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Abstract. In this paper we complete our preceding research concerning the cubic character
of the roots of the Tribonacci polynomial t(x) = x3−x2−x−1 over the Galois field Fp where
p is an arbitrary prime, p ≡ 1 (mod 3).

1. Introduction

Let τ be any root of the Tribonacci polynomial t(x) = x3−x2−x− 1 in the Galois field Fp

where p is a prime, p ≡ 1 (mod 3). In [1], we proved that

τ
p−1
3 =

(
τ

p

)
3

= 2
2(p−1)

3 . (1.1)

Next in [2], we showed that if t(x) is irreducible over Fp, p ≡ 1 (mod 3) and τ is any root
of t(x) in the splitting field of t(x) over Fp, then

τ
p2+p+1

3 = 1. (1.2)

The number-theoretic results (1.1) and (1.2) were used in [2] to investigate the period h(p)
of the Tribonacci sequence (Tn)

∞
n=0 reduced by a modulus p. Recall that (Tn)

∞
n=0 is defined

recursively by Tn+3 = Tn+2 + Tn+1 + Tn with T0 = T1 = 0, T2 = 1 and that the period h(p) of
(Tn mod p)∞n=0 is the least positive integer satisfying Th(p) ≡ Th(p)+1 ≡ 0 (mod p), Th(p)+2 ≡ 1
(mod p). Let I be the set of all primes p for which t(x) is irreducible over Fp, Q be the set of
all primes for which t(x) splits over Fp into the product of a linear factor and an irreducible
quadratic factor, and let L be the set of all primes for which t(x) completely splits over Fp

into linear factors. Furthermore, let D = −22 ·11 be the discriminant of t(x). By [1, Corollary
2.5], p ∈ Q if and only if

( p
11

)
= −1. Moreover, if p ̸= 2, 11, then p ∈ I ∪ L if and only if( p

11

)
= 1. In [2], we established, for p ≡ 1 (mod 3), the following properties of h(p):

If p ∈ L, then h(p)
∣∣∣p− 1

3
if and only if 2 is a cubic residue of the field Fp.

If p ∈ Q, then h(p)
∣∣∣p2 − 1

3
if and only if 2 is a cubic residue of the field Fp. (1.3)

If p ∈ I, then h(p)
∣∣∣p2 + p+ 1

3
.
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In the proofs of (1.1) – (1.3), which were presented in [1] and [2], a significant role is played
by the cubic polynomials f(x, c) = x3 +A(c)x2 +B(c)x+ C(c) ∈ Fp[x], p ≡ 1 (mod 3) with

A(c) = −18c2 + 3, B(c) = −9c2 − 27c− 24, C(c) = 9c2 − 27c+ 28, (1.4)

and c ∈ {−1,−ε,−ε2}. Here, ε ∈ Fp denotes a primitive third root of unity so that ε2+ε+1 =
0. Let Dc be the discriminant of f(x, c). Then Dc = 22 · 39 · 11 for any c ∈ {−1,−ε,−ε2} and,
by [1, Lemma 2.6], we have (

Dc

p

)
=

(
D

p

)
=

( p

11

)
. (1.5)

Consequently, the Stickelberger parity theorem [1, Theorem 2.4] can be used to prove the
following lemma:

Lemma 1.1. Let p be an arbitrary prime, p ≡ 1 (mod 3) such that
( p
11

)
= −1. Then the

Tribonacci polynomial t(x) has exactly one root in the field Fp if and only if each of the
polynomials f(x, c), c ∈ {−1,−ε,−ε2} has exactly one root in Fp.

Since 2 is the root of f(x,−1) in any Galois field Fp, to find the further relations between
the number of roots of t(x) and f(x,−1) is quite easy. The polynomial f(x,−1) has three
distinct roots in Fp if and only if t(x) has no root or three distinct roots in Fp. By means of the
results derived in [1] and [2], these two cases may be distinguished as follows: The Tribonacci
polynomial t(x) has no root in Fp if and only if all three roots of f(x,−1) belong to distinct
cubic classes of Fp. On the other hand, t(x) has three distinct roots in Fp if and only if all
three roots of f(x,−1) belong to a single cubic class of Fp.

In the present short note we complete what we know about the relations between the
Tribonacci polynomial t(x) and the polynomials f(x, c), c ∈ {−ε,−ε2}. In particular, we
prove that in any Galois field Fp where p ≡ 1 (mod 3), these polynomials have the same
number of roots.

2. The Number of Roots of the Polynomials t(x), f(x,−ε), f(x,−ε2) Over the
Galois Field Fp Where p ≡ 1 (mod 3)

For proof of our main result, we shall need the following two statements:

(i) Let p be a prime, p ≡ 1 (mod 3) and let g(x) = x3 + rx+ s ∈ Fp[x], r, s ̸= 0. Assume

that there exists λ ∈ Fp such that λ2 = d where d = s2

4 + r3

27 . Further assume that g(x)
is irreducible over Fp or g(x) has three distinct roots in Fp. Then g(x) is irreducible
over Fp if and only if A = − s

2 + λ is not a cubic residue of Fp.

(ii) For an arbitrary prime p, p ≡ 1 (mod 3), there exists κ ∈ Fp such that κ2 = 33. If
p ≡ 1 (mod 3) and

( p
11

)
= 1, then t(x) is irreducible over Fp if and only if 19− 3κ is

not a cubic residue of Fp.

Part (i) is a direct consequence of [2, Theorem 2.4]. For (ii), see [2, Theorem 2.5].

Theorem 2.1. Let p be an arbitrary prime, p ≡ 1 (mod 3) such that
( p
11

)
= 1. Then the

Tribonacci polynomial t(x) is irreducible over the field Fp if and only if f(x,−ε), f(x,−ε2)
are irreducible over Fp.

Proof. After substituting x = y− A(−ε)
3 , the polynomial f(x,−ε) becomes a cubic polynomial

g(y) = y3 + ry + s ∈ Fp[y] with

r=
1

3
(3B(−ε)−A(−ε)2) and s=

1

27
(2A(−ε)3−9A(−ε)B(−ε)+27C(−ε)). (2.1)
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From (1.4), we obtain A(−ε) = 18ε + 21, B(−ε) = 36ε − 15, and C(−ε) = 18ε + 19.
Substituting into (2.1) and using the identity ε2 + ε + 1 = 0, r and s can be written in the
form

r = −2 · 33(2ε+ 1), s = 2 · 33(6ε− 1). (2.2)

We show that r, s ̸= 0. Suppose r = 0. From (2.2) we have 2ε+ 1 = 0. This implies 9 = 0,
which yields a contradiction with p ≡ 1 (mod 3). Next suppose s = 0. Then 6ε − 1 = 0 and
215 = 5 · 43 = 0 follows. Since 5 ̸≡ 1 (mod 3) and (4311) = −1, we have a contradiction.

By (ii), there exists κ ∈ Fp such that κ2 = 33. Let d = s2

4 + r3

27 , µ = 2ε+1, ν = κ
µ , λ = 27ν,

and A = − s
2 + λ. Then d = −36 · 11, λ2 = d, and A = (−3)3(−4 + 3µ− ν).

It is evident that f(x,−ε) and g(y) have the same number of roots in Fp. Hence, the
assumption

( p
11

)
= 1 implies that g(y) is irreducible over Fp or has three distinct roots in Fp.

Moreover, according to (i),

g(y) is irreducible if and only if − 4 + 3µ− ν is not a cubic residue of Fp. (2.3)

By direct calculation, we can verify that

(19− 3κ)(−4 + 3µ− ν) = (2− µ− ν)3. (2.4)

By (ii), t(x) is irreducible over Fp if and only if 19− 3κ is not a cubic residue of Fp. From
(2.4), it follows that 19− 3κ is not a cubic residue of Fp if and only if −4+3µ− ν is not cubic
residue of Fp. Finally, using (2.3), we conclude that g(y) and f(x,−ε) are irreducible over Fp.
Since we can replace ε by ε2, this is also true for f(x,−ε2). This completes the proof. �

Together with Lemma 1.1, Theorem 2.1 yields the desired result.

Theorem 2.2. Let p be an arbitrary prime, p ≡ 1 (mod 3). Then the polynomials t(x),
f(x,−ε), f(x,−ε2) have the same number of roots over the field Fp.
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