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Abstract. Defining an average behavior of primes, we construct a family of sequences using
a modified inclusion-exclusion principle and investigate whether these sequences have the
same asymptotic property as the primes.

1. Introduction

By the principle of inclusion and exclusion [4], the probability that a natural number is not
divisible by either 2 or 3 is

(
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2

)(
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)

=
1

3
.

It follows that, on average, every third number is not divisible by either 2 or 3. It is natural
that the prime 5 exists between 3 and 6 (= 3 + 3). In the same way, the probability that a
natural number is not divisible by any of 2, 3, or 5 is
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.

It also follows that, on average, one out of every 3.75 (= 15/4) natural numbers is not divisible
by 2, 3, or 5. The prime 7 exists between 5 and 8.75 (= 5 + 3.75), as expected.

Generally, the probability that a natural number is not divisible by 2, 3, 5, . . . , or pn (pn:
the nth prime number) is

n
∏

k=1

(

1−
1

pk

)

.

We consider θn (n = 1, 2, . . .) satisfying

pn+1 = pn + θn

{

n
∏

k=1

(
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pk

)

}

−1

.

For instance,

5 = 3 + θ2

{(
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)(
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1

3

)}

−1

, θ2 ≈ 0.67,

7 = 5 + θ3

{(
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)(
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3

)(
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5

)}

−1

, θ3 ≈ 0.53.

n 1 2 3 4 5 6 7 8 9 10 11 · · ·
θn 0.50 0.67 0.53 0.91 0.42 0.77 0.36 0.68 0.98 0.32 0.92 · · ·
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The above recurrence relations are considered to be an analytic expression of the sieve of
Eratosthenes. Motivated by this expression, we construct a family of sequences {an} by the
recurrence relations

an+1 = an + θ

{

n
∏

k=1

(

1−
1

ak

)

}

−1

(1.1)

for arbitrarily fixed a1 > 1 and θ > 0, where the average behavior of primes is considered.

Example 1.1. The arithmetic mean of θn for 1 ≤ n ≤ 11 is approximately 0.64. When a1 = 2
and θ = 0.64, {an} is compared with {pn} (1 ≤ n ≤ 12) in the table below. We can observe
that {pn} is interwoven with {an}.

n 1 2 3 4 5 6 7 8 9 10 11 12
pn 2 3 5 7 11 13 17 19 23 29 31 37
an 2.0 3.3 5.1 7.4 10.1 13.0 16.2 19.6 23.1 26.9 30.8 34.8

Concerning the distribution of primes, the asymptotic formula

lim
n→∞

n loge pn
pn

= 1

is well-known as the prime number theorem [1]. The family of sequences {an} also has the
same asymptotic property as the primes.

Theorem 1.2. Let a1 > 1 and θ > 0 be constants. The sequence {an} defined by recurrence
formula (1.1) satisfies

lim
n→∞

n loge an
an

= 1. (1.2)

Sequences are commonly investigated using sieve processes (e.g., [2, 3, 5]), and in the present
article we have defined a type of sieve from the viewpoint of an average behavior of θn. This
suggests the mechanism of the prime number theorem. More precisely, this is written as the
following statements.

Conjecture 1.3.

(i) There exist positive constants a, b such that a <
∑

n

k=1
θk/n and θn < b hold for all n.

(ii) Let a′, b′ (a′ < b′) be any positive constants. For any sequence {θn′} which satisfies
a′ <

∑

n

k=1
θk′/n and 0 < θn′ < b′ (n = 1, 2, . . .), formula (1.2) holds by replacing θ

by θn′ in recurrence (1.1).

To prove the propositions (i) and (ii) is equivalent to giving a new proof of the prime number
theorem.

2. Proof of Theorem 1.2

Let

bn =

n
∏

k=1

(

1−
1

ak

)

. (2.1)

By (1.1) and (2.1), the ratio bn/bn+1 is written as

an+2 − an+1

an+1 − an
=

an+1

an+1 − 1
, (2.2)
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and we get the recurrence formula

an+2 = an+1

(

2−
an − 1

an+1 − 1

)

.

For the sequence {an}, we have the following facts.

an+1 > an + θ (n = 1, 2, . . .), (2.3)

lim
n→∞

an = ∞, (2.4)

an+2 − an+1 > an+1 − an (n = 1, 2, . . .), (2.5)

lim
n→∞

an+2 − an+1

an+1 − an
= 1. (2.6)

Since bn < 1, we know (2.3) from (1.1). Equation (2.4) is obvious from (2.3) and (2.5) is given
by

an+2 − an+1 =
θ

bn+1

>
θ

bn
= an+1 − an.

Equation (2.6) is an immediate consequence of (2.2) and (2.4). Moreover, we have, by (2.2),
that

an+2 − 2an+1 + an
an+1 − an

=
1

an+1 − 1
. (2.7)

By (2.2) and (2.7), we have

an+3 − 2an+2 + an+1

an+2 − 2an+1 + an
=

an+1

an+2 − 1
. (2.8)

If an+2 − an+1 > 1, we have, by (2.8), that

an+3 − 2an+2 + an+1 < an+2 − 2an+1 + an. (2.9)

Lemma 2.1. For the sequence {an}, we have
(i) limn→∞(an+1 − an) = ∞,
(ii) limn→∞

an+1

an
= 1.

Proof. If (i) does not hold, the differences {an+1 − an} are bounded above. Therefore, the
monotonic property of (2.5) means that the differences converge to some value a (> 0). In
this case, there exists a constant b such that the line y = ax+ b is the asymptote of the point
set {(n, an)}. Then, ak ≤ ak − a+ a1 holds for any natural number k, and

θ

a
= lim

n→∞

bn ≤

∞
∏

k=1

(

1−
1

ak − a+ a1

)

.

Taking the logarithms of both sides, we have

loge
θ

a
≤

∞
∑

k=1

loge

(

1−
1

ak − a+ a1

)

.

Evaluating the right-hand side of the inequality by an integral, we obtain

loge
θ

a
<

1

a

∫

∞

a1

loge

(

1−
1

x

)

dx = −∞.
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However, this inequality contradicts the fact that a is finite. Therefore, the differences {an+1−
an} are not bounded. The first part (i) of Lemma 2.1 is proved. Next, we shall prove the
second part (ii) of Lemma 2.1. Setting cn = an+1/an (n = 1, 2, . . .), we get

cn > 1 +
θ

an
> 1

from (2.3), and we know that {cn} is bounded below. From (2.2) and (i), we have

cn+1 − 1

cn − 1
=

an
an+1 − 1

< 1

for any sufficiently large n. So, we also know that {cn} is a decreasing sequence. Let γ denote
the limit of {cn}. From (2.6), γ satisfies the equation

γ2 − 2γ + 1 = 0,

and γ = 1. The second part of Lemma 2.1 is proved. �

Applying differential calculus we state the next lemma.

Lemma 2.2. For the sequence {an}, there exists a function f(x) (x ≥ 1) satisfying f(n) =
an (n = 1, 2, . . .),

lim
n→∞

f ′(n)

an+1 − an
= 1 (2.10)

and

lim
n→∞

f ′′

+(n)

an+2 − 2an+1 + an
= 1, (2.11)

where f ′′

+(n) denotes lim
x→n+

f ′′(x).

Proof. We construct a spline by patching quadratic functions. For arbitrary x1 > 0, there
exist sequences {kn}, {xn} (xn > 0) such that

kn(xn + 1)2 − knxn
2 = an+1 − an (2.12)

and

kn(xn + 1) = kn+1xn+1. (2.13)

We define a spline f(x) by

an + kn(x− n)(x− n+ 2xn)

(n ≤ x < n+ 1, n = 1, 2, . . .)

Then, f(n) = an is obvious. From (2.12), we have

lim
n→∞

f ′(n)

an+1 − an
= lim

n→∞

2xn
2xn + 1

= 1,

and from (2.12), (2.13), we have

kn+1 + kn = an+2 − 2an+1 + an, (2.14)

therefore,

lim
n→∞

f ′′

+(n)

an+2 − 2an+1 + an
= lim

n→∞

2kn
kn+1 + kn

= 1,

where we applied

lim
n→∞

xn = ∞ (2.15)
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and

lim
n→∞

kn+1

kn
= 1. (2.16)

The reason that formulas (2.15) and (2.16) hold is the following. From (2.3) and (2.12), we
know that kn are positive. From (2.9), (i) of Lemma 2.1, and (2.14), we know kn+2 < kn for
sufficiently large numbers n, and so the sequence {kn} is bounded. Hence, from (2.12) and (i)
of Lemma 2.1 we have formula (2.15). We obtain formula (2.16) from (2.13) and (2.15). �

Now, using f(x) defined in Lemma 2.2, we shall prove formula (1.2).

lim
n→∞

n loge an
an

= lim
x→∞

x loge f(x)

f(x)
.

By l’Hôspital’s rule, this limit is reduced to

lim
n→∞

(

f ′(n)

f(n)f ′′

+(n)
+

1

f ′(n)

)

. (2.17)

The first term of (2.17) converges to 1 by (2.10), (2.11) and

lim
n→∞

an+1 − an
an (an+2 − 2an+1 + an)

= 1. (2.18)

Formula (2.18) holds from (2.4), (2.7) and (ii) of Lemma 2.1. The second term of (2.17)
converges to 0 by (2.10) and (i) of Lemma 2.1. Hence, we obtain formula (1.2). Theorem 1.2
is proved.
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