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Abstract. In this paper, we consider Melham’s conjecture involving Fibonacci and Lucas
numbers. After rewriting it in terms of Fibonomial coefficients, we give a solution of the
conjecture by evaluating a certain q-sum using contour integration.

1. Introduction

The Fibonacci numbers are defined for n > 0 by

Fn+1 = Fn + Fn−1

where F0 = 0 and F1 = 1.
The Lucas numbers are defined for n > 0 by

Ln+1 = Ln + Ln−1

where L0 = 2 and L1 = 1.
The Binet forms of the Fibonacci and Lucas sequences are

Fn =
αn − βn

α− β
and Ln = αn + βn

where α, β are (1±
√
5 )/2.

Recently as an interesting generalization of the binomial coefficients, the Fibonomial coef-
ficients have taken the interest of several authors. For their properties, we refer to [1, 6, 8, 9,
11, 14, 15, 17, 19, 21, 22]. The Fibonomial coefficient is defined, for n ≥ m ≥ 1, by

{

n

m

}

=
F1F2 · · ·Fn

(F1F2 · · ·Fn−m) (F1F2 · · ·Fm)
=

Fn!

Fn−m!Fm!

with
{n
n

}

=
{n
0

}

= 1 where Fn is the nth Fibonacci number and Fn! = F1F2 · · ·Fn is nth
Fibonacci factorial.

These coefficients satisfy the relation:
{

n

m

}

= Fm+1

{

n− 1

m

}

+ Fn−m−1

{

n− 1

m− 1

}

. (1.1)

In [8], Hoggatt considered Fibonomial coefficients with indices in arithmetic progressions.
For example, he defined the following generalization by taking Fkn instead of Fn for a fixed
positive integer k:

{

n

m

}

k

=
FkF2k · · ·Fkn

(

FkF2k · · ·Fk(n−m)

)(

FkF2k · · ·Fkm

) .
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The Fibonomials appear in several places in the literature; we give two examples: the n×n
right-adjusted Pascal matrix Pn whose (i, j) entry is given by

(Pn)ij =

(

j − 1

j + i− n− 1

)

.

Carlitz [2] was the first to link the Fibonomial coefficients with the auxiliary polynomial of
the right-adjusted Pascal matrix Pn via its coefficients. Since then, some relationships between
the generalized Pascal matrix and the Fibonomial coefficients have been constructed, and the
Fibonomial coefficients have been studied by some authors [2, 3, 12, 13, 20].

Secondly, in [5, 7, 8, 10], one can find that the nth powers of Fibonacci numbers satisfy the
following auxiliary polynomial

Cn(x) =

n
∑

i=0

(−1)i(i+1)/2

{

n

i

}

xn−i, (1.2)

where
{n
i

}

is defined as before.
Torreto and Fuchs [21] considered the general second order recurrence relation

yn+2 = gyn+1 − hyn, h 6= 0. (1.3)

Let α and β be the roots of the auxiliary polynomial f(x) = x2 − gx+ h of (1.3). Let Un and
Vn be two solutions of (1.3) defined by

Un =

{

αn−βn

α−β if α 6= β

nαn−1 if α = β
and Vn = αn + βn.

In [10, pp. 42–45], Jarden showed that the kth order recurrence relation

k
∑

j=0

(−1)j
{

k

j

}

U

h
j(j+1)

2 zn+k−j = 0

holds for the product zn of the nth terms of k − 1 sequences satisfying (1.3), where
{

k

j

}

U

=
UkUk−1 · · ·Uk−j+1

U1U2 · · ·Uj
,

{

k

0

}

U

= 1.

In [21], the authors established some identities involving the
{k
j

}

U
, one of which is the

formula:
k

∑

j=0

(−1)j
{

k

j

}

U

h
j(j+1)

2 Ua1+k−jUa2+k−j · · ·Uak+k−jyn+k−j = U1U2 · · ·Ukyn+a1+···+ak+k(k+1)/2 ,

where yn and Un satisfy (1.3) and n and the a’s are any integers.
Melham [16] derived families of identities between sums of powers of the Fibonacci and

Lucas numbers. In his work, while deriving these identities, he conjectured a complex identity
between the Fibonacci and Lucas numbers. We recall this conjecture:

(a) Let k,m, n ∈ Z with m > 0, show that

m−1
∑

j=0

Fm+1
n+k+m−j

(Fm−j−1)(m−1)F(m+1)k+m−j
+ (−1)

m(m+3)
2

Fm+1
n−mk

m
∏

j=1
F(m+1)k+j

= F(m+1)(n+m
2
). (1.4)
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(b) The Lucas counterpart of (a) is given by

m−1
∑

j=0

Lm+1
n+k+m−j

(Fm−j−1)(m−1)F(m+1)k+m−j
+ (−1)

m(m+3)
2

Lm+1
n−mk

m
∏

j=1
F(m+1)k+j

=

{

5
m+1

2 F(m+1)(n+m
2
) if m is odd,

5
m
2 L(m+1)(n+m

2
) if m is even,

where (Fn)(m) is the “falling” factorial, which begins at Fn for n 6= 0, and is the
product of m Fibonacci numbers excluding F0. For example (F6)(5) = F6F5F4F3F2

and (F3)(5) = F3F2F1F−1F−2. For m > 0, define (F0)(m) = F−1F−2 · · ·F−m and
(F0)(0) = 1.

In this paper, we first rearrange the conjecture of Melham by using Fibonomial coefficients
instead of the “falling Fibonacci factorial”. After this, we give a solution of the conjecture
by translating it into a q-expression; we are left with the evaluation of a certain sum. This is
achieved using contour integration.

2. The Conjecture in Terms of Fibonomials

In this section, before solving the conjecture, we will need to rewrite it via the Fibonomials.
One can obtain the following version of the conjecture (a) by considering the definitions of the
falling Fibonacci factorial and the Fibonomials coefficients; the following equation is equivalent
to (1.4).

m−1
∑

j=0

Fm+1
n+k+m−j

(Fm−j−1)(m−j−1)(F0)jF(m+1)k+m−j

(F(m+1)k+m)(m+1)k+m

(F(m+1)k)(m+1)k

+ (−1)
m(m+3)

2 Fm+1
n−mk =

( m
∏

j=1

F(m+1)k+j

)

F(m+1)(n+m
2
).

Notice that

(F0)j = (Fj)j(−1)[# of even positive integers ≤ j] = (Fj)j(−1)
j(j+3)

2 .

From this the following conjecture is straight-forward.

Conjecture 1. For any integers m,n and k,

m−1
∑

j=0

(−1)
j(j+3)

2

{

(m+ 1)k +m

j

}{

(m+ 1)k +m− j − 1

m− j − 1

}

Fm+1
n+k+m−j

+ (−1)
m(m+3)

2 Fm+1
n−mk =

( m
∏

j=1

F(m+1)k+j

)

F(m+1)(n+m
2
).
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Proof. By taking q = β/α, the claimed equality is reduced to the following form:

(1− q(m+1)k+m)

[

(m+ 1)k +m− 1

m− 1

]

q

m−1
∑

j=0

(−1)jqj(j+1)/2

[

m− 1

j

]

q

(1− qn+k+m−j)m+1

1− q(m+1)k+m−j

=
(

1− q
(m+1)(2n+m)

2

) (q; q)(m+1)k+m

(q; q)(m+1)k
− (−1)mq

m(m+1)(2k+1)
2 (1− qn−mk)m+1 (2.1)

where
[m
j

]

q
stands for the Gaussian q-binomial coefficient:

[

m

j

]

q

:=
(q; q)m

(q; q)j(q; q)m−j

with

(z; q)n := (1− z)(1− zq) · · · (1− zqn−1).

Define

S :=
m−1
∑

j=1

(−1)jqj(j+1)/2

[

m− 1

j

]

q

(1− qn+k+m−j)m+1

1− q(m+1)k+m−j
.

By contour integration (for similar examples, see [18]),

IR =
1

2πi

∮

(q; q)m−1

(z; q)m

1

z

(1− zqn+k+m)m+1

1− zq(m+1)k+m
dz.

The integration is over a large circle with radius R. We evaluate the integral by residues. The
poles at q−1, . . . , q−(m−1) lead to our sum, but there are other poles: at z = 0, at z = 1, and
at z = q−(m+1)k−m. Then we get

IR = −S +Resz=0
(q; q)m−1

(z; q)m

1

z

(1− zqn+k+m)m+1

1− zq(m+1)k+m

+Resz=1
(q; q)m−1

(z; q)m

1

z

(1− zqn+k+m)m+1

1− zq(m+1)k+m

+Resz=q−(m+1)k−m

(q; q)m−1

(z; q)m

1

z

(1− zqn+k+m)m+1

1− zq(m+1)k+m
.

For the reader’s convenience, we compute one of these residues in a separate computation:

Resz=1
(q; q)m−1

(z; q)m

1

z

(1− zqn+k+m)m+1

1− zq(m+1)k+m

= lim
z→1

(z − 1)
(q; q)m−1

(z; q)m

1

z

(1− zqn+k+m)m+1

1− zq(m+1)k+m

= − (q; q)m−1

(zq; q)m−1

1

z

(1− zqn+k+m)m+1

1− zq(m+1)k+m

∣

∣

∣

∣

z=1

= −(1− qn+k+m)m+1

1− q(m+1)k+m
.
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Note that as |z| gets large,

(q; q)m−1

(z; q)m

1

z

(1− zqn+k+m)m+1

1− zq(m+1)k+m
∼ 1

z

(q; q)m−1

q(
m

2 )

q(n+k+m)(m+1)

q(m+1)k+m

=
1

z
(q; q)m−1q

n(m+1)+m(m+1)
2 .

Consequently, as R → ∞,

IR → (q; q)m−1q
n(m+1)+

m(m+1)
2 .

Thus,

(q; q)m−1q
n(m+1)+m(m+1)

2

= −S + (q; q)m−1 −
(1− qn+k+m)m+1

1− q(m+1)k+m
+ [(z − q−(m+1)k−m)−1]

(q; q)m−1

(z; q)m

1

z

(1− zqn+k+m)m+1

1− zq(m+1)k+m
.

So we obtain

S = −(q; q)m−1q
n(m+1)+m(m+1)

2 + (q; q)m−1 −
(1− qn+k+m)m+1

1− q(m+1)k+m

− (q; q)m−1

(q−(m+1)k−m; q)m
(1− qn−mk)m+1

= −(q; q)m−1q
n(m+1)+m(m+1)

2 + (q; q)m−1 −
(1− qn+k+m)m+1

1− q(m+1)k+m

− (−1)m
(q; q)m−1(q; q)(m+1)kq

m(m+1)k+
m(m+1)

2

(q; q)(m+1)k+m
(1− qn−mk)m+1.

Now we must prove that

(1− q(m+1)k+m)

[

(m+ 1)k +m− 1

m− 1

]

q

(1− qn+k+m)m+1

1− q(m+1)k+m

− (1− q(m+1)k+m)

[

(m+ 1)k +m− 1

m− 1

]

q

(q; q)m−1q
n(m+1)+

m(m+1)
2

+ (1− q(m+1)k+m)

[

(m+ 1)k +m− 1

m− 1

]

q

(q; q)m−1

− (1− q(m+1)k+m)

[

(m+ 1)k +m− 1

m− 1

]

q

(1− qn+k+m)m+1

1− q(m+1)k+m

− (1− q(m+1)k+m)

[

(m+ 1)k +m− 1

m− 1

]

q

× (−1)m
(q; q)m−1(q; q)(m+1)kq

m(m+1)k+m(m+1)
2

(q; q)(m+1)k+m
(1− qn−mk)m+1

=
(

1− q
(m+1)(2n+m)

2

)(q; q)(m+1)k+m

(q; q)(m+1)k
− (−1)mq

m(m+1)(2k+1)
2 (1− qn−mk)m+1.
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We gradually simplify the equation that must be proved:

− (1− q(m+1)k+m)

[

(m+ 1)k +m− 1

m− 1

]

q

(q; q)m−1q
n(m+1)+

m(m+1)
2

+ (1− q(m+1)k+m)

[

(m+ 1)k +m− 1

m− 1

]

q

(q; q)m−1

− (1− q(m+1)k+m)

[

(m+ 1)k +m− 1

m− 1

]

q

× (−1)m
(q; q)m−1(q; q)(m+1)kq

m(m+1)k+
m(m+1)

2

(q; q)(m+1)k+m
(1− qn−mk)m+1

= (1− q
(m+1)(2n+m)

2 )
(q; q)(m+1)k+m

(q; q)(m+1)k
− (−1)mq

m(m+1)(2k+1)
2 (1− qn−mk)m+1,

or

− (1− q(m+1)k+m)

[

(m+ 1)k +m− 1

m− 1

]

q

(q; q)m−1q
n(m+1)+

m(m+1)
2

+ (1− q(m+1)k+m)

[

(m+ 1)k +m− 1

m− 1

]

q

(q; q)m−1

= (1− q
(m+1)(2n+m)

2 )
(q; q)(m+1)k+m

(q; q)(m+1)k
,

or

(1− q(m+1)k+m)

[

(m+ 1)k +m− 1

m− 1

]

q

(q; q)m−1

(

1− qn(m+1)+m(m+1)
2

)

=
(

1− q
(m+1)(2n+m)

2

)(q; q)(m+1)k+m

(q; q)(m+1)k
.

Consequently we are left to prove that

(1− q(m+1)k+m)

[

(m+ 1)k +m− 1

m− 1

]

q

(q; q)m−1 =
(q; q)(m+1)k+m

(q; q)(m+1)k
.

Since this is true, the proof is complete. �

Note that this proof establishes (2.1) for all values of q, not just for q = β/α.

Similarly the Lucas counterpart of the conjecture is rewritten in terms of the Fibonomials
as follows: for odd m,

m−1
∑

j=0

(−1)
j(j+3)

2

{

(m+ 1)k +m

j

}{

(m+ 1)k +m− j − 1

m− j − 1

}

Lm+1
n+k+m−j

+ (−1)
m(m+3)

2 Lm+1
n−mk = 5

m+1
2

( m
∏

j=1

F(m+1)k+j

)

F(m+1)(n+m
2
),

246 VOLUME 48, NUMBER 3



A PROOF OF A CONJECTURE OF MELHAM

and for even m,

m−1
∑

j=0

(−1)
j(j+3)

2

{

(m+ 1)k +m

j

}{

(m+ 1)k +m− j − 1

m− j − 1

}

Lm+1
n+k+m−j

+ (−1)
m(m+3)

2 Lm+1
n−mk = 5

m
2

( m
∏

j=1

F(m+1)k+j

)

L(m+1)(n+m
2
).

By taking q = β/α, the above equalities are translated to the following forms:

(1− q(m+1)k+m)

[

(m+ 1)k +m− 1

m− 1

]

q

m−1
∑

j=0

(−1)jqj(j+1)/2

[

m− 1

j

]

q

(1 + qn+k+m−j)m+1

1− q(m+1)k+m−j
(2.2)

=
(

1− q
(m+1)(2n+m)

2

)(q; q)(m+1)k+m

(q; q)(m+1)k
− (−1)mq

m(m+1)(2k+1)
2 (1 + qn−mk)m+1

and

(1− q(m+1)k+m)

[

(m+ 1)k +m− 1

m− 1

]

q

m−1
∑

j=0

(−1)jqj(j+1)/2

[

m− 1

j

]

q

(1 + qn+k+m−j)m+1

1− q(m+1)k+m−j
(2.3)

=
(

1− q
(m+1)(2n+m)

2

)(q; q)(m+1)k+m

(q; q)(m+1)k
− (−1)mq

m(m+1)(2k+1)
2 (1 + qn−mk)m+1,

respectively. Note that (2.2) and (2.3) are the same; it is no more necessary to distinguish the
parity of m.

The proof of the equality (2.2) (and (2.3)) can be done similarly to (2.1). Again, it holds
for general q.
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