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Abstract. The recurrent sequences considered in the present paper are prime sequences of
the form pj = gpf(a1pj−1+a2pj−2+ · · ·+adpj−d+a0), where for any integer x ≥ 2, we denote
by gpf(x) the greatest prime factor of x. In the simple case of the ‘GPF-Fibonacci’ sequences
corresponding to d = 2, a0 = 0, and a1 = a2 = 1, we find that regardless of the initial
conditions p0 and p1, all such sequences ultimately enter the cycle 7, 3, 5, 2. A computational
exploration of the ‘GPF-Tribonacci’ analogue d = 3, a0 = 0, and a1 = a2 = a3 = 1 reveals
four cycles of lengths, listed in the decreasing order of frequencies, 100, 212, 28 and 6, with
the two larger cycles collecting more than 98% of the sequences as defined by the initial
conditions p0, p1, and p2. The paper concludes with a general ultimate periodicity conjecture
and discusses its plausibility.

1. Introduction

For any integer x ≥ 2, let gpf(x) be the greatest prime factor of x. The idea of combining
the (generalized) Fibonacci recursion

G0 = u, G1 = v, Gn = Gn−1 +Gn−2 for n ≥ 2

with the greatest prime factor function naturally leads to prime sequences {pn} of the following
type:

p0 = a, p1 = b, pn = gpf (pn−1 + pn−2) for n ≥ 2. (1)

Let us agree to call such sequences, “GPF-Fibonacci” sequences. The behavior of the greatest
prime factor function has already been studied in various contexts, including polynomials [4, 5],
arithmetic progressions [7], and integers in an interval [6]. In the present paper we show that
all GPF-Fibonacci sequences are ultimately periodic, eventually entering the cycle 7,3,5,2. For
example, if a = 19 and b = 13, the sequence is

19, 13, 2, 5, 7, 3, 5, 2, 7, 3, 5, 2, . . . .

This is a special case of a general class of recurrent sequences that bring together the idea
of a linear recursion and the greatest prime factor function, so that they satisfy a recurrence
relation of the form

pj = gpf(a1pj−1 + a2pj−2 + · · ·+ adpj−d + a0). (2)

We will present data suggesting very interesting facts about the Tribonacci analogues of se-
quences of type (1). A computational exploration of the ‘GPF-Tribonacci’ sequences obtained
by setting d = 3, a0 = 0, and a1 = a2 = a3 = 1 in (2) reveals four cycles of lengths, listed in
the decreasing order of frequencies, 100, 212, 28 and 6, with the two cycles of largest length
collecting more than 98% of the sequences as defined by the initial conditions p0, p1, and p2.
The paper concludes with a brief discussion regarding a general conjecture on sequences given
by (2).
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2. The Main Result

The proof that all GPF-Fibonacci sequences (1) are ultimately periodic rests on the following
simple fact.

Lemma 1. Let p be a prime such that p+ 2 is composite. Then the set

Kp := {r|r prime, r ≤ p}
of all primes up to and including p is closed under the binary operation

(r, s) 7→ gpf (r + s) . (3)

Proof. Since the operation (3) is idempotent, we only need to consider r, s ∈ Kp, with r < s.
If both r, s are odd, then r + s is even, so

gpf (r + s) ≤ (r + s) /2 < s ≤ p,

and thus gpf (r + s) ∈ Kp. On the other hand, if r = 2, then the fact that gpf (2 + s) ≤ p for
all s ∈ Kp follows from the fact that p+ 2 is composite. �

For a more detailed discussion on the properties of the commutative and non-associative
magma [1] operation defined by (3) on the set of all primes, see [2].

The following is a direct consequence of Lemma 1.

Proposition 2. All GPF-Fibonacci sequences are ultimately periodic.

Proof. Pick up a prime p ≡ 1 (mod 3) (this will ensure that p + 2 is composite) such that
p ≥ max(a, b), where a = p0 and b = p1 are the initial two terms of (1). Then {a, b} ⊂ Kp.
But by Lemma 1, Kp is gpf-closed, so that by applying it inductively we find that pn ∈ Kp

for all n ≥ 0. To conclude the proof, note that a recurrent sequence of order 2 with terms in
a finite set is eventually periodic. �
Remark. Note that all terms pj of (1) satisfy pj ≤ max(a, b) + 4. In fact (since 3 is the only
prime p such that p, p+2, and p+4 are all primes), with the single exception of {a, b} = {2, 3}
they satisfy pj ≤ max(a, b) + 2.

Next we show that not only the GPF-Fibonacci sequences are ultimately periodic but that
all of them eventually enter the same 4-cycle.

Theorem 3. All GPF-Fibonacci sequences (1) in which a ̸= b eventually enter the same
4-cycle 7,3,5,2.

Proof. From Proposition 2, such a sequence is ultimately periodic. The cycle length cannot
be 1 (this happens if and only if a = b). The cycle length cannot be 2 either, since if the
cycle consists of just p, q with p ̸= q, then gpf(p + q) cannot possibly be in the set {p, q}.
Thus, the limit cycle is of the form p1, p2, . . . , pk with k ≥ 3 and gpf(pj + pj+1) = pj+2

for all j = 1, 2, . . . , k, where pk+1 = p1, etc. In what follows, each of the subscripts j in
{pj} will be considered large enough so that all of their shifts considered in the proof will
keep us in the cycle p1, p2, . . . , pk. Let M = pi be the largest element in the cycle. The
cycle elements pi−1 and pi−2 are both distinct (otherwise the cycle would have length 1) and
strictly smaller than M , otherwise, if exactly one out of pi−2, pi−1 is M , then gpf(pi−2 + pi−1)
cannot be equal to M = pi. Moreover, one out of pi−2, pi−1 must be equal to 2. Indeed, if
both of them would be odd (and, as we already know, distinct and smaller than M), then
M = pi = gpf(pi−2 + pi−1) ≤ (pi−2 + pi−1)/2 < M , a contradiction. At this moment we
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distinguish two cases: either pi−2 = p and pi−1 = 2 (Case I), or pi−2 = 2 and pi−1 = p (Case
II), where 2 < p < M and M = p+ 2 (which easily follows in both cases).

Case I. pi−2 = 2 and pi−1 = p (odd), with p + 2 = M . Let pi−3 = q. Since q ≤ M = p + 2
and gpf(q + 2) = gpf(pi−3 + pi−2) = pi−1 = p, it follows that p − 2 ≤ q ≤ p + 2. But
clearly q /∈ {2, p}, so q ∈ {p − 2, p + 2}. The case q = p + 2 can be ruled out, since then
p = gpf(q + 2) = gpf(p + 4) which cannot happen. Therefore pi−3 = p − 2 and thus at this
moment we get pi−3 = p − 2, pi−2 = p and pi = p + 2 in an arithmetic progresion of primes
with difference 2, which necessarily implies pi−3 = p− 2 = 3, pi−1 = p = 5, and M = pi = 7.
Iterating the sequence we immediately enter the cycle 7,3,5,2, which indicates that pi−3, pi−2,
pi−1 are not yet in the limit cycle. In fact, Case I never happens, and the problem reduces to
Case II, which will be considered next.

Case II. pi−2 = p (odd) and pi−1 = 2, with pi = M = p+ 2. If p ≤ 11 we can verify by direct
calculation that we eventually enter the cycle 7,3,5,2. Let p ≥ 13, in which case, since p and
p+ 2 are primes, p+ 4 is composite (divisible by 3), so that

pi+1 = gpf(pi−1 + pi) = gpf(p+ 4) ≤ (p+ 4)/3. (4)

With pi = p+ 2 and pi+1 odd, we have, by using (4),

pi+2 = gpf(pi + pi+1) ≤ (pi + pi+1)/2 ≤ (4p+ 10)/6. (5)

From the remark following Proposition 2 in conjunction with (4) and (5), it follows that

pj ≤ max(pi+1, pi+2) + 4 ≤ 4p+ 34

6
(6)

for all j > i. From (6) together with the assumption p ≥ 13 it follows that pj < p + 2 = M
for all j > i, which is a contradiction. As a result, p must be at most 11, and in fact M = 7
and p = 5. This concludes the proof of Theorem 3. �
Remark. Note that in [2] it was proved that every set of primes with more than 1 element
that is closed under the greatest prime factor operation must contain the set {2, 3, 5, 7}, which
is itself closed (that is, a submagma which is included in every other submagma that is not a
singleton). By applying this we could have strengthened the statement in the beginning of the
proof of Theorem 3 from the length of a period being at least 3 to the length of a period being
at least 4 (a period of length 3 would produce a nontrivial submagma with 3 elements).

3. A Tribonacci Surprise and Conjecture

The Tribonacci analogue for sequences of type (1) are sequences defined by recurrence
relations of the following form:

p0 = a, p1 = b, p2 = c, pn = gpf (pn−1 + pn−2 + pn−3) for n ≥ 3. (7)

Concerning these sequences we found computational evidence revealing intriguing patterns.
First of all, a Monte Carlo-like computer experiment supports the following conjecture.

Conjecture 1. All GPF-Tribonacci sequences (7) are ultimately periodic.
This, in conjunction with the distribution of the lengths of the periods, is a surprising fact.

Indeed, other than the trivial case of a period 1 (corresponding to the choice a = b = c),
an analysis of 100,000 randomly generated triples (a, b, c) with components primes less than
1000 suggests a surprising distribution of the spectrum of the periods: in 98.78% of cases, the
periods are 100 and 212. More precisely, we obtained a period of 100 in 74.73% of cases, a
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period of 212 in 24.05% of cases, a period of 28 in 0.76% of cases, and a period of 6 in 0.47%
of cases. Moreover, in all cases we found the same cycle for each sequence with a period of a
given length. As an example of such a sequence with a (most frequent) period of 100, one can
take (a, b, c) = (5, 13, 7), in which case the sequence evolves as follows:

[5, 13, 7, 5, 5, 17, 3, 5, 5, 13, 23, 41, 11, 5, 19, 7, 31, 19, 19, 23, 61, 103, 17, 181, 43, 241, 31,
7, 31, 23, 61, 23, 107, 191, 107, 5, 101, 71, 59, 11, 47, 13, 71, 131, 43, 7, 181, 11, 199, 23, 233,
13, 269, 103, 11, 383, 71, 31, 97, 199, 109, 5, 313, 61, 379, 251, 691, 1321, 73, 139, 73, 19, 11,
103, 19, 19, 47, 17, 83, 7, 107, 197, 311, 41, 61, 59, 23, 13, 19, 11, 43, 73, 127, 3, 29, 53, 17,
11, 3, 31], 5, 13, 7, . . ..

If (a, b, c) = (31, 13, 7), the sequence is periodic with the period

[31, 13, 7, 17, 37, 61, 23, 11, 19, 53, 83, 31, 167, 281, 479, 103, 863, 17, 983, 23, 31, 61, 23, 23,
107, 17, 7, 131], 31, 13, 7,. . .,

while if (a, b, c) = (59, 43, 37), the sequence is periodic with the period:

[59, 43, 37, 139, 73, 83], 59, 43, 37,. . ..

It is not always (and most time it is not) the case that the period begins right away. In most
sequences of the form (7), the cycle entrance occurs later. As an example, we can provide the
case of the initial conditions (a, b, c) = (17, 31, 41). The recursion (7) will generate the above
sequence of period 100, but the entrance in the period does not happen until the 535th term.
In the collection of sequences considered above, most had an entrance point before the 700th
term. There is also an interesting low in the interval (200,300). Note that a GPF-Tribonacci
sequence can attain relatively high values even if the initial terms a, b, c are relatively small.

Finally, one might ask whether or not a uniform bound L can be found such that the terms
of (7) satisfy

pn ≤ L ·max(a, b, c) for all n. (8)

Of course, if (8) is true, then Conjecture 1 would be proved.

4. Epilogue: A General Ultimate Periodicity Conjecture

To conclude, let us go back to the most general class of prime sequences satisfying (2). For
the sequences of that type, we will formulate the following conjecture.

Conjecture 2. (The General Ultimate Periodicity Conjecture). Every sequence of primes
{pj} satisfying a recurrence relation (2) is ultimately periodic.

Concerning the plausibility of Conjecture 2, in addition to the material incorporated to the
present paper, we refer to the class of prime sequences (‘GPF sequences’) introduced in [3],
satisfying (2) with d = 1, but with a0 > 0 (as was not the case for all sequences in this paper).
That is,

pj = gpf(a1pj−1 + a0), (9)

where a0, a1 are positive integers. The sequences (9) are ultimately periodic if a1 = 1 [3] and,
more generally, whenever a1 divides a0 [2]. Other computer checks suggested to us that the
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General Ultimate Periodicity Conjecture may be true, and we believe it is a project worth
being investigated.
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