REMARKS ON THE "GREEDY ODD" EGYPTIAN FRACTION ALGORITHM II

JUKKA PIHKO

Abstract

Let a, b be positive, relatively prime integers with $a<b$ and b odd. Let $1 / x_{1}$ be the greatest Egyptian fraction with x_{1} odd and $1 / x_{1} \leq a / b$. We form the difference $a / b-1 / x_{1}=: a_{1} / b_{1}\left(\right.$ with $\left.\operatorname{gcd}\left(a_{1}, b_{1}\right)=1\right)$ and, if a_{1} / b_{1} is not zero, continue similarly. Given an odd prime p and $1<a<p$, we prove the existence of infinitely many odd numbers b such that $\operatorname{gcd}(a, b)=1, a<b$, and the sequence of numerators $a_{0}:=a, a_{1}, a_{2}, \ldots$ is $a, a+1, a+2, \ldots, p-1,1$.

1. Introduction

We denote the set of positive integers by \mathbb{N}, the set of non-negative integers by \mathbb{N}_{0}, and the set of prime numbers by \mathbb{P}. Consider $a, b \in \mathbb{N}$ with

$$
\begin{equation*}
b \text { odd, } \quad a<b, \quad \operatorname{gcd}(a, b)=1 . \tag{1.1}
\end{equation*}
$$

The greedy odd algorithm (or odd greedy algorithm) is defined as follows: we take the greatest Egyptian fraction $1 / x_{1}$ with x_{1} odd and $1 / x_{1} \leq a / b$, form the difference $a / b-1 / x_{1}=: a_{1} / b_{1}$ (with $\operatorname{gcd}\left(a_{1}, b_{1}\right)=1$) and, if a_{1} / b_{1} is not zero, continue similarly. As a result, we get the equation

$$
\begin{equation*}
\frac{a}{b}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots . \tag{1.2}
\end{equation*}
$$

A well-known open problem is whether the greedy odd algorithm always stops after finitely many steps, i.e., whether the sum in (1.2) is always finite $[2,3,4]$.

This is a direct continuation of the paper [5], from which we have taken enough material so that the mathematics of the present paper can be understood, and for which we refer for background and motivation. The translation [6], a reference to the "normal" greedy algorithm of Fibonacci, had not appeared at the time of the writing of [5].

Let p be an odd prime and let $a \in \mathbb{N}, 1<a<p$. In this paper, using elementary methods, we prove (see Corollary 3.6) the existence of infinitely many numbers b, satisfying (1.1), such that the sequence of numerators (for the fraction a / b) $a_{0}:=a, a_{1}, a_{2}, \ldots$ is $a, a+1, a+2, \ldots, p-1,1$. The inspiration came from the final remark in [5].

2. Notation and Preliminaries

Using the notation of [5], we write $b=: 2 k+1$ and $x_{1}=: 2 n_{1}+1$ with $k, n_{1} \in \mathbb{N}$. It follows from the definition of the greedy odd algorithm that n_{1} is the unique positive integer satifying the condition

$$
\begin{equation*}
\frac{1}{2 n_{1}+1} \leq \frac{a}{2 k+1}<\frac{1}{2 n_{1}-1} . \tag{2.1}
\end{equation*}
$$

REMARKS ON THE "GREEDY ODD" EGYPTIAN FRACTION ALGORITHM II

We further write

$$
\begin{equation*}
\frac{a}{2 k+1}-\frac{1}{2 n_{1}+1}=: \frac{a_{1}^{\prime}}{(2 k+1)\left(2 n_{1}+1\right)}=: \frac{a_{1}^{\prime}}{2 k_{1}^{\prime}+1}=: \frac{a_{1}}{2 k_{1}+1}, \tag{2.2}
\end{equation*}
$$

where $\operatorname{gcd}\left(a_{1}, 2 k_{1}+1\right)=1$.
It follows that

$$
\begin{equation*}
a_{i} \not \equiv a_{i+1} \quad(\bmod 2) \text { for } i=0,1,2, \ldots \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{1}^{\prime}=2 k n_{1}+k+n_{1} . \tag{2.4}
\end{equation*}
$$

We need the following result [5, Cor. 3.3] for which we give here a simple direct proof for the convenience of the reader.

Lemma 2.1. Let $a>1$ and $k \in \mathbb{N}, k \equiv-1(\bmod a)$. Then

$$
\begin{equation*}
a<2 k+1, \quad \operatorname{gcd}(a, 2 k+1)=1, \quad n_{1}=\frac{k+1}{a}, \quad \text { and } a_{1}^{\prime}=a+1 . \tag{2.5}
\end{equation*}
$$

Proof. We define $n_{1} \in \mathbb{N}$ by $n_{1}:=(k+1) / a$ and then we have to show that n_{1} satisfies (2.1). We show that

$$
\begin{equation*}
\left\lceil\frac{2 k+1}{a}\right\rceil=2 n_{1}, \tag{2.6}
\end{equation*}
$$

from which (2.1) immediately follows.
We have $2 n_{1}=(2 k+2) / a=(2 k+1) / a+1 / a$, where, by assumption, $0<1 / a<1$. This proves (2.6).

It follows from (2.6), since $n_{1} \in \mathbb{N}$, that $\lceil(2 k+1) / a\rceil \geq 2$, which implies that $(2 k+1) / a>1$, i.e., $a<2 k+1$.

A simple calculation shows that $a_{1}^{\prime}=a+1$.
Finally, from $2 k+1 \equiv-1(\bmod a)$, it follows that $\operatorname{gcd}(a, 2 k+1)=1$.
Lemma 2.2. Let $a>1$ and $n \in \mathbb{N}$ be given, and let $k:=-1+t \cdot a \cdot(a+1) \cdots(a+n)$, where $t \in \mathbb{N}$. Then

$$
\begin{equation*}
k_{1}^{\prime} \equiv-1 \quad(\bmod (a+1) \cdots(a+n)) . \tag{2.7}
\end{equation*}
$$

Proof. This follows directly from (2.4), since, by (2.5),

$$
n_{1}=t \cdot(a+1) \cdots(a+n) \equiv 0 \quad(\bmod (a+1) \cdots(a+n)) .
$$

Theorem 2.3. Let $a>1$ and $n \in \mathbb{N}_{0}$ be given, and let $k:=-1+t \cdot a \cdot(a+1) \cdots(a+n)$. Then
(a) the sequence of numerators for the fraction $a /(2 k+1)$ starts with $a, a+1, a+2, \ldots, a+n$,
(b) $a_{n+1}^{\prime}=a+n+1$, and
(c) $k_{i}^{\prime}=k_{i}$ for $i=1, \ldots, n(n \in \mathbb{N})$.

Proof. (a) We use induction on n.

1) $n=0$. This is a trivial case, since, by Lemma 2.1, $b:=2 k+1$ satisfies (1.1).
2) Suppose that $n \in \mathbb{N}$. Lemma 2.1 implies that $a /(2 k+1)-1 /\left(2 n_{1}+1\right)=(a+1) /\left(2 k_{1}^{\prime}+1\right)$. It follows from (2.7) that $k_{1}^{\prime} \equiv-1(\bmod a+1)$, so that, using Lemma 2.1 again, we have $\operatorname{gcd}\left(a+1,2 k_{1}^{\prime}+1\right)=1$, from which it follows, by (2.2), that $k_{1}=k_{1}^{\prime} \equiv-1$ $(\bmod (a+1) \cdots(a+n))$.

THE FIBONACCI QUARTERLY

Using our induction hypothesis, we see that the sequence of numerators for the fraction $(a+1) /\left(2 k_{1}+1\right)$ starts with $a+1, a+2, \ldots, a+n$. It follows now immediately from the definition of the greedy odd algorithm, that the sequence of numerators for the fraction $a /(2 k+1)$ starts with $a, a+1, a+2, \ldots, a+n$.
(b) and (c) can be proved similarly (and more easily).

Remark 2.4. The condition $k \equiv-1(\bmod a(a+1) \cdots(a+n))$ is not necessary for the result of Theorem 2.3 (a), [5, Theorem 3.8].

Example 2.5. We take $a:=2$ and $n:=4$. For $1 \leq t \leq 7$ we give the sequences of numerators for the fractions $2 /(2 k+1)$, where $k:=-1+t \cdot 6$!, in Table 1 below.

Table 1. Examples of Theorem 2.3 (a) with $a:=2, n:=4$.

$$
\begin{array}{ll}
t & a_{0}, a_{1}, a_{2}, \ldots \\
1 & 2,3,4,5,6,1 \\
2 & 2,3,4,5,6,7,2,1 \\
3 & 2,3,4,5,6,1 \\
4 & 2,3,4,5,6,7,8,9,10,11,12,1 . \\
5 & 2,3,4,5,6,7,8,9,10,1 \\
6 & 2,3,4,5,6,7,8,9,10,11,12,1 . \\
7 & 2,3,4,5,6,7,8,9,2,3,4,1
\end{array}
$$

3. Sequences of Numerators $a, a+1, a+2, \ldots, 2 m, 1$

For the rest of this paper, we stay with Theorem 2.3. We are interested in sequences like $2,3,4,5,6,1$, appearing two times in Table 1, which clearly are minimal in length. In general, it follows from (2.3) that a sequence of numerators can have the form $a, a+1, a+2, \ldots, a+n, 1$ only in the case that the number $a+n$ is even. Therefore, from now on, we will always suppose that

$$
\begin{equation*}
a+n=: 2 m, \text { with } m \in \mathbb{N} \text {. } \tag{3.1}
\end{equation*}
$$

Lemma 3.1. The sequence of numerators is $a, a+1, a+2, \ldots, 2 m, 1$ if and only if $2 k_{n+1}^{\prime}+1 \equiv 0$ $(\bmod 2 m+1)$.
Proof. This follows immediately from Theorem 2.3 (b).
Lemma 3.2. Let $a>1$ and $n \in \mathbb{N}$ be given, and suppose that $k:=-1+t \cdot a(a+1) \cdots(a+n)$ and $K:=-1+T \cdot a(a+1) \cdots(a+n)$, where $t, T \in \mathbb{N}$ satisfy $T \equiv t(\bmod 2 m+1)$. Defining $K_{1}^{\prime}, K_{1}, \ldots$ starting from K in the same manner as $k_{1}^{\prime}, k_{1}, \ldots$ are defined starting from k, we have

$$
\begin{equation*}
k_{n+1}^{\prime} \equiv K_{n+1}^{\prime} \quad(\bmod 2 m+1) . \tag{3.2}
\end{equation*}
$$

Proof. We know from Lemma 2.2 that $k_{1}^{\prime}=-1+t^{*} \cdot(a+1) \cdots(a+n)$, for some $t^{*} \in \mathbb{N}$. In fact, an easy calculation shows that

$$
\begin{equation*}
t^{*}=2 a(a+1) \cdots(a+n) t^{2}+(a-1) t . \tag{3.3}
\end{equation*}
$$

It follows from (3.3) that if we write $K_{1}^{\prime}=:-1+T^{*} \cdot(a+1) \cdots(a+n)$, then $T^{*} \equiv t^{*}$ $(\bmod 2 m+1)$. By Theorem $2.3(\mathrm{c}), k_{1}=k_{1}^{\prime}$ and $K_{1}=K_{1}^{\prime}$. Using induction, we obtain (3.2).

Corollary 3.3. With k and K as in Lemma 3.2, suppose that the sequence of numerators for the fraction $a /(2 k+1)$ is $a, a+1, a+2, \ldots, 2 m, 1$. Then the sequence of numerators for $a /(2 K+1)$ is also $a, a+1, a+2, \ldots, 2 m, 1$.

Proof. This follows immediately from Lemma 3.1 and Lemma 3.2.
Example 3.4. To give an example of Corollary 3.3, we give Table 2 below, which is a continuation of Table 1 for $8 \leq t \leq 14$. Here $2 m+1=7$, so we should get the sequence $2,3,4,5,6,1$ for the values $t=8$ and $t=10$.

Table 2. Continuation of Table 1.

$$
\begin{array}{cl}
t & a_{0}, a_{1}, a_{2}, \ldots \\
8 & 2,3,4,5,6,1 . \\
9 & 2,3,4,5,6,7,2,1 \\
10 & 2,3,4,5,6,1 . \\
11 & 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,2,3,4,1 . \\
12 & 2,3,4,5,6,7,8,9,2,3,4,1 \\
13 & 2,3,4,5,6,7,8,9,2,3,4,1 . \\
14 & 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1
\end{array}
$$

For some values of $a>1$ and $2 m \geq a$, we do not get (from Theorem 2.3) any sequences of numerators of the form $a, a+1, a+2, \ldots, 2 m, 1$. Take for example, $a:=2$ and $2 m:=8$. In view of Corollary 3.3, it is enough to calculate the sequences of numerators for the fractions $2 /(2 k+1)$ when $k:=-1+t \cdot 8!, t=1, \ldots, 9$. We give the results in Table 3 below.

Table 3. The case $a=2, a+n=2 m=8$.

```
t a a , a1, ,a2,\ldots
1 2,3,4, 5, 6,7, 8, 9, 10, 11, 12,1.
2 2, 3, 4, 5, 6,7, 8, 9, 2, 3, 4, 1.
3 2,3,4,5,6,7,8,9,2,3,4,1.
4 2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, 1.
5 2,3,4,5,6,7, , 9, 10,1.
6 2, 3, 4, 5, 6,7,8,9,10,11,12,13,14,15,16,17, 2, 3,4,1.
7 2,3,4,5,6,7, 8, 9, 2, 3,4,1.
8 2,3,4, 5, 6,7, 8, 9, 2, 3,4,1.
9 2, 3, 4, 5, 6, 7, 8,9, 10, 11,12,1.
```

We see that Table 3 does not contain the sequence $2,3,4,5,6,7,8,1$. The following result shows that this situation cannot happen, when $2 m+1$ is a prime.

Theorem 3.5. Suppose that $a:=2$ and $2 m+1=: p \in \mathbb{P} \backslash\{2\}$. The value $t=1$ gives the sequence of numerators $2,3, \ldots, p-1,1$.

Proof. We have $k=-1+(p-1)!\equiv-2(\bmod p)$, using Wilson's Theorem [1]. From Lemma 2.1 we get $n_{1}=(k+1) / 2=(p-1)!/ 2$. Using Wilson's Theorem again, we conclude that

THE FIBONACCI QUARTERLY

$n_{1} \equiv(p-1) / 2(\bmod p)$. Using (2.4),we get

$$
\begin{aligned}
k_{1}^{\prime}= & 2 k n_{1}+k+n_{1} \equiv 2(-2) \cdot \frac{p-1}{2}+(-2)+\frac{p-1}{2} \\
& \equiv(-2)(-1)-2+\frac{p-1}{2} \equiv \frac{p-1}{2} \quad(\bmod p) .
\end{aligned}
$$

Since the theorem is obviously true if $2 m+1=3$, we may suppose that $n \in \mathbb{N}$, so that, by Theorem 2.3 (c), we get

$$
\begin{equation*}
k_{1}=k_{1}^{\prime} \equiv \frac{p-1}{2} \quad(\bmod p) . \tag{3.4}
\end{equation*}
$$

We prove, using (3.4), that

$$
\begin{equation*}
k_{1} \equiv k_{2} \equiv \cdots \equiv k_{p-3} \equiv k_{p-2}^{\prime} \equiv \frac{p-1}{2}=m \quad(\bmod p), \tag{3.5}
\end{equation*}
$$

from which the theorem follows, using Lemma 3.1.
Suppose that for some $i, 1 \leq i \leq p-3$, we have $k_{i} \equiv(p-1) / 2(\bmod p)$. Then, using (2.4), we have

$$
\begin{aligned}
k_{i+1}^{\prime}= & 2 k_{i} n_{i+1}+k_{i}+n_{i+1} \equiv 2 \cdot \frac{p-1}{2} \cdot n_{i+1}+n_{i+1}+k_{i} \\
& \equiv-n_{i+1}+n_{i+1}+k_{i} \equiv k_{i} \equiv \frac{p-1}{2} \quad(\bmod p) .
\end{aligned}
$$

If $i<p-3$, then $i+1 \leq p-3$, and Theorem 2.3 (c) implies that $k_{i+1}^{\prime}=k_{i+1}$. So we start with $i=1$, and repeat the argument, thereby establishing (3.5).

Theorem 3.5 obviously implies the following, seemingly more general result.
Corollary 3.6. Let $p \in \mathbb{P} \backslash\{2\}$ and let $1<a<p$. There exists a number $t \in\{1, \ldots, p\}$ such that if $k:=-1+t \cdot a(a+1) \cdots(p-1)$, then the sequence of numerators for the fraction $a /(2 k+1)$ is $a, a+1, a+2, \ldots, p-1,1$. (If $a:=2$, then we can take $t:=1$.) Moreover, by Corollary 3.3, the same sequence results by using the greedy odd algorithm for all fractions $a /(2 K+1)$, where $K:=-1+T \cdot a(a+1) \cdots(p-1)$, and $T \equiv t(\bmod p)$.

Example 3.7. We take $a:=3, p:=5$ in Corollary 3.6 and we calculate the sequences of numerators corresponding to the values $1 \leq t \leq 10$. We give the results in Table 4 below.

Table 4. The case $a=3, p=5$ of Corollary 3.6.

t	$a_{0}, a_{1}, a_{2}, \ldots$
1	$3,4,5,4,1$.
2	$3,4,5,2,1$.
3	$3,4,1$.
4	$3,4,1$.
5	$3,4,5,2,1$.
6	$3,4,5,4,1$.
7	$3,4,5,2,1$.
8	$3,4,1$.
9	$3,4,1$.
10	$3,4,5,2,1$.

REMARKS ON THE "GREEDY ODD" EGYPTIAN FRACTION ALGORITHM II

4. Determining All 'Solutions' When $n \in\{0,1,2\}$

We might look at Corollary 3.6 as saying that a 'solution' to our 'problem', namely the problem of finding a number $t \in\{1, \ldots, p\}$ giving the sequence $a, a+1, a+2, \ldots, p-1,1$, always exists. Inspecting Table 4 and taking the last part of Corollary 3.6 into account, we might want to say that in the case $a:=3, p:=5$, we have two solutions, $t \equiv 3,4(\bmod 5)$. When we write $p-1=2 m=a+n$ (see (3.1)), we can determine all solutions when $n \in\{0,1,2\}$ (without having to compute the sequences of numerators).

We start with the easiest case, $n=0$.
Theorem 4.1. Let $p \in \mathbb{P} \backslash\{2\}, a:=p-1=2 m$. The unique solution is $t \equiv m(\bmod p)$.
Proof. Let $k:=-1+t \cdot(p-1)$. By Lemma 2.1, we have $n_{1}=t=(k+1) /(p-1)$. A short calculation gives

$$
\frac{a}{2 k+1}-\frac{1}{2 n_{1}+1}=\frac{p}{(2 t p-2 t-1)(2 t+1)},
$$

from which we see that the sequence of numerators is $p-1,1$ if and only if $2 t+1 \equiv 0(\bmod p)$. The theorem follows.

Next, we handle the case $n=1$.
Theorem 4.2. Let $p \in \mathbb{P}, p \geq 5, a:=p-2$. The solutions are $t=[2]^{-1}, t=[4]^{-1} \in \mathbb{Z} / p \mathbb{Z}$, i.e., the solutions of the congruences $2 t \equiv 1(\bmod p), 4 t \equiv 1(\bmod p)$.

Proof. Let $k:=-1+t \cdot(p-2)(p-1)$. Using Theorem 2.3 (c) and (3.3) we see, after substituting $n=1$ and $a=p-2$, that $k_{1}=k_{1}^{\prime}=-1+t^{*}(p-1)$, where

$$
t^{*}=2(p-2)(p-1) t^{2}+(p-3) t \equiv 4 t^{2}-3 t \quad(\bmod p) .
$$

By Theorem 4.1, we have to find t such that $4 t^{2}-3 t \equiv m(\bmod p)$. Since $m=(p-1) / 2$, this leads to the congruence

$$
8 t^{2}-6 t+1 \equiv 0 \quad(\bmod p)
$$

and to the two solutions given in the theorem. (Note that we have $8 t^{2}-6 t+1=8(t-1 / 2)(t-$ $1 / 4$) in $\mathbb{Q}[t]$.)

Finally, we turn to the case $n=2$. In principle, this is similar to the previous case. Before stating the result, let us recall the standard method (see, for example, [1]) of solving the general quadratic congruence

$$
\begin{equation*}
a x^{2}+b x+c \equiv 0 \quad(\bmod p), \quad p \in \mathbb{P} \backslash\{2\}, \quad p \nmid a . \tag{4.1}
\end{equation*}
$$

We first consider the congruence

$$
\begin{equation*}
y^{2} \equiv d:=b^{2}-4 a c \quad(\bmod p) \tag{4.2}
\end{equation*}
$$

and then, if (4.2) is solvable, solve the congruence

$$
\begin{equation*}
2 a x+b \equiv y \quad(\bmod p) . \tag{4.3}
\end{equation*}
$$

Theorem 4.3. Let $p \in \mathbb{P}, p \geq 5, a:=p-3$. If $p \equiv 5,7(\bmod 8)$, then we have only two solutions, the solutions of

$$
\begin{equation*}
12 t+2 \equiv \pm 1 \quad(\bmod p) . \tag{4.4}
\end{equation*}
$$

If $p \equiv 1,3(\bmod 8)$, then we have two additional solutions, namely those obtained by first solving

$$
\begin{equation*}
y^{2} \equiv-32 \quad(\bmod p) \tag{4.5}
\end{equation*}
$$

THE FIBONACCI QUARTERLY

and then solving

$$
\begin{equation*}
48 t+8 \equiv y \quad(\bmod p) . \tag{4.6}
\end{equation*}
$$

Proof. Proceeding as in the proof of Theorem 4.2, we find that

$$
t^{*}=2(p-3)(p-2)(p-1) t^{2}+(p-4) t \equiv-12 t^{2}-4 t \quad(\bmod p) .
$$

Using Theorem 4.2, this leads to the congruences

$$
\begin{equation*}
24 t^{2}+8 t+1 \equiv 0 \quad(\bmod p) \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
48 t^{2}+16 t+1 \equiv 0 \quad(\bmod p) . \tag{4.8}
\end{equation*}
$$

Using the theory of quadratic residues (see, for example, [1]), we obtain the solutions given in the theorem.

5. Acknowledgements

I started this research in spring 2008 while staying in India. I thank B. Sury and the Indian Statistical Institute in Bangalore as well as S. Ponnusamy and the IIT in Chennai for their hospitality. I also thank the Finnish Academy of Science and Letters for a travel grant. Finally, I thank the referee for suggestions leading to an improvement of the presentation.

References

[1] D. M. Burton, Elementary Number Theory, Revised printing, Allyn and Bacon, Inc., 1980.
[2] R. K. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer, 1994.
[3] R. K. Guy, Nothing's new in number theory?, Amer. Math. Monthly, 105 (1998), 951-954.
[4] V. Klee and S. Wagon, Old and New Unsolved Problems in Plane Geometry and Number Theory, Math. Assoc. America, 1991.
[5] J. Pihko, Remarks on the "greedy odd" Egyptian fraction algorithm, The Fibonacci Quarterly, 39.3 (2001), 221-227.
[6] L. Pisano, Liber Abaci, A translation into modern English of Leonardo Pisano's Book of Calculation. Translated from the Latin and with an introduction, notes and bibliography by L. E. Sigler, Springer, 2002.

MSC2010: 11D68
Kyläkunnantie 53, FI-00660 Helsinki, Finland
E-mail address: jukka.pihko@helsinki.fi

