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Abstract. Partial sum polynomials are defined from a generating function. The generating
function and the partial sum polynomials of even degree can be represented as a certain kind
of linear combination of squares. Of particular interest are the coefficients bk in such sums.
Examples of partial sum polynomials include Fibonacci polynomials of the 2nd kind, defined
by Pn(z) = z2Pn−2(z) + zPn−1(z) + 1, with P0(z) = 1 and P1(z) = 1 + z.

1. Introduction

Consider the generating function F (z) = (1− z − z2)−1 of the Fibonacci numbers:

F (z) = 1 + z + 2z2 + 3z3 + 5z4 + 8z5 + · · · . (1)

The partial sums of F (z) comprise the following sequence of polynomials:

Pn(z) =
n∑

k=0

Fk+1z
k (2)

which satisfy the recurrence
Pn = z2Pn−2 + zPn−1 + 1. (3)

For n ≥ 0, we shall call Pn the nth Fibonacci polynomial of the 2nd kind. Much more generally,
an arbitrary generating function

f(z) =

∞∑
k=0

akz
k (4)

has partial sums which we shall call partial sum polynomials of f , (or of the sequence (a0, a1, a2, . . .)):

p0(z) = a0

p1(z) = a0 + a1z

p2(z) = a0 + a1z + a2z
2

p3(z) = a0 + a1z + a2z
2 + a3z

3

...

and which have generating function

1

f(zt)(1− t)
.

If a0 = 2 and a1 = 1, the polynomial pn will be called the nth Lucas polynomial of the 2nd
kind ; these satisfy the recurrence Pn = z2Pn−2 + zPn−1 + 2. (Recall that the Fibonacci and
Lucas polynomials [of the 1st kind] are defined by the recurrence
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ρn = zρn−1 + ρn−2, (5)

where ρ0 = 1 and ρ1 = z in the Fibonacci case, and ρ0 = 2 and ρ1 = z in the Lucas case.)
The purpose of this article is to present a few properties of generating function polynomials

pn, with special attention to the Fibonacci and Lucas polynomials of the 2nd kind.

2. Linear Combinations of Squares

The term “linear combination” is used here to apply to infinite sums as well as finite. We
shall show that a generating function (4), under certain mild conditions, is a linear combination
of squares, and that the same is true for polynomials of even degree.

Theorem 1. Let a = (a0, a1, a2, . . .) be a sequence of nonzero complex numbers, with gener-
ating function

f(z) = a0 + a1z + a2z
2 + · · · . (6)

Define b0 = a0 and c0 =
a1
2b0

, and assume that a2 ̸= b0c
2
0, so that the number

b1 = a2 − b0c
2
0 = a2 −

a21
4b0

is not zero. Inductively, define

bk = a2k −
a22k−1

4bk−1
= a2k − bk−1c

2
k−1; (7)

ck =
a2k+1

2bk
(8)

assuming at each stage that a2k ̸= bk−1c
2
k−1. Then

f(z) = b0(1 + c0z)
2 + b1z

2(1 + c1z)
2 + b2z

4(1 + c2z)
2 + · · · . (9)

Proof. Expand (9) and compare coefficients with (6). �

Clearly the series (9) has the same convergence interval as (6); for the special case (1), the
convergence interval is [1− τ, τ − 1), where τ = (1 +

√
5)/2, the golden ratio.

We can also start with (9) and easily find that a0 = b0 and

a2k+1 = 2bkck and a2k+2 = bk+1 + bkc
2
k (10)

for k ≥ 0.

Example 1. If a = (1, 2, 3, 4, . . .), then b(a) = a and c = (1, 1, 1, 1, . . .).

As a second example in which the three sequences a, b, c are quite simple, we have the
following.

Example 2. If a = (1, 1, 1, 1, . . .), then

bk =
k + 2

2k + 2
and ck =

k + 1

k + 2

for k ≥ 0.
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Theorem 2. In addition to the hypothesis of Theorem 1, suppose that the following limits
exist:

α = lim
m→∞

am+1

am
, β = lim

m→∞

bm+1

bm
, γ = lim

m→∞
cm

and that γ ̸= 0. Then β = α2 and γ = α.

Proof. The equations (10), adapted as

a2k = bk + bk−1c
2
k−1, a2k+1 = 2bkck, a2k+2 = bk+1 + bkc

2
k,

imply

a2k+1

a2k
=

2bkck
bk + bk−1c

2
k−1

and
a2k+2

a2k+1
=

bk+1 + bkc
2
k

2bkck
,

so that

α =
2βγ

β + γ2
=

β + γ2

2γ
,

so that β = α2 and γ = α. �

We turn now to an arbitrary even-degree polynomial

p2n(z) = a0 + a1z + a2z
2 + · · ·+ a2nz

2n.

The method of Theorem 1 leads to the following linear combination of squares:

p2n(z) = b0(1 + c0z)
2 + b1z

2(1 + c1z)
2 + · · ·+ bn−1z

2n−2(1 + cn−1z)
2 + bnz

2n, (11)

where the finite sequences b and c are given by (7) and (8).

Example 3. Linear combinations of squares for three Fibonacci polynomials of the 2nd kind
are shown here:

F2(z) = 1 + z + 2z2

= (1 + 1
2z)

2 + 7
4z

2

F4(z) = 1 + z + 2z2 + 3z3 + 5z4

= (1 + 1
2z)

2 + 7
4z

2(1 + 6
7z)

2 + 26
7 z

4

F6(z) = 1 + z + 2z2 + 3z3 + 5z4 + 8z5 + 13z6

= (1 + 1
2z)

2 + 7
4z

2(1 + 6
7z)

2 + 26
7 z

4(1 + 14
13z)

2 + 113
13 z

6.

3. The Case a = (x, y, x+ y, x+ 2y, . . .)

In this section we study the sequences b and c when the given sequence is a generalized
Fibonacci sequence—that is, x and y are arbitrary positive numbers, and

a0 = x, a1 = y, a2 = x+ y, . . . , ak = xFk−1 + yFk.

This sequence is the classical Fibonacci or Lucas sequence according as (x, y) = (1, 1) or
(x, y) = (2, 1). Of particular interest is the sequence bk defined in Theorem 1, and I am
indebted to Paul Bruckman for an insightful proof of the convergence of bk+1/bk in the case
(x, y) = (1, 1). Bruckman’s method has served as a guide throughout this section. To begin,
define

dk = 1− a2k+1

4bk
(12a)
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for k ≥ 0, and note that this definition yields the following recurrence for the sequence (dk):

1− dk+1 =
a2k+3

4a2k + 4dka2k+1
. (13)

We shall need a few technical lemmas about Fibonacci numbers and their relation to the
golden ratio, given by

τ =
1 +

√
5

2
= lim

m→∞

Fm+1

Fm
.

It will be helpful (e.g., in Lemmas 3 and 5) to define a−1 = y − x and a−2 = 2x− y.

Lemma 1. If k ≥ 0, then

F2k+3 + F2k+1 − τF2k+1 − 2τF2k > 0. (14)

Proof. Let α = τ and β = 1− τ . Let Ln = αn + βn, the nth Lucas number. Since β < α, we
have

L2k+2

L2k+1
=

α2k+2 + β2k+2

α2k+1 + β2k+1
> α,

which implies (14) because Lm = Fm−1 + Fm+1 for m ≥ 1. �
Lemma 2. For k ≥ 0, let

sk = 2τF2k+1 − τF2k − F2k − F2k+2 (15)

for k ≥ 0. The sequence (sk) is strictly decreasing.

Proof. By Lemma 1,

0 > τF2k+1 + 2τF2k − F2k+1 − F2k+3

= 2τF2k+1 + 2τF2k − τF2k+1 − F2k+1 − F2k+3

= 2τF2k+2 − τF2k+1 − F2k+1 − F2k+3

= 2τ(F2k+3 − F2k+1)− τ(F2k+2 − F2k)

−(F2k+2 − F2k)− (F2k+4 − F2k+2),

so that sk+1 < sk. �
Lemma 3. Suppose that 0 < y ≤ τx and k ≥ 0. Then

xF2k+2 + yF2k+3

4(xF2k−1 + yF2k) + (4− 2τ)(xF2k + yF2k+1)
< τ/2. (16)

Proof. It is easy to check that (16) holds for k = 0. Assume that k ≥ 1. By Lemma 2, the
sequence (2τF2k+1− τF2k−F2k−F2k+2) is a strictly decreasing sequence of positive numbers.
Consequently, for positive x and y,

0 < x(2τF2k+1 − τF2k − F2k − F2k+2) + y(2τF2k+2 − τF2k+1 − F2k+1 − F2k+3),

from which easily follows

0 < x(4τF2k+1 + 4τF2k − 2τ2F2k − 2F2k+2)

+y(4τF2k+2 + 4τF2k+1 − 2τ2F2k+1 − 2F2k+3),

whence

2xF2k+2 + 2yF2k+3 < 4τxF2k−1 + 4τyF2k + (4τ − 2τ2)(xF2k + yF2k+1),

so that (16) holds for k ≥ 1. �
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Lemma 4. Suppose that 0 < y ≤ τx and k ≥ 0. Then

1− τ/2 < dk. (17)

Proof. Clearly (17) holds for k = 0. Suppose for arbitrary k ≥ 0 that 1− τ/2 < dk. Then

1− dk+1 =
a2k+3

4a2k + 4dka2k+1

≤ a2k+3

4a2k + 4(1− τ/2)a2k+1
by the induction hypothesis

≤ xF2k+2 + yF2k+3

4(xF2k−1 + yF2k) + (4− 2τ)(xF2k + yF2k+1)
,

so that 1− dk+1 < τ/2 by Lemma 3. �

Lemma 5. If k ≥ 0, then

F2k+1F2k+4 − F2k+2F2k+3 = 1

4(F2k+1F2k+5 − F 2
2k+3 + F2k+4F2k+1 − F2k+2F2k+3) + 3(F2k+4F2k − F 2

2k+2) = 5

F2k+2F2k+3 − F2k+1F2k+4 + 4(F2k+5F2k+1 − F 2
2k+3) + 3(F2k+5F2k − F2k+3F2k+2) = −3

F 2
2k+3 − F2k+1F2k+5 = −1.

Proof. These identities are all easily proved by induction. �

Lemma 6. Suppose that 0 < y ≤ τx, and for k ≥ 0, let

Gk =
x2F2k+2 + xyF2k+3

4x2F2k+1 + xy(4F2k+1 + 3F2k)− y2F2k+1
.

The sequence (Gk) is strictly increasing.

Proof. Suppose that k ≥ 0. The inequality Gk < Gk+1 to be proved is easily recast as
V − U > 0, where

U = (x2F2k+2 + xyF2k+3)(4x
2F2k+3 + xy(4F2k+3 + 3F2k+2)− y2F2k+3)

V = (x2F2k+4 + xyF2k+5)(4x
2F2k+1 + xy(4F2k+1 + 3F2k)− y2F2k+1).

Expanding V − U and using identities in Lemma 5 gives

V − U = 4x4 + 5x3y − 3x2y2 − xy3

= x(4x+ y)(xy + x2 − y2),

which is positive for 0 < y ≤ τx. �

Lemma 7. Suppose that 0 < y ≤ τx and k ≥ 0. Then

dk ≤ d0. (18)

Proof. Clearly (18) holds for k = 0. Assume that (18) for arbitrary k ≥ 0. Then

4xdk ≤ 4x− y and 4ydk ≤ 4y − y2/x,

so that

4dk(xF2k + yF2k+1) + (y2/x)F2k+1 ≤ (4x− y)F2k + 4yF2k+1

≤ 4xF2k + 4y(F2k+1 + 2F2k).
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Consequently,

4xF2k−1 + 4yF2k + 4dk(xF2k + yF2k+1)

< 4xF2k+1 + y(4F2k+1 + 3F2k)− (y2/x)F2k+1,

so that

xF2k+2 + yF2k+3

4xF2k+1 + y(4F2k+1 + 3F2k)− (y2/x)F2k+1

<
xF2k+2 + yF2k+3

4(xF2k+1 + yF2k) + 4dk(xF2k + yF2k+1)
,

which is to say that Gk ≤ 1− dk+1. Therefore, by Lemma 6,

dk+1 ≤ 1−G0. (19)

Next, the obvious inequality

y(y − 2x)2 + 4x3 > 0

is equivalent to

4y(16x2 − 8xy + y2) + 16x(x− y)(4x− y) + 16x2(2y − 3x) > 0,

so that

4(4x−y
4x )2y + (4x− 4y)(4x−y

4x ) + x+ 2y − 4x > 0,

which is restated as

4d20a1 + (4x− 4y)d0 + a3 − 4x > 0,

so that

1− a3
4x+ 4d0a1

< d0,

which is restated as

1−G0 < d0. (20)

Inequalities (19) and (20) yield dk+1 ≤ d0, so that by induction, (18) holds for all k ≥ 0. �

Lemma 8. If k ≥ 0, then

F2k−3F2k+2 − F2k−1F2k = 2 (21)

F2k−3F2k+3 + F2k−2F2k+2 − F2k−1F2k+1 − F 2
2k = 2 (22)

F2k−2F2k+3 − F2kF2k+1 = −2 (23)

F 2
2k − F2k−2F2k+2 = 1 (24)

2F2kF2k+1 − F2k−2F2k+3 − F2k−1F2+2 = 1 (25)

F 2
2k+1 − F2k−1F2k+3 = −1. (26)

Proof. These identities are all easily proved by induction. �

Lemma 9. Suppose that x > 0 and y > 0, and k ≥ 0. Let

E = x2 + xy − y2

E1 = a2k−2a2k+3 − a2ka2k+1

E2 = a22k+1 − a2k−1a2k+3.

Then E1 = 2E and E2 = E.
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Proof. When E1 is expanded using am = xFm−1 + yFm for the indicated subscripts m, the
result is the sum q1x

2 + q2xy + q3y
2 where q1, q2, and q3 are the numbers 2, 2,−2 given in

(21)–(23). Likewise, E2 = q4x
2 + q5xy + q6y

2 where q4, q5, and q6 are the numbers 1, 1,−1
given in (24)–(26). �

Lemma 10. If 0 < y ≤ τx, then the sequence (dk) is strictly decreasing.

Proof. Suppose k ≥ 1. Using E1 and E2 as in Lemma 9, we find

dk − dk+1

4(1− dk)(1− dk+1)
=

E1 − dkE2 + (dk−1 − dk)a2k−1a2k+3

a2k+1a2k+3

=
(2− dk)D + (dk−1 − dk)a2k−1a2k+3

a2k+1a2k+3
, (27)

where D = x2 + xy+ y2. Since d0 = 1− y/(4x) < 1, we have dk < 1 and dk+1 < 1, by Lemma
7. Accordingly, (1 − dk)(1 − dk+1) > 0 and 2 − dk > 0. As a first induction step, clearly
d0 > d1, and if dk−1 > dk for arbitrary k, then (27) establishes that dk > dk+1. �

Theorem 3. Suppose that 0 < y ≤ τx. Then

lim
k→∞

dk = 1− τ/2 and lim
k→∞

bk+1

bk
= τ2.

Moreover,

a2k < bk+1 < a2k+2 (28)

for k ≥ 0.

Proof. By Lemmas 4, 7, and 10, the sequence (dk) is bounded and strictly decreasing. There-
fore it converges. Let d = limk→∞ dk. By (13),

1− dk+1 =
x
F2k+2

F2k−1
+ y

F2k+3

F2k−1

4(x+ y F2k
F2k−1

) + 4dk(x
F2k

F2k−1
+ y

F2k+1

F2k−1
)
,

so that

1− d =
xτ3 + yτ4

4(x+ yτ) + 4d(xτ + yτ2)

=
τ3

4 + 4dτ
,

which yields d = 1− τ/2. From (12a) we have

bk+1

bk
=

a2k+3

a2k+1
,

so that

lim
k→∞

bk+1

bk
= lim

k→∞

xF2k+2 + yF2k

xF2k + yF2k−2
=

xτ4 + yτ2

xτ2 + y
= τ2.

Next, (7) and (12a) give

bk+1 = a2k+2 − a2k+1(1− dk)

= a2k + dka2k+1,

so that (28) holds, since 0 < dk < 1. �
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If a = (Fk+1), then F2k+1 < bk+1 < F2k+3 for k ≥ 0, by Theorem 3. Experimentation
suggests a tighter upper bound, bk+1 < L2k+1, as well as the inequalities

τ2 − 1

k + 1
< bk+1/bk < τ2

for k ≥ 0.
If a = (L2k) then L2k < bk+1 < L2k+2 for k ≥ 0, by Theorem 3, and experimentation

suggests that F2k+2 < bk+1 < F2k+3 for k ≥ 2, and that

τ2 − 1

k
< bk+1/bk < τ2

for k ≥ 1.
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