (Ln) > 5, and so
P (Ln) = 11. Since n is prime and 2 cannot be a primitive divisor of Ln, it follows that 11
is primitive for Ln. Thus, 11 ≡ ±1 (mod n). Since n ≥ 5 is prime, the only possibility is
n = 5 and since 11 ≡ 1 (mod 5), we get that (−d | 11) = 1. Since d ∈ {1, 2, 11, 22}, the only
possibility is d = 2. In particular, u and v are integers. Now since P (Ln) = 11 is coprime
to −4dv2, we get that v = ±2α1 for some α1 ≤ α. Reducing equation (5) modulo 2, we get
that

±2α−α111β =
(u + i

√
2v)5 − (u− i

√
2v)5

2i
√

2v
≡ 5u4 (mod 2),

and since y = u2 + 2v2 is odd, we get that u is odd; therefore α1 = α. With n = 5 and
v = ±2α, equation (4) becomes

±11β = 5u4 − 20u2v2 + 4v4.

Note that both when α = 0 (so, v = ±1), and when α ≥ 0 (so, 4 | v2), since u is odd
it follows that the right hand side of the above equation is congruent to 5 (mod 8). So,
±11β ≡ 5 (mod 8), showing that β is odd and the sign on the left hand side is negative.
Writing β = 2β0 + 1, we get that

−11V 2 = 5U4 − 20U2 + 4,

where (U, V ) = (u/v, 11β0/v2) is a {2}-integer point on the above elliptic curve. With
MAGMA, we get that the only such points on the above curve are (U, V ) = (±1,±1) and
(±1/2,±1/4) leading to (u, v) = (±1,±1) and (±1,±2), respectively. They lead to the
desired solutions for n = 5, and to the unique solution for n = 10. ¤
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