ON RECURRENCES OF FAHR AND RINGEL: AN ALTERNATE APPROACH

HARRIS KWONG

Abstract

In a recent article, Hirschhorn found the generating functions of two sequences introduced by Fahr and Ringel. We use a matrix method to obtain the same results in a simpler and more direct manner.

1. Introduction

In a recent paper, Fahr and Ringel [1] introduced two sequences $b_{t}[r]$ and $c_{t}[r]$ defined by the initial values $b_{0}[r]=c_{0}[r]=\delta_{r, 0}$, and the recurrence relations

$$
\begin{aligned}
b_{t+1}[r] & =c_{t}[r-1]+2 c_{t}[r]-b_{t}[r], \\
c_{t+1}[t] & =b_{t+1}[r]+2 b_{t+1}[r+1]-c_{t}[r],
\end{aligned}
$$

for $t, r \geq 0$, with the convention that $c_{t}[-1]=c_{t}[0]$. Their first few values are listed below.

$b_{t}[r]$					
$t \backslash r$	0	1	2	3	4
0	1				
1	2	1			
2	7	4	1		
3	29	18	6	1	
4	130	85	33	8	1

$c_{t}[r]$					
$t \backslash r$	0	1	2	3	4
0	1				
1	3	1			
2	12	5	1		
3	53	25	7	1	
4	247	126	42	9	1

Define

$$
B_{r}=B_{r}(q)=\sum_{t \geq 0} b_{t}[r] q^{t}, \quad \text { and } \quad C_{r}=C_{r}(q)=\sum_{t \geq 0} b_{t}[r] q^{t}
$$

as the "vertical" generating functions for $b_{t}[r]$ and $c_{t}[r]$. Hirschhorn [2] observed that

$$
B_{0}=\frac{1+3 q C_{0}}{1+q}
$$

and, for $r \geq 0$,

$$
\begin{align*}
B_{r+1} & =\frac{1}{2}\left[(1+q) C_{r}-B_{r}\right], \tag{1.1}\\
C_{r+1} & =\frac{1}{2 q}\left[(1+q) B_{r+1}-q C_{r}\right] . \tag{1.2}
\end{align*}
$$

After rather lengthy computation that involves solving four auxillary recurrences, he found explicit formulas for B_{r} and C_{r}. The purpose of this short note is to use a simpler and more direct approach to derive the same results.

THE FIBONACCI QUARTERLY

2. A Matrix Approach

Equations (1.1) and (1.2) form a system of recurrences. Such a system can sometimes be solved rather effectively by a transfer matrix, as demonstrated by the author in [3]. For a detail discussion of the technique, see [6].

We first write (1.2) as

$$
\begin{equation*}
C_{r+1}=\frac{1+q}{2 q}\left(\frac{1+q}{2} C_{r}-\frac{1}{2} B_{r}\right)-\frac{1}{2} C_{r}=-\frac{1+q}{4 q} B_{r}+\frac{1+q^{2}}{4 q} C_{r}, \tag{2.1}
\end{equation*}
$$

so that (1.1) and (2.1) can be written in a matrix equation

$$
\left[\begin{array}{c}
B_{r+1} \\
C_{r+1}
\end{array}\right]=\frac{1}{4 q}\left[\begin{array}{cc}
-2 q & 2(1+q) q \\
-(1+q) & 1+q^{2}
\end{array}\right]\left[\begin{array}{c}
B_{r} \\
C_{r}
\end{array}\right], \quad r \geq 0 .
$$

Let A denote the transfer matrix. It is clear that $\left[\begin{array}{c}B_{r} \\ C_{r}\end{array}\right]=A^{r}\left[\begin{array}{c}B_{0} \\ C_{0}\end{array}\right]$ for $r \geq 0$. Hence,

$$
\sum_{r \geq 0}\left[\begin{array}{l}
B_{r} \tag{2.2}\\
C_{r}
\end{array}\right] x^{r}=\left(\sum_{r \geq 0}(x A)^{r}\right)\left[\begin{array}{l}
B_{0} \\
C_{0}
\end{array}\right]=(I-x A)^{-1}\left[\begin{array}{c}
B_{0} \\
C_{0}
\end{array}\right] .
$$

Finding the inverse of $I-x A$ is straightforward:

$$
(I-x A)^{-1}=\frac{1}{4 q\left(1-\frac{(1-q)^{2}}{4 q} x+\frac{1}{4} x^{2}\right)}\left[\begin{array}{cc}
4 q-\left(1+q^{2}\right) x & 2(1+q) q x \\
-(1+q) x & 4 q+2 q x
\end{array}\right]
$$

Let

$$
\begin{aligned}
& \mu=\frac{(1-q)^{2}+(1+q) \sqrt{1-6 q+q^{2}}}{8 q}=\frac{1}{4 q}\left(1-2 q-3 q^{2}-8 q^{3}-\cdots\right), \\
& \nu=\frac{(1-q)^{2}-(1+q) \sqrt{1-6 q+q^{2}}}{8 q}=\frac{1}{4}\left(4 q+8 q^{2}+28 q^{3}+112 q^{4}+\cdots\right),
\end{aligned}
$$

so that

$$
\frac{1}{1-\frac{(1-q)^{2}}{4 q} x+\frac{1}{4} x^{2}}=\frac{1}{(1-\mu x)(1-\nu x)}=\sum_{r \geq 0} \frac{\mu^{r+1}-\nu^{r+1}}{\mu-\nu} x^{r} .
$$

After expanding the right-hand side of (2.2), and comparing the coefficients of x^{r}, we find

$$
\begin{aligned}
4 q(\mu-\nu) B_{r}= & 4 q B_{0}\left(\mu^{r+1}-\nu^{r+1}\right)+\left[2(1+q) q C_{0}-\left(1+q^{2}\right) B_{0}\right]\left(\mu^{r}-\nu^{r}\right) \\
= & {\left[4 q B_{0} \mu+2(1+q) q C_{0}-\left(1+q^{2}\right) B_{0}\right] \mu^{r} } \\
& -\left[4 q B_{0} \nu+2(1+q) q C_{0}-\left(1+q^{2}\right) B_{0}\right] \nu^{r}, \\
4 q(\mu-\nu) C_{r}= & 4 q C_{0}\left(\mu^{r+1}-\nu^{r+1}\right)+\left[2 q C_{0}-(1+q) B_{0}\right]\left(\mu^{r}-\nu^{r}\right) \\
= & {\left[4 q C_{0} \mu+2 q C_{0}-(1+q) B_{0}\right] \mu^{r}-\left[4 q C_{0} \nu+2 q C_{0}-(1+q) B_{0}\right] \nu^{r} . }
\end{aligned}
$$

Recall that B_{r} and C_{r} are analytic infinite series in q, but μ has a pole at $q=0$. Therefore, we need

$$
\begin{align*}
4 q B_{0} \mu+2(1+q) q C_{0}-\left(1+q^{2}\right) B_{0} & =0 \tag{2.3}\\
4 q C_{0} \mu+2 q C_{0}-(1+q) B_{0} & =0 \tag{2.4}
\end{align*}
$$

Both lead to

$$
B_{0}=\frac{1+q+\sqrt{1-6 q+q^{2}}}{2} C_{0}
$$

Together with $B_{0}=\left(1+3 q C_{0}\right) /(1+q)$, we find

$$
C_{0}=\frac{(1+q) \sqrt{1-6 q+q^{2}}-\left(1-4 q+q^{2}\right)}{2 q\left(1-7 q+q^{2}\right)}
$$

and

$$
B_{0}=\frac{3 \sqrt{1-6 q+q^{2}}-(1+q)}{2\left(1-7 q+q^{2}\right)}
$$

as found by Hirschhorn [2]. They are also the generating functions for sequences A110122 and A132262, respectively, in $O E I S$ [5]. Furthermore, from (2.3), we find

$$
-\left[4 q B_{0} \nu+2(1+q) q C_{0}-\left(1+q^{2}\right) B_{0}\right]=-\left(4 q B_{0} \nu-4 q B_{0} \mu\right)=4 q(\mu-\nu) B_{0}
$$

A similar result for C_{r} can be derived from (2.4). From these we obtain the surprisingly simple main results of Hirschhorn:

$$
\begin{aligned}
& B_{r}=B_{0} \nu^{r}=B_{0}\left(\frac{(1-q)^{2}-(1+q) \sqrt{1-6 q+q^{2}}}{8 q}\right)^{r} \\
& C_{r}=C_{0} \nu^{r}=C_{0}\left(\frac{(1-q)^{2}-(1+q) \sqrt{1-6 q+q^{2}}}{8 q}\right)^{r}
\end{aligned}
$$

3. Closing Remarks

There are other methods that one could use to find the generating functions. For instance, Prodinger [4] used bivariate generating functions and the kernel method to derive identical results.

References

[1] P. Fahr and C. M. Ringel, A partition function for Fibonacci numbers, J. Integer Sequences, 11 (2008), Article 08.1.4.
[2] M. D. Hirschhorn, On recurrences of Fahr and Ringel arising in graph theory, J. Integer Sequences, 12 (2009), Article 09.6.8.
[3] Y.-H. H. Kwong and D. G. Rogers, A matrix method for counting Hamiltonian cycles on grid graphs, European J. Combin., 15 (1994), 277-283.
[4] H. Prodinger, Generating functions related to partition formulae for Fibonacci numbers, J. Integer Sequences, 11 (2008), Article 08.1.8.
[5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/.
[6] R. P. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth \& Brooks/Cole, Monterey, CA, 1986.
MSC2010: 11B37, 11B39.
Department of Mathematical Sciences, SUNY Fredonia, Fredonia, NY 14063
E-mail address: kwong@fredonia.edu

