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Abstract. Say that two compositions of n into k parts are related if they differ only by a

cyclic shift. This defines an equivalence relation on the set of such compositions. Let

〈

n

k

〉

denote the number of distinct corresponding equivalence classes, that is, the number of cyclic

compositions of n into k parts. We prove some theorems concerning

〈

n

k

〉

.

1. Introduction

If k, n are integers such that 1 ≤ k ≤ n, let C(n, k) denote the set of all compositions of n

into k parts. (It is well-known that the cardinality of C(n, k) is

(

n− 1
k − 1

)

[2]). Now consider

the relation R defined on C(n, k) as follows: two elements of C(n, k) are related if and only if
they differ only by a cyclic shift. For example, we have

[1 + 2 + 3]R = [2 + 3 + 1]R = [3 + 1 + 2]R 6= [1 + 3 + 2]R.

Let

〈

n
k

〉

denote the number of distinct equivalence classes of C(n, k) with respect to R. We

refer to

〈

n
k

〉

as the number of cyclic compositions of n with k parts. These combinatorial

objects were first investigated more than a century ago. (See [5] and the references contained
therein.)

Suppose that for each n ≥ 2 and for each k such that 1 ≤ k ≤ n − 1, we list all the

〈

n
k

〉

in a horizontal row. We then obtain a triangular array similar to Pascal’s triangle, namely
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1

1 1

1 2 1

1 2 2 1

1 3 4 3 1

1 3 5 5 3 1

1 4 7 10 7 4 1

1 4 10 14 14 10 4 1

1 5 12 22 26 22 12 5 1

1 5 15 30 42 42 30 15 5 1

1 6 19 43 66 80 66 43 19 6 1

1 6 22 55 99 132 132 99 55 22 6 1

1 7 26 73 143 217 246 217 143 73 26 7 1

· · ·

Remark 1. This table appears in [4] as A037306. Note that for aesthetic reasons we omit the

additional column

〈

n
n

〉

= 1 from each row above.

In this note, we derive an explicit formula for

〈

n
k

〉

. We also give two proofs that the

triangular array shown above is symmetric, that is,

〈

n
k

〉

=

〈

n
n− k

〉

for all k such that

1 ≤ k ≤ n−1. (One proof is based on generating functions while the second is combinatorial.)

We prove some additional parity-related results, including the following: 2|

〈

2n
n

〉

for all

n ≥ 2. (The latter result is analogous to a similar property of binomial coefficients stated in
(3) below.)

2. Preliminaries

Theorem 1. If p is prime and 1 ≤ k ≤ p− 1, then

〈

p
k

〉

= 1
p

(

p
k

)

. This theorem, proven by

Sommerville in [5], will be generalized in Corollary 1 below.

Definition 1. Let D(n) denote the total number of cyclic equivalence classes of compositions
of n, that is

D(n) =

n
∑

k=1

〈

n
k

〉

.

It is known that

D(n) = −1 +
1

n

∑

d|n

φ(d)2
n

d .

(This follows from [2, p. 48].)
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Definition 2. Let D∗(n) denote the total number of necklaces of n beads in two colors, say
black and white. It is known that D∗(n) = 1 +D(n) [4].

Definition 3. Let D∗∗(n) denote the total number of necklaces of n beads in two colors, with
the proviso that at least one bead must be black.

Clearly, D∗∗(n) = D(n), but we will prove more, namely, we will demonstrate a bijection
between cyclic compositions of n into k parts and necklaces with beads of which k are black,
the rest white, where 1 ≤ k ≤ n− 1.

Definition 4. Let t2(n) denote the sum of the binary digits of the natural number n.

Definition 5. Let o2(n) = m if 2m|n but 2m+1 6 |n.

Definition 6. Let [x] denote the integer part of the real number x.

Identities. For all n ≥ 1, we have:

∑

k odd

(

n
k

)

= 2n−1 (1)

o2

((

n
k

))

= t2(k) + t2(n− k)− t2(n) (2)

2
∣

∣

(

2n
n

)

(3)

(

2n − 1
k

)

≡ 1 (mod 2) for all k (4)

If t is odd and a > b then o2

((

2a

2bt

))

= o2

((

2a−b

t

))

. (5)

Remark 2. Identity (2) follows from the formula

op(n!) =
n− tp(n)

p− 1

which may be found on p. 26 of [1]; (3), (4), and (5) follow from (2).

3. The Main Results

We begin with our main result, which is an explicit formula for

〈

n
k

〉

.

Theorem 2. If 1 ≤ k ≤ n, then
〈

n
k

〉

=
1

n

∑

j| gcd(n,k)

φ(j)

(

n/j

k/j

)

.

Proof. We use the general expression for the bivariate generating function of cycles of unlabeled
combinatorial structures, as given in [2, p. 729], specialized to the case of cyclic compositions
(the corresponding univariate generating function appears on [2, p. 48]). This gives

C(z, u) :=
∑

n≥0

∑

k≥0

〈

n
k

〉

ukzn =
∑

j≥1

φ(j)

j
log

(

1−
ujzj

1− zj

)−1

.

AUGUST 2010 251



THE FIBONACCI QUARTERLY

Now

C(z, u) =
∑

j≥1

φ(j)

j

(

log(1− zj)− log(1− (1 + uj)zj)
)

=
∑

j≥1

φ(j)

j



−
∑

m≥1

zjm

m
+

∑

m≥1

(1 + uj)zjm

m





=
∑

j≥1

∑

m≥1

φ(j)

jm
zjm

(

(1 + uj)m − 1
)

.

Setting n = jm we get
〈

n
k

〉

=
1

n

∑

j|n

φ(j)[uk]
(

(1 + uj)n/j − 1
)

=
1

n

∑

j| gcd(n,k)

φ(j)

(

n/j

k/j

)

.

�

As a corollary of Theorem 2 we obtain the following result, which generalizes Theorem 1.
We also give a direct combinatorial proof thereof.

Corollary 1. If 1 ≤ k ≤ n and (k, n) = 1, then
〈

n
k

〉

=
1

n

(

n
k

)

.

Proof. (First.) This follows directly from the hypothesis and Theorem 2. �

Proof. (Second.) Suppose that a cyclic equivalence class of compositions of n into k parts has
order d. Then d must divide the order of the cyclic group of order k, that is, d|k. Then the
composition, viewed as a sequence, has a subsequence of order k

d , and furthermore, k
d |n. Since

(k, n) = 1 by hypothesis, this implies k
d = 1, that is, d = k. Since each of the

〈

n
k

〉

cyclic

equivalence classes has order k, and since the total number of compositions of n into k parts

is

(

n− 1
k − 1

)

, we have

k

〈

n
k

〉

=

(

n− 1
k − 1

)

→

〈

n
k

〉

=
1

k

(

n− 1
k − 1

)

=
1

n

(

n
k

)

.

�

Another consequence of Theorem 2 is Corollary 2 below, which is analogous to the corre-
sponding property of binomial coefficients given in (1).

Corollary 2.
∑

k odd

〈

2n

k

〉

= 22
n−n−1.

Proof. By the hypothesis and Theorem 2, we have
〈

2n

k

〉

=
1

2n

(

2n

k

)

252 VOLUME 48, NUMBER 3



SOME PROPERTIES OF CYCLIC COMPOSITIONS

so that, invoking (1), we obtain:

∑

k odd

〈

2n

k

〉

=
∑

k odd

1

2n

(

2n

k

)

=
1

2n

∑

k odd

(

2n

k

)

=
1

2n
(22

n−1) = 22
n−n−1.

�

As a further consequence of Theorem 2, we obtain the symmetry property of cyclic compo-
sition coefficients, namely:

Theorem 3. If 1 ≤ k ≤ n− 1, then

〈

n
n− k

〉

=

〈

n
k

〉

.

Proof. (First.) This follows immediately from Theorem 2, to wit:
〈

n
n− k

〉

=
1

n

∑

j|(n−k,n)

φ(j)

(

n/j
(n− k)/j

)

=
1

n

∑

j|(k,n)

φ(j)

(

n/j
k/j

)

=

〈

n
k

〉

.

�

We now offer an alternate proof of Theorem 3, based on combinatorics.

Proof. (Second.) There is a bijection between necklaces of n beads of which k are black, the
rest white, and cyclic compositions of n into k parts as follows: Given such a necklace, start
at any black bead. Let n1 denote the number of beads traversed before coming to the second
black bead. Let n2 denote the number of beads traversed before coming to the third black
bead, etc. Since there are a total of k black beads by hypothesis, we get a composition of n
into k parts, namely n = n1+n2+ · · ·+nk. Conversely, given a composition of n into k parts,
start with a black bead, add n1 − 1 white beads, then a second black bead, then n2 − 1 white
beads, etc., finally nk − 1 white beads to separate the kth and first black beads.

Note that each necklace with k black beads makes a contribution of 1 to

〈

n
k

〉

and each

necklace with n − k black beads makes a contribution of 1 to

〈

n
n− k

〉

. But a necklace with

n− k black nodes also has k white nodes. Clearly, there is a bijection between necklaces with
k black nodes and those with k white nodes. The conclusion now follows. �

Remark 3. An alternate proof of Theorem 3 using lattice path representations of cyclic com-
positions was given by D. Wasserman [6].

Let Cn = 1
2n+1

(

2n
n

)

denote the nth Catalan number. Our triangular array of cyclic

composition coefficients contains the Catalan numbers as the following theorem asserts.

Theorem 4.

〈

2n+ 1
n

〉

= Cn for all n ≥ 1.

Proof. Since (n, 2n+ 1) = 1, Lemma 1 implies that
〈

2n+ 1
n

〉

=
1

2n + 1

(

2n+ 1
n

)

=

(

1

2n+ 1

)

(2n+ 1)!

n!(n+ 1)!

=

(

1

n+ 1

)

(2n)!

(n!)2
=

(

1

n+ 1

)(

2n
n

)

= Cn.

�
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There is also a connection between our triangular array of cyclic composition coefficients
and the pentagonal numbers which play an important role in the theory of partitions. Recall
that the pentagonal numbers are defined for k ∈ Z by ω(k) = k(3k − 1)/2.

Theorem 5.
〈

3n+ 1
3

〉

= ω(n);

〈

3n+ 2
3

〉

= ω(−n).

Proof. Theorem 2 implies
〈

3n+ 1
3

〉

=
1

3n+ 1

(

3n+ 1
3

)

=
n(3n− 1)

2
= ω(n).

Likewise
〈

3n + 2
3

〉

=
1

3n + 2

(

3n + 2
3

)

=
n(3n+ 1)

2
= ω(−n).

�

4. Parity Considerations

The next theorem, which concerns the parity of the central cyclic composition coefficient,
is analogous to a corresponding property of binomial coefficients given in (3) above:

Theorem 6. 2
∣

∣

〈

2n
n

〉

for all n ≥ 2.

Proof. The second author has shown that D(n) − 1 is even for all n > 2 [3]. Thus, invoking

the identity that follows Definition 1, and noting that

〈

n
n

〉

= 1, we have

D(n)− 1 =
n−1
∑

k=1

〈

n
k

〉

is even for all n ≥ 2.

Now

D(2n)− 1 =

2n−1
∑

k=1

〈

2n
k

〉

=

n−1
∑

k=1

〈

2n
k

〉

+

〈

2n
n

〉

+

2n−1
∑

k=n+1

〈

2n
k

〉

.

By Theorem 3 the two sums that appear in the right member of the last identity are equal.
The conclusion now follows. �

The last theorem states a parity property of cyclic composition coefficients that again recalls
a similar parity property of binomial coefficients.

Theorem 7.

(a)

〈

2n − 1
k

〉

≡ 1 (mod 2) for 1 ≤ k ≤ 2n − 1.

(b)

〈

2n + 1
k

〉

≡ 0 (mod 2) for 2 ≤ k ≤ 2n and n ≥ 2.

Proof. Theorem 2 implies

(2n ± 1)

〈

2n ± 1
k

〉

=
∑

j|(k,2n±1)

φ(j)

(

(2n ± 1)/j
k/j

)
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→

〈

2n ± 1
k

〉

≡
∑

j|(k,2n±1)

φ(j)

(

(2n ± 1)/j
k/j

)

(mod 2).

Now j|(2n ± 1) ⇒ j is odd ⇒ φ(j) ≡ 0 (mod 2) unless j = 1, so we have
〈

2n ± 1
k

〉

≡

(

2n ± 1
k

)

(mod 2).

Now (a) follows from (4). To prove (b), we must show that

(

2n + 1
k

)

≡ 0 (mod 2) for

2 ≤ k ≤ 2n, or equivalently, that o2

((

2n + 1
k

))

≥ 1. Now (2) implies

o2

((

2n + 1
k

))

= t2(k) + t2(2
n + 1− k)− t2(2

n + 1) = t2(k) + t2(2
n + 1− k)− 2.

If t2(k) ≥ 2, then o2

((

2n + 1
k

))

≥ t2(2
n + 1− k) ≥ 1. If t2(k) = 1, then k = 2m and

o2

((

2n + 1
2m

))

= t2(2
n + 1− 2m)− 1.

If t2(2
n+1− 2m) = 1, then 2n+1− 2m = 2r, so m = 0 or m = n, and hence, k = 1 or k = 2n,

contrary to the hypothesis. Therefore t2(2
n + 1− 2m) ≥ 2, so o2

((

2n + 1
2m

))

≥ 1. �
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