PERIODS OF THE TRIBONACCI SEQUENCE MODULO A PRIME $p \equiv 1(\bmod 3)$

JIŘÍ KLAŠKA AND LADISLAV SKULA

Abstract

Let the Tribonacci polynomial $t(x)=x^{3}-x^{2}-x-1$ be irreducible over the Galois field \mathbb{F}_{p} where p is an arbitrary prime such that $p \equiv 1(\bmod 3)$ and let τ be any root of $t(x)$ in the splitting field K of $t(x)$ over \mathbb{F}_{p}. We prove that $\tau^{\left(p^{2}+p+1\right) / 3}=1$. Using this identity we show that the period $h(p)$ of the sequence $\left(T_{n} \bmod p\right)_{n=0}^{\infty}$ where T_{n} is the nth Tribonacci number divides $\left(p^{2}+p+1\right) / 3$. Similar results will also be obtained for $t(x)$ being reducible over \mathbb{F}_{p}. In this case we prove that the period $h(p)$ divides $(q-1) / 3$ where q is the number of elements of the splitting field of $t(x)$ over \mathbb{F}_{p} if and only if 2 is a cubic residue of \mathbb{F}_{p}.

1. Introduction and Preliminaries

The Tribonacci sequence $\left(T_{n}\right)_{n=0}^{\infty}$ is defined by the third order linear recurrence $T_{n+3}=$ $T_{n+2}+T_{n+1}+T_{n}$ with a triple of initial values $T_{0}=0, T_{1}=0$, and $T_{2}=1$. It is well-known, [9 , Theorem 1] that $\left(T_{n} \bmod m\right)_{n=0}^{\infty}$ is simply periodic for any modulus $m>1$. That is, the first three terms which are repeated in $\left(T_{n} \bmod m\right)_{n=0}^{\infty}$ are $0,0,1$. The least positive integer $h(m)$ satisfying $T_{h(m)} \equiv T_{h(m)+1} \equiv 0(\bmod m)$ and $T_{h(m)+2} \equiv 1(\bmod m)$ is called a period of $\left(T_{n} \bmod m\right)_{n=0}^{\infty}$. If $m=p$ is a prime, $h(p)$ depends in an essential way on the form of the factorization of the Tribonacci polynomial $t(x)=x^{3}-x^{2}-x-1$ over the Galois field \mathbb{F}_{p}. Let K denote the splitting field of $t(x)$ over \mathbb{F}_{p} and let α, β, γ be the roots of $t(x)$ in K. Since the discriminant of $t(x)$ is equal to $-2^{2} \cdot 11$, for $p \neq 2,11$, the roots α, β, γ are distinct. For any $0 \neq \xi \in K$, let $\operatorname{ord}_{K}(\xi)$ denote the order of ξ in the multiplicative group K^{\times}of K. By [10, Section 8], the problem of determining $h(p)$ is equivalent to the problem of determining the orders of α, β, γ in K^{\times}. See also $[1,2,7]$. Let $I=\{3,5,23,31, \ldots\}$ be the set of all primes p for which $t(x)$ is irreducible over $\mathbb{F}_{p}, Q=\{7,13,17,19, \ldots\}$ be the set of all primes for which $t(x)$ splits over \mathbb{F}_{p} into the product of a linear factor and an irreducible quadratic factor and let $L=\{2,11,47,53, \ldots\}$ be the set of all primes for which $t(x)$ completely splits over \mathbb{F}_{p} into linear factors. Then we can state the following theorem.

Theorem 1.1. Let $p \neq 2,11$ be a prime. Then
(i) $h(p)=\operatorname{lcm}\left(\operatorname{ord}_{K}(\alpha), \operatorname{ord}_{K}(\beta), \operatorname{ord}_{K}(\gamma)\right)$.
(ii) If $p \in I$, then $h(p)=\operatorname{ord}_{K}(\tau)$ where τ is any root of $t(x)$ in K.
(iii) $p \in I$ or $p \in L$ if and only if the Legendere-Jacobi symbol $(p / 11)=1$.
(iv) $p \in I$ if and only if $T_{p}^{2} \equiv-4 / 11(\bmod p)$.
(v) $p \in L$ if and only if $T_{p} \equiv 0(\bmod p)$.

[^0]PERIODS OF THE TRIBONACCI SEQUENCE MODULO A PRIME $p \equiv 1(\bmod 3)$
Statements (i) and (ii) are well-known. For example, see [1, p. 292], [7, p. 306] or consult [10, p. 161]. Statement (iii) is a consequence of more general results of L. Stickelberger [5] and G. Voronoï [8]. For details see [3]. Finally, statements (iv) and (v) are straightforward consequences of [6, Theorem 4.3].

The following theorem is due to A. Vince [7, Theorem 4].
Theorem 1.2. Let $p \neq 2,11$ be a prime. Then
(i) If $p \in L$, then $h(p) \mid p-1$.
(ii) If $p \in Q$, then $h(p) \mid p^{2}-1$.
(iii) If $p \in I$, then $h(p) \mid p^{2}+p+1$.

In Theorem 4.1 of this paper, we strengthen Vince's result for $p \equiv 1(\bmod 3)$ as follows:
(i) If $p \in L$, then $h(p) \left\lvert\, \frac{p-1}{3}\right.$ if and only if 2 is a cubic residue of the field \mathbb{F}_{p}.
(ii) If $p \in Q$, then $h(p) \left\lvert\, \frac{p^{2}-1}{3}\right.$ if and only if 2 is a cubic residue of the field \mathbb{F}_{p}.
(iii) If $p \in I$, then $h(p) \left\lvert\, \frac{p^{2}+p+1}{3}\right.$.

To prove this statement, we shall need the following result presented in [3].
Theorem 1.3. Let p be an arbitrary prime such that $p \equiv 1(\bmod 3)$ and let τ be any root of $t(x)$ in the field \mathbb{F}_{p}. Then

$$
\begin{equation*}
\tau^{\frac{p-1}{3}} \equiv 2^{\frac{2(p-1)}{3}} \quad(\bmod p) . \tag{1.1}
\end{equation*}
$$

Moreover, if τ is any root of $t(x)$ in the splitting field K of $t(x)$ over \mathbb{F}_{p}, then 2τ is a cubic residue of K, i.e., there exists $\omega \in K$ such that $2 \tau=\omega^{3}$.

> 2. A Way to Distinguish the Cases $p \in L$ and $p \in I$ For Primes $(p / 11)=1, p \equiv 1(\bmod 3)$

Let \mathbb{F} be a finite field with prime characteristic $p \equiv 1(\bmod 3)$. Then $\mathbb{F}=\mathbb{F}_{p^{n}}$ for a positive integer n and there exists an $\varepsilon \in \mathbb{F}^{\times}$with the property $\varepsilon^{3}=1, \varepsilon \neq 1$. Therefore, $\varepsilon^{2}+\varepsilon+1=0$. Let \mathbb{F}^{\times}denote the multiplicative group of \mathbb{F} with a generator g. For $e \in\{0,1,2\}$, put $C_{e}=\left\{\xi \in \mathbb{F}^{\times} ; \xi=g^{3 k+e}, k \in \mathbb{Z}, 0 \leq k<\left(p^{n}-1\right) / 3\right\}$. The sets C_{e} are called the cubic classes of \mathbb{F} and the elements of C_{0} the cubic residues of \mathbb{F}. The following lemma can be found in [3, Lemma 2.7].
Lemma 2.1. Let $\alpha, \beta, \gamma \in \mathbb{F}$. If $\alpha \beta \gamma$ is the cubic residue of \mathbb{F}, then either α, β, γ belong to distinct cubic classes of \mathbb{F} or α, β, γ belong to the same cubic class of \mathbb{F}.

Let $f(x)=x^{3}+r x+s \in \mathbb{F}[x], r, s \neq 0$. Assume that $f(x)$ is irreducible over \mathbb{F} or $f(x)$ has three distinct roots in \mathbb{F}. Put $d=\frac{s^{2}}{4}+\frac{r^{3}}{27}$. Since char $\mathbb{F} \neq 2,3$, the element d is well defined. Next, assume that there exists a $\lambda \in \mathbb{F}$ such that $\lambda^{2}=d$. Let

$$
\begin{equation*}
A=-\frac{s}{2}+\lambda \text { and } B=-\frac{s}{2}-\lambda \tag{2.1}
\end{equation*}
$$

Then $A B=\frac{s^{2}}{4}-d=\left(-\frac{r}{3}\right)^{3}$, which implies that
A is a cubic residue of \mathbb{F} if and only if B is a cubic residue of \mathbb{F}.
The following lemma is essentially Cardano's formula for the field \mathbb{F}.
Lemma 2.2. Let A, B be cubic residues of the field \mathbb{F}. Then there exist $\alpha, \beta \in \mathbb{F}$ such that $\alpha^{3}=A, \beta^{3}=B, \alpha \beta=-\frac{r}{3}$ and $\alpha+\beta$ is a root of $f(x)$ in \mathbb{F}.

THE FIBONACCI QUARTERLY

Proof. Since A, B are cubic residues of \mathbb{F}, there exist $\alpha, \gamma \in \mathbb{F}$ such that $\alpha^{3}=A, \gamma^{3}=B$. Then $(\alpha \gamma)^{3}=A B=\left(-\frac{r}{3}\right)^{3}$ and, consequently, there exists $e \in\{0,1,2\}$ such that $\alpha \gamma \varepsilon^{e}=-\frac{r}{3}$. Let $\beta=\gamma \varepsilon^{e}$. Then $\beta^{3}=B, \alpha \beta=-\frac{r}{3}$ and $f(\alpha+\beta)=(\alpha+\beta)^{3}+r(\alpha+\beta)+s=A+3 \alpha \beta(\alpha+$ $\beta)+B+r \alpha+r \beta+s=-s-r(\alpha+\beta)+r \alpha+r \beta+s=0$.

Lemma 2.3. Let $f(x)$ have three distinct roots in \mathbb{F}. Then A, B are cubic residues of \mathbb{F}.
Proof. Suppose that A and B are not cubic residues of \mathbb{F} and let \mathbb{G} be the splitting field of $x^{3}-A$ over \mathbb{F}. Since A is a cubic residue of \mathbb{G}, B is a cubic residue of \mathbb{G} by (2.2). Applying Lemma 2.2 to the field \mathbb{G}, we see that there exist $\alpha, \beta \in \mathbb{G}$ such that $\alpha^{3}=A, \beta^{3}=B, \alpha \beta=-\frac{r}{3}$ and $\alpha+\beta$ is a root of $f(x)$ in \mathbb{G}. As assumed, the roots of $f(x)$ belong to \mathbb{F} and thus $\alpha+\beta \in \mathbb{F}$. Since $1, \alpha, \alpha^{2}$ is a basis of the extension \mathbb{G} / \mathbb{F}, there exist $a, b, c \in \mathbb{F}$ such that $\beta=a \alpha^{2}+b \alpha+c$. Furthermore, $\alpha+\beta \in \mathbb{F}$ and $\alpha+\beta=a \alpha^{2}+(b+1) \alpha+c$, implies $a=0, b=-1$ and thus $\beta=-\alpha+c$. Then $B=\beta^{3}=-\alpha^{3}+3 \alpha^{2} c-3 \alpha c^{2}+c^{3}=-A+3 \alpha^{2} c-3 \alpha c^{2}+c^{3}$, which implies $A+B=3 \alpha^{2} c-3 \alpha c^{2}+c^{3}$. Next, $A+B \in \mathbb{F}$ implies $c=0$. Hence, $-\frac{s}{2}-\lambda=B=-A=\frac{s}{2}-\lambda$, which yields $s=0$, and a contradiction follows.

Combining (2.2), Lemma 2.2, and Lemma 2.3 we get the following theorem.
Theorem 2.4. The following statements are equivalent:
(i) The polynomial $f(x)=x^{3}+r x+s \in \mathbb{F}[x]$ has three distinct roots in \mathbb{F}.
(ii) $A=-\frac{s}{2}+\lambda$ is a cubic residue of \mathbb{F}.
(iii) $B=-\frac{s}{2}-\lambda$ is a cubic residue of \mathbb{F}.

Now we apply Theorem 2.4 to a Tribonacci polynomial $t(x)$ and field $\mathbb{F}=\mathbb{F}_{p}$ where p is an arbitrary prime such that $p \equiv 1(\bmod 3)$ and $(p / 11)=1$.

The assumption $(p / 11)=1$ implies, by Theorem 1.1, part (iii), that $t(x)$ is irreducible over \mathbb{F}_{p}, or $t(x)$ has three distinct roots in \mathbb{F}_{p}. Using the substitution $x=y+\frac{1}{3}$, we can easily convert $t(x)$ to the form $\bar{t}(y)=y^{3}-\frac{4}{3} y-\frac{38}{27}$. Hence, $r=-\frac{4}{3}, s=-\frac{38}{27}$, and $d=\frac{11}{27}$. Since $(19 / 11)=-1$, we have $r, s, d \neq 0$ in the field \mathbb{F}_{p} where $p \equiv 1(\bmod 3)$ and $(p / 11)=1$. After some calculation, we find that $(d / p)=(33 / p)=1$ and thus there exists $\lambda \in \mathbb{F}_{p}$ such that $\lambda^{2}=d$. Put $\varkappa=9 \lambda$. Then $\varkappa^{2}=33$ and (2.1) yields $A=\frac{1}{27}(19+3 \varkappa)$ and $B=\frac{1}{27}(19-3 \varkappa)$.

From this and from Theorem 2.4, we get the following criterion, which can be used for $t(x)$ and for a prime $p \equiv 1(\bmod 3),(p / 11)=1$ to decide whether $p \in L$ or $p \in I$.

Theorem 2.5. Let p be a prime, $p \equiv 1(\bmod 3)$ and let $(p / 11)=1$. Then the following statements are equivalent:
(i) The Tribonacci polynomial $t(x)$ has three distinct roots in \mathbb{F}_{p}.
(ii) $19+3 \varkappa$ is a cubic residue of \mathbb{F}_{p}.
(iii) $19-3 \varkappa$ is a cubic residue of \mathbb{F}_{p}.

The following proposition will be needed in the next section.
Proposition 2.6. Let p be a prime, $p \equiv 1(\bmod 3)$ and let $(p / 11)=1$. Furthermore, let $\rho=(13+3 \varkappa) / 2$ and $\sigma=(13-3 \varkappa) / 2$ where $\varkappa \in \mathbb{F}_{p}$ such that $\varkappa^{2}=33$. Then the following statements are equivalent:
(i) The elements $2, \rho, \sigma$ belong to the same cubic class of \mathbb{F}_{p}.
(ii) $26+6 \varkappa$ is a cubic residue of \mathbb{F}_{p}.
(iii) $26-6 \varkappa$ is a cubic residue of \mathbb{F}_{p}.

PERIODS OF THE TRIBONACCI SEQUENCE MODULO A PRIME $p \equiv 1(\bmod 3)$
Proof. The equivalence of (ii) and (iii) follows from the equality $(26+6 \varkappa)(26-6 \varkappa)=(-8)^{3}$. We prove that (i) implies (ii). Since 2 and ρ belong to the same cubic class of \mathbb{F}_{p}, there exists $\omega \in \mathbb{F}_{p}$ such that $\rho=2 \omega^{3}$. Hence, $\omega^{3}=\rho / 2=(13+3 \varkappa) / 4=(26+6 \varkappa) / 8$, which proves that $26+6 \varkappa$ is a cubic residue of \mathbb{F}_{p}. Conversely, assume (ii). Then $(26+6 \varkappa) / 8$ is a cubic residue of \mathbb{F}_{p} and thus there exists $\omega \in \mathbb{F}_{p}$ such that $\omega^{3}=(26+6 \varkappa) / 8$. Hence, we have $2 \omega^{3}=(13+3 \varkappa) / 2=\rho$, which means that 2 and ρ belong to the same cubic class of \mathbb{F}_{p}. In a similar way, we can deduce that 2 and σ belong to the same cubic class of \mathbb{F}_{p}. Hence, (ii) implies (i). The proof is complete.
3. The Existence and Properties of the Roots of the Polynomial $x^{3}-\tau$ in the Field Extension K / \mathbb{F}_{p} for a Prime $p \in I$

Let $p \in I$. Recall that K is the splitting field of $t(x)$ over \mathbb{F}_{p} and α, β, γ are the roots of $t(x)$ in K. Then $\{\alpha, \beta, \gamma\}=\left\{\tau, \tau^{p}, \tau^{p^{2}}\right\}$ for any $\tau \in\{\alpha, \beta, \gamma\}$. Together with the Viète equation $\alpha \beta \gamma=1$, this yields $\tau^{p^{2}+p+1}=1$. Now we can prove the following lemma.
Lemma 3.1. Let $p \in I, p \equiv 1(\bmod 3)$ and let τ be an arbitrary root of $t(x)$ in K. Then there exist exactly three distinct roots $\xi_{1}, \xi_{2}, \xi_{3}$ of $x^{3}-\tau$ in K.
Proof. Since K is a finite field, the multiplicative group K^{\times}is cyclic. Let g be a generator of K^{\times}. Then $\tau=g^{t}$ for a positive integer t. Since $1=\tau^{p^{2}+p+1}=g^{t\left(p^{2}+p+1\right)}$, we have $p-1 \mid t$. Hence, $3 \mid t$. Set $\xi_{i}=g^{t / 3+(i-1)\left(p^{3}-1\right) / 3}$ for $i \in\{1,2,3\}$. Then $\xi_{1}, \xi_{2}, \xi_{3}$ are three distinct roots of $x^{3}-\tau$ in K.

The proofs of the following lemmas are easy to see.
Lemma 3.2. Let $p \in I, p \equiv 1(\bmod 3)$ and let τ be an arbitrary root of $t(x)$ in K. Furthermore, let $\xi_{1}, \xi_{2}, \xi_{3}$ be the roots of $x^{3}-\tau$ in K. Then:
(i) $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}=\left\{\xi, \varepsilon \xi, \varepsilon^{2} \xi\right\}$ for any $\xi \in\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$.
(ii) $\xi_{1} \xi_{2} \xi_{3}=\tau$.
(iii) $\xi_{1}+\xi_{2}+\xi_{3}=\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}=\xi_{1} \xi_{2}+\xi_{1} \xi_{3}+\xi_{2} \xi_{3}=0$.

Let $p \in I, p \equiv 1(\bmod 3)$ and let τ be an arbitrary root of $t(x)$ in K. Further, let ξ be an arbitrary root of $x^{3}-\tau$ in K. Put $c(p)=-\xi^{p^{2}+p+1}$. It is easy to see that $c(p)$ does not depend on the choice of ξ and τ. Since $\xi^{3}=\tau$ and $\tau^{p^{2}+p+1}=1$, we have $c(p)^{3}=-1$. Hence $c(p) \in\left\{-1,-\varepsilon,-\varepsilon^{2}\right\}$. Furthermore, let $w(x)=(x-\xi)\left(x-\xi^{p}\right)\left(x-\xi^{p^{2}}\right)$. Then $w(x) \in \mathbb{F}_{p}[x]$ and $w(x)$ is irreducible over \mathbb{F}_{p}. For further considerations we will need the following polynomials defined in [3, Section 2]. For $c=c(p)$, put $f(x, c)=x^{3}+A(c) x^{2}+B(c) x+C(c) \in \mathbb{F}_{p}[x]$ where $A(c)=-18 c^{2}+3, B(c)=-9 c^{2}-27 c-24$, and $C(c)=9 c^{2}-27 c+28$. In particular, for $c=-1$ we have $f(x,-1)=x^{3}-15 x^{2}-6 x+64$.
Lemma 3.3. For any prime $p \in I, p \equiv 1(\bmod 3)$, the following is true:
(i) $f(x, c(p))$ has three distinct roots in \mathbb{F}_{p} belonging to distinct cubic classes of \mathbb{F}_{p}.
(ii) Let $c_{1}, c_{2} \in\left\{-1,-\varepsilon,-\varepsilon^{2}\right\}$ and $b_{1}, b_{2} \in \mathbb{F}_{p}$. If $f\left(b_{1}^{3}, c_{1}\right)=f\left(b_{2}^{3}, c_{2}\right)=0$ then $c_{1}=c_{2}$.

For a proof of (i) see [3, Theorem 3.2] and for a proof of (ii) consult [3, Lemma 3.3]. The validity of the following lemma is easy to verify.
Lemma 3.4. Let p be a prime, $p \equiv 1(\bmod 3)$ and let $(p / 11)=1$. Then the polynomial $f(x,-1)=x^{3}-15 x^{2}-6 x+64$ completely splits into linear factors over the field \mathbb{F}_{p} and has three distinct roots $2, \rho=(13+3 \varkappa) / 2$, and $\sigma=(13-3 \varkappa) / 2$ where $\varkappa \in \mathbb{F}_{p}$ such that $\varkappa^{2}=33$.

THE FIBONACCI QUARTERLY

Now we are ready for the following theorem.
Theorem 3.5. Let $p \in I$ and $p \equiv 1(\bmod 3)$. Then $c(p)=-1$.
Proof. By Theorem 2.5, $19-3 \varkappa$ is not a cubic residue of the field \mathbb{F}_{p}. Since $(19-3 \varkappa)(26+6 \varkappa)=$ $(-1+\varkappa)^{3}$, the element $26+6 \varkappa$ is not a cubic residue of \mathbb{F}_{p} either. By Lemma 3.4, the polynomial $f(x,-1)$ has three distinct roots $2, \rho, \sigma$ in \mathbb{F}_{p} and Lemma 2.1, together with Proposition 2.6, yields that $2, \rho, \sigma$ belong to distinct cubic classes of \mathbb{F}_{p}. Hence, there exists a $b_{2} \in \mathbb{F}_{p}$ such that $b_{2}^{3} \in\{2, \rho, \sigma\}$ and $f\left(b_{2}^{3},-1\right)=0$. By Lemma 3.3, part (i), there exists $b_{1} \in \mathbb{F}_{p}$ such that $f\left(b_{1}^{3}, c(p)\right)=0$ and from Lemma 3.3, part (ii) we get $c(p)=-1$.
Theorem 3.6. Let $p \in I, p \equiv 1(\bmod 3)$ and let τ be an arbitrary root of $t(x)$ in the splitting field K of $t(x)$ over \mathbb{F}_{p}. Furthermore, let ξ be any root of $x^{3}-\tau$ in K. Then $\xi^{p^{2}+p+1}=1$ and

$$
\begin{equation*}
\tau^{\frac{p^{2}+p+1}{3}}=1 . \tag{3.1}
\end{equation*}
$$

Proof. From Theorem 3.5 and the definition of $c(p)$ we immediately get $\xi^{p^{2}+p+1}=1$. Since $\xi^{3}=\tau$, we have $\tau^{\left(p^{2}+p+1\right) / 3}=\xi^{p^{2}+p+1}=1$ as required.

Corollary 3.7. Let $p \in I$ and $p \equiv 1(\bmod 3)$. Then $u(x):=t\left(x^{3}\right)=x^{9}-x^{6}-x^{3}-1$ factors over \mathbb{F}_{p} into the product of three irreducible polynomials $w(x), w(\varepsilon x), w\left(\varepsilon^{2} x\right)$ with constant terms equal to -1 .

Remark 3.8. (i) Let $p \in I$ and τ be an arbitrary root of $t(x)$ in the splitting field K of $t(x)$ over \mathbb{F}_{p}. It is easy to prove by induction that

$$
\begin{equation*}
\tau^{k}=T_{k} \tau^{2}+\left(T_{k-1}+T_{k-2}\right) \tau+T_{k-1}, k>1 . \tag{3.2}
\end{equation*}
$$

From equality (3.2) it follows for $k>1$ that

$$
\begin{equation*}
\tau^{k}=\varepsilon \text { if and only if } T_{k} \equiv T_{k+1} \equiv 0 \quad(\bmod p) \text { and } T_{k+2} \equiv \varepsilon \quad(\bmod p) \tag{3.3}
\end{equation*}
$$

(ii) Put $H=<g^{p-1}>$ where g is the generator of K^{\times}. Then H is a cyclic group of order $p^{2}+p+1$. Since $\tau^{p^{2}+p+1}=1$, we have $\tau \in H$ and $G=<\tau>$ is a subgroup of H. Let $p \equiv 1$ $(\bmod 3)$. Then in H, there exist exactly three elements belonging to \mathbb{F}_{p}. These are $1, \varepsilon, \varepsilon^{2}$. Moreover, together with $9 \nmid p^{2}+p+1$, (3.1) yields $\varepsilon, \varepsilon^{2} \notin G$.

Theorem 3.9. Let $p \in I, p \equiv 1(\bmod 3)$ and let τ be an arbitrary root of $t(x)$ in the splitting field K of $t(x)$ over \mathbb{F}_{p}. Furthermore, let $\xi \in\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ be any root of $x^{3}-\tau$ in K. Then $\operatorname{ord}_{K}(\xi)=\operatorname{ord}_{K}(\tau)$ or $\operatorname{ord}_{K}(\xi)=3 \cdot \operatorname{ord}_{K}(\tau)$. Moreover, exactly one of the roots $\xi_{1}, \xi_{2}, \xi_{3}$ is of an order equal to $\operatorname{ord}_{K}(\tau)$ and two roots are of orders equal to $3 \cdot \operatorname{ord}_{K}(\tau)$.
Proof. For brevity, put $\operatorname{ord}_{K}(\tau)=h$ and $\operatorname{ord}_{K}(\xi)=k$. We have $\xi^{3}=\tau$ and so $\xi^{3 h}=\tau^{h}=1$, which means that $k \mid 3 h$. On the other hand, $\xi^{k}=1$ implies $\xi^{3 k}=1$. Together with $\xi^{3}=\tau$ this yields $\tau^{k}=1$ and $h \mid k$ follows. Consequently, there exist positive integers c_{1}, c_{2} such that $c_{1} \cdot k=3 \cdot h$ and $k=c_{2} \cdot h$. Hence, we have $c_{1} c_{2}=3$, which yields $c_{1}=1, c_{2}=3$ or $c_{1}=3, c_{2}=1$. Consequently, $\operatorname{ord}_{K}(\xi)=\operatorname{ord}_{K}(\tau)$ or $\operatorname{ord}_{K}(\xi)=3 \cdot \operatorname{ord}_{K}(\tau)$.

Since the orders of the elements $\xi_{1}, \xi_{2}, \xi_{3}$ can only take on two values h and $3 h$, at least two of them have the same order. Denote this order by h_{0}. Without loss of generality, we can assume $\operatorname{ord}_{K}\left(\xi_{1}\right)=\operatorname{ord}_{K}\left(\xi_{2}\right)=h_{0}$. Put $\xi_{1}=\xi$. Since $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}=\left\{\xi, \varepsilon \xi, \varepsilon^{2} \xi\right\}$, either $\operatorname{ord}_{K}(\xi)=\operatorname{ord}_{K}(\varepsilon \xi)=h_{0}$ or $\operatorname{ord}_{K}(\xi)=\operatorname{ord}_{K}\left(\varepsilon^{2} \xi\right)=h_{0}$. Hence, it easily follows that $3 \mid h_{0}$ and thus $h_{0}=3 r$ for some positive integer r. Using Lemma 3.2, part (ii), we get

PERIODS OF THE TRIBONACCI SEQUENCE MODULO A PRIME $p \equiv 1(\bmod 3)$
$\tau^{3 r}=\left(\xi_{1} \xi_{2} \xi_{3}\right)^{h_{0}}=\xi_{3}^{h_{0}}=\tau^{r}$. Hence, $\tau^{2 r}=1$. Since $2 \nmid h$, we have $h \mid r$. This, together with $h_{0} \in\{h, 3 h\}$, yields $h_{0}=3 h$. Consequently, we have either

$$
\begin{equation*}
\operatorname{ord}_{K}\left(\xi_{1}\right)=\operatorname{ord}_{K}\left(\xi_{2}\right)=\operatorname{ord}_{K}\left(\xi_{3}\right)=3 \cdot \operatorname{ord}_{K}(\tau)=3 h \tag{3.4}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{ord}_{K}\left(\xi_{1}\right)=\operatorname{ord}_{K}\left(\xi_{2}\right)=3 \cdot \operatorname{ord}_{K}(\tau) \text { and } \operatorname{ord}_{K}\left(\xi_{3}\right)=\operatorname{ord}_{K}(\tau) . \tag{3.5}
\end{equation*}
$$

In both cases, there exist $u, v \in\left\{\varepsilon, \varepsilon^{2}\right\}$ such that $\xi_{1}^{h}=u$, and $\xi_{2}^{h}=v$. First, assume that $u \neq v$. Then $\xi_{1}^{h} \xi_{2}^{h}=\varepsilon^{3}=1$, which yields $\xi_{3}^{h}=\left(\xi_{1} \xi_{2} \xi_{3}\right)^{h}=\tau^{h}=1$. Hence, we have $\operatorname{ord}_{K}\left(\xi_{3}\right) \mid h$ and (3.5) follows. Further, assume that $u=v$. Since we have put $\xi_{1}=\xi$, we have either $\xi^{h}=\varepsilon^{h} \xi^{h}$ or $\xi^{h}=\varepsilon^{2 h} \xi^{h}$. Hence, $3 \mid h$. Assume (3.4) is true. Then $\operatorname{ord}_{K}\left(\xi_{3}\right)=3 h$ and, thus, $9 \mid \operatorname{ord}_{K}(\xi)$ for any $\xi \in\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$. Since $9 \nmid p^{2}+p+1$, we have $\xi^{p^{2}+p+1} \neq 1$, which is a contradiction to Theorem 3.6. Hence, we have (3.5) and the theorem follows.

Corollary 3.10. Let $p \in I, p \equiv 1(\bmod 3)$ and let τ be an arbitrary root of $t(x)$ in the splitting field K of $t(x)$ over \mathbb{F}_{p}. Then $x^{9}-\tau$ has exactly 9 distinct roots in K.

Proof. Since $\tau^{\frac{p^{2}+p+1}{3}}=1$, the proof is a simple modification of the proof of Lemma 3.1.
Example 3.11. Let $p=37$. Then $p \equiv 1(\bmod 3)$ and it can be verified that $p \in I$. Let K be the splitting field of $t(x)$ over \mathbb{F}_{37} and let τ be any root of $t(x)$ in K. By Lemma 3.1, the polynomial $x^{3}-\tau$ has three distinct roots $\xi_{1}, \xi_{2}, \xi_{3}$ in K. In the field \mathbb{F}_{37} we have $\varepsilon=10$, and Lemma 3.2, part (i), yields $\xi_{2}=10 \xi_{1}$ and $\xi_{3}=15 \xi_{1}$. Using the basis $1, \tau, \tau^{2}$ of the field extension $K / \mathbb{F}_{p}, \xi_{1}, \xi_{2}, \xi_{3}$ can be written in the form

$$
\xi_{1}=2+16 \tau+24 \tau^{2}, \xi_{2}=20+12 \tau+18 \tau^{2}, \xi_{3}=15+9 \tau+32 \tau^{2}
$$

By direct calculation we obtain $\operatorname{ord}_{K}(\tau)=469, \operatorname{ord}_{K}\left(\xi_{1}\right)=\operatorname{ord}_{K}\left(\xi_{2}\right)=1407$ and $\operatorname{ord}_{K}\left(\xi_{3}\right)$ $=469$. Consequently, by Theorem 1.1, part (ii), and Theorem 3.9, $h(37)=\operatorname{ord}_{K}(\tau)=$ $\operatorname{ord}_{K}\left(\xi_{3}\right)=469$. Furthermore, by Corollary 3.10, there exist 9 distinct roots of $x^{9}-\tau$ in K :

$$
\begin{array}{lll}
\xi_{11}=4+36 \tau+12 \tau^{2}, & \xi_{12}=3+27 \tau+9 \tau^{2}, & \xi_{13}=30+11 \tau+16 \tau^{2}, \\
\xi_{21}=21+4 \tau+26 \tau^{2}, & \xi_{22}=25+3 \tau+\tau^{2}, & \xi_{23}=28+30 \tau+10 \tau^{2}, \\
\xi_{31}=11+25 \tau+33 \tau^{2}, & \xi_{32}=27+21 \tau+7 \tau^{2}, & \xi_{33}=36+28 \tau+34 \tau^{2} .
\end{array}
$$

Moreover, for any $i, j \in\{1,2,3\}$, we have $\xi_{i j}^{3}=\xi_{i}$. Let $w_{1}(x)=x^{3}+17 x^{2}+31 x-1$, $w_{2}(x)=w_{1}(\varepsilon x)=x^{3}+22 x^{2}+29 x-1$, and $w_{3}(x)=w_{1}\left(\varepsilon^{2} x\right)=x^{3}+35 x^{2}+14 x-1$. Then ξ_{i}, $\xi_{i}^{p}, \xi_{i}^{p^{2}}, i \in\{1,2,3\}$ are the roots of $w_{i}(x)$ and $x^{9}-x^{6}-x^{3}-1 \equiv w_{1}(x) w_{2}(x) w_{3}(x)(\bmod 37)$ as required by Corollary 3.7.

4. Periods of the Tribonacci Sequence Modulo a Prime $p \equiv 1(\bmod 3)$

Recall that, for a prime $p, h(p)$ denotes the period of $\left(T_{n} \bmod p\right)_{n=0}^{\infty}$. In this section we prove our main theorem extending Vince's result [7, Theorem 4].

Theorem 4.1. Let p be an arbitrary prime, $p \equiv 1(\bmod 3)$.
(i) If $p \in L$, then $h(p) \left\lvert\, \frac{p-1}{3}\right.$ if and only if 2 is a cubic residue of the field \mathbb{F}_{p}.
(ii) If $p \in Q$, then $h(p) \left\lvert\, \frac{p^{2}-1}{3}\right.$ if and only if 2 is a cubic residue of the field \mathbb{F}_{p}.
(iii) If $p \in I$, then $h(p) \left\lvert\, \frac{p^{2}+p+1}{3}\right.$.

THE FIBONACCI QUARTERLY

Proof. The congruence $p \equiv 1(\bmod 3)$ implies $p \neq 2,11$.
(i) Let $p \in L$ and let τ be any root of $t(x)$ in \mathbb{F}_{p}. If 2 is a cubic residue of \mathbb{F}_{p}, it follows from (1.1) that $\tau^{(p-1) / 3} \equiv 1(\bmod p)$. Hence, $\operatorname{ord}_{\mathbb{F}_{p}}(\tau) \left\lvert\, \frac{p-1}{3}\right.$ and Theorem 1.1, part (i), imply $h(p) \left\lvert\, \frac{p-1}{3}\right.$. On the other hand, if $h(p) \left\lvert\, \frac{p-1}{3}\right.$, then $\operatorname{ord}_{\mathbb{F}_{p}}(\tau) \left\lvert\, \frac{p-1}{3}\right.$ for any root τ of $t(x)$ in \mathbb{F}_{p}. Consequently, $\tau^{(p-1) / 3} \equiv 1(\bmod p)$ and (1.1) yields $2^{2(p-1) / 3} \equiv 1(\bmod p)$. This implies that either $2^{(p-1) / 3} \equiv-1(\bmod p)$ or 2 is a cubic residue of \mathbb{F}_{p}. Suppose that $2^{(p-1) / 3} \equiv-1$ $(\bmod p)$. Then $1 \equiv 2^{p-1} \equiv\left(2^{(p-1) / 3}\right)^{3} \equiv(-1)^{3} \equiv-1$, which yields $2 \equiv 0(\bmod p)$. Since $p \neq 2$, a contradiction follows.
(ii) Let $p \in Q$. Then the multiplicative group K^{\times}of the splitting field K of $t(x)$ over \mathbb{F}_{p} has $p^{2}-1$ elements. Let τ be any root of $t(x)$ in K. Then, by Theorem 1.3, there exists $\omega \in K$ such that $2 \tau=\omega^{3}$. Let 2 be a cubic residue of \mathbb{F}_{p}. Then $2^{\left(p^{2}-1\right) / 3}=1$ in K and so $\tau^{\left(p^{2}-1\right) / 3}=(2 \tau)^{\left(p^{2}-1\right) / 3}=\omega^{p^{2}-1}=1$. This implies $\operatorname{ord}_{K}(\tau) \left\lvert\, \frac{p^{2}-1}{3}\right.$ and Theorem 1.1, part (i), yields $h(p) \left\lvert\, \frac{p^{2}-1}{3}\right.$. Conversely, assume that $h(p) \left\lvert\, \frac{p^{2}-1}{3}\right.$. Then $\operatorname{ord}_{K}(\tau) \left\lvert\, \frac{p^{2}-1}{3}\right.$ for any root τ of $t(x)$ in K and $\tau^{\left(p^{2}-1\right) / 3}=1$. From $2 \tau=\omega^{3}$, we get $(2 \tau)^{\left(p^{2}-1\right) / 3}=\omega^{p^{2}-1}=1$, which implies $2^{\left(p^{2}-1\right) / 3}=1$ in K. Clearly, $1 \equiv 2^{\left(p^{2}-1\right) / 3} \equiv\left(2^{(p-1) / 3}\right)^{p+1} \equiv 2^{2(p-1) / 3}(\bmod p)$. Using an argument similar to that in (i), we obtain $2^{(p-1) / 3} \equiv 1(\bmod p)$ and (ii) follows.
(iii) Let $p \in I$ and let τ be any root of $t(x)$ in the splitting field K of $t(x)$ over \mathbb{F}_{p}. Then, by (3.1), we have $\tau^{\left(p^{2}+p+1\right) / 3}=1$. This implies ord ${ }_{K}(\tau) \left\lvert\, \frac{p^{2}+p+1}{3}\right.$ and part (ii) of Theorem 1.1 yields $h(p) \left\lvert\, \frac{p^{2}+p+1}{3}\right.$ as required.

Remark 4.2. If $p \equiv 1(\bmod 3)$, then 2 is a cubic residue of the field \mathbb{F}_{p} if and only if there are integers u and v such that $p=u^{2}+27 v^{2}$ [4, p. 119].

Let m be a positive integer, $m>1$. In 1978, M. E. Waddill [9, Theorem 2] proved:

$$
\begin{equation*}
\text { if } T_{k} \equiv T_{k+1} \equiv 0 \quad(\bmod m), \quad \text { then } T_{k+2}^{3} \equiv 1 \quad(\bmod m) . \tag{4.1}
\end{equation*}
$$

Moreover, if k is the least positive integer such that $T_{k} \equiv T_{k+1} \equiv 0(\bmod m)$, then either $T_{k+2} \equiv 1(\bmod m)$ or $T_{3 k+2} \equiv 1 \bmod m$ and the period $h(m)$ of $\left(T_{n} \bmod m\right)_{n=0}^{\infty}$ is k or $3 k[9$, Theorem 10]. If $m=p \in I$, we can say more.

Proposition 4.3. Let k be the least positive integer such that $T_{k} \equiv T_{k+1} \equiv 0(\bmod p)$. If $p \in I$, then $h(p)=k$.

Proof. By (4.1), the congruences $T_{k} \equiv T_{k+1} \equiv 0(\bmod p)$ imply $T_{k+2}^{3} \equiv 1(\bmod p)$. Suppose that $T_{k+2} \not \equiv 1(\bmod p)$. First, it is evident that, for $p \equiv 2(\bmod 3)$, we have $T_{k+2}^{3} \equiv 1(\bmod p)$ if and only if $T_{k+2} \equiv 1(\bmod p)$. Hence, $p \equiv 1(\bmod 3)$ or $p=3$. Let $p \equiv 1(\bmod 3)$. Then $T_{k+2} \not \equiv 1(\bmod p)$ implies $T_{k+2} \equiv \varepsilon(\bmod p)$ and (3.3) yields $\tau^{k}=\varepsilon$. Since, by Remark 3.8, we have $\varepsilon \notin G=<\tau>$, a contradiction follows. Finally, for $p=3$, the proof can be done by direct calculation.

Let $\left(t_{n}\right)_{n=0}^{\infty}=(a, b, c, a+b+c, a+2 b+2 c, \ldots)$ be a generalized Tribonacci sequence beginning with an arbitrary triple of integers $t_{0}=a, t_{1}=b, t_{2}=c$. In 2008, J. Klaška [2] investigated the period $h(m)[a, b, c]$ of the sequence $\left(t_{n} \bmod m\right)_{n=0}^{\infty}$ where the modulus m is a power of a prime. In particular, if $m=p \in I$, then, by [2, pp. 271-274], we have $h(p)[a, b, c]=h(p)$ if and only if $[a, b, c] \not \equiv[0,0,0](\bmod p)$. Together with part (iii) of Theorem 4.1 this yields the following proposition.

PERIODS OF THE TRIBONACCI SEQUENCE MODULO A PRIME $p \equiv 1(\bmod 3)$
Proposition 4.4. Let a, b, c be arbitrary integers and $\left(t_{n}\right)_{n=0}^{\infty}$ the generalized Tribonacci sequence beginnig with $t_{0}=a, t_{1}=b, t_{2}=c$. If p is a prime, $p \in I, p \equiv 1(\bmod 3)$ then $h(p)[a, b, c] \left\lvert\, \frac{p^{2}+p+1}{3}\right.$.

References

[1] W. Adams and D. Shanks, Strong primality tests that are not sufficient, Math. Comp. 39 (1982), 255-300.
[2] J. Klaška, Tribonacci modulo p^{t}, Math. Bohemica, 133.3 (2008), 267-288.
[3] J. Klaška and L. Skula, The cubic character of the Tribonacci roots, The Fibonacci Quarterly, 48.1 (2010), 21-28.
[4] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, New York, 1992.
[5] L. Stickelberger, Über eine neue Eigenschaft der Diskriminanten algebraischer Zahlkörper, Verhand. I. Internat. Math. Kongress (1897), 182-193.
[6] Z.-H. Sun, Cubic and quartic congruences modulo a prime, J. Number Theory, 102 (2003), 41-89.
[7] A. Vince, Period of a linear recurrence, Acta Arith., 39 (1981), 303-311.
[8] G. Voronoï, Sur une propriété du discriminant des fonctions entières, Verhand. III. Internat. Math. Kongress, (1905), 186-189.
[9] M. E. Waddill, Some properties of a generalized Fibonacci sequence modulo m, The Fibonacci Quarterly 16.4 (1978), 344-353.
[10] M. Ward, The characteristic number of a sequence of integers satisfying a linear recursion relation, Trans. Amer. Math. Soc., 33 (1931), 153-165.

MSC2010: 11B50, 11B39, 11A07
Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 61669 Brno, Czech Republic

E-mail address: klaska@fme.vutbr.cz
Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 61669 Brno, Czech Republic

E-mail address: skula@fme.vutbr.cz

[^0]: The second author was supported by the Grant Agency of the Czech Republic (Algebraic, Analytic and Combinatorial Number Theory, 201/07/0191) and the result was acquired using the subsidization of the Ministry of Education, Youth and Sports of the Czech Republic, research plan MSM0021630518 "Simulation Modeling of Mechatronic Systems".

