ON RECURRENCES OF FAHR AND RINGEL: AN ALTERNATE APPROACH

HARRIS KWONG

ABSTRACT. In a recent article, Hirschhorn found the generating functions of two sequences introduced by Fahr and Ringel. We use a matrix method to obtain the same results in a simpler and more direct manner.

1. INTRODUCTION

In a recent paper, Fahr and Ringel [1] introduced two sequences $b_t[r]$ and $c_t[r]$ defined by the initial values $b_0[r] = c_0[r] = \delta_{r,0}$, and the recurrence relations

$$b_{t+1}[r] = c_t[r-1] + 2c_t[r] - b_t[r],$$

$$c_{t+1}[t] = b_{t+1}[r] + 2b_{t+1}[r+1] - c_t[r]$$

 $c_{t+1}[t] = b_{t+1}[r] + 2b_{t+1}[r+1] - c_t[r],$ for $t, r \ge 0$, with the convention that $c_t[-1] = c_t[0]$. Their first few values are listed below.

$b_t[r]$							$c_t[r]$					
$t \backslash r$	0	1	2	3	4	t r	0	1	2	3		
0	1					0	1					
1	2	1				1	3	1				
2	7	4	1			2	12	5	1			
3	29	18	6	1		3	53	25	7	1		
4	130	85	33	8	1	4	247	126	42	9		

Define

$$B_r = B_r(q) = \sum_{t \ge 0} b_t[r]q^t$$
, and $C_r = C_r(q) = \sum_{t \ge 0} b_t[r]q^t$

as the "vertical" generating functions for $b_t[r]$ and $c_t[r]$. Hirschhorn [2] observed that

$$B_0 = \frac{1 + 3qC_0}{1 + q},$$

and, for $r \ge 0$,

$$B_{r+1} = \frac{1}{2} [(1+q)C_r - B_r], \qquad (1.1)$$

$$C_{r+1} = \frac{1}{2q} \left[(1+q)B_{r+1} - qC_r \right].$$
(1.2)

After rather lengthy computation that involves solving four auxiliary recurrences, he found explicit formulas for B_r and C_r . The purpose of this short note is to use a simpler and more direct approach to derive the same results.

NOVEMBER 2010

THE FIBONACCI QUARTERLY

2. A MATRIX APPROACH

Equations (1.1) and (1.2) form a system of recurrences. Such a system can sometimes be solved rather effectively by a transfer matrix, as demonstrated by the author in [3]. For a detail discussion of the technique, see [6].

We first write (1.2) as

$$C_{r+1} = \frac{1+q}{2q} \left(\frac{1+q}{2} C_r - \frac{1}{2} B_r \right) - \frac{1}{2} C_r = -\frac{1+q}{4q} B_r + \frac{1+q^2}{4q} C_r,$$
(2.1)

so that (1.1) and (2.1) can be written in a matrix equation

$$\begin{bmatrix} B_{r+1} \\ C_{r+1} \end{bmatrix} = \frac{1}{4q} \begin{bmatrix} -2q & 2(1+q)q \\ -(1+q) & 1+q^2 \end{bmatrix} \begin{bmatrix} B_r \\ C_r \end{bmatrix}, \qquad r \ge 0.$$

Let A denote the transfer matrix. It is clear that $\begin{bmatrix} B_r \\ C_r \end{bmatrix} = A^r \begin{bmatrix} B_0 \\ C_0 \end{bmatrix}$ for $r \ge 0$. Hence,

$$\sum_{r\geq 0} \begin{bmatrix} B_r \\ C_r \end{bmatrix} x^r = \left(\sum_{r\geq 0} (xA)^r\right) \begin{bmatrix} B_0 \\ C_0 \end{bmatrix} = (I - xA)^{-1} \begin{bmatrix} B_0 \\ C_0 \end{bmatrix}.$$
 (2.2)

Finding the inverse of I - xA is straightforward:

$$(I - xA)^{-1} = \frac{1}{4q\left(1 - \frac{(1-q)^2}{4q}x + \frac{1}{4}x^2\right)} \begin{bmatrix} 4q - (1+q^2)x & 2(1+q)qx \\ -(1+q)x & 4q + 2qx \end{bmatrix}.$$

Let

$$\mu = \frac{(1-q)^2 + (1+q)\sqrt{1-6q+q^2}}{8q} = \frac{1}{4q} (1-2q-3q^2-8q^3-\cdots),$$

$$\nu = \frac{(1-q)^2 - (1+q)\sqrt{1-6q+q^2}}{8q} = \frac{1}{4} (4q+8q^2+28q^3+112q^4+\cdots),$$

so that

$$\frac{1}{1 - \frac{(1-q)^2}{4q}x + \frac{1}{4}x^2} = \frac{1}{(1-\mu x)(1-\nu x)} = \sum_{r \ge 0} \frac{\mu^{r+1} - \nu^{r+1}}{\mu - \nu} x^r.$$

After expanding the right-hand side of (2.2), and comparing the coefficients of x^r , we find

$$\begin{aligned} 4q(\mu-\nu)B_r &= 4qB_0(\mu^{r+1}-\nu^{r+1}) + [2(1+q)qC_0 - (1+q^2)B_0](\mu^r-\nu^r) \\ &= [4qB_0\mu+2(1+q)qC_0 - (1+q^2)B_0]\mu^r \\ &- [4qB_0\nu+2(1+q)qC_0 - (1+q^2)B_0]\nu^r, \end{aligned}$$

$$\begin{aligned} 4q(\mu-\nu)C_r &= 4qC_0(\mu^{r+1}-\nu^{r+1}) + [2qC_0 - (1+q)B_0](\mu^r-\nu^r) \\ &= [4qC_0\mu+2qC_0 - (1+q)B_0]\mu^r - [4qC_0\nu+2qC_0 - (1+q)B_0]\nu^r. \end{aligned}$$

Recall that B_r and C_r are analytic infinite series in q, but μ has a pole at q = 0. Therefore, we need

$$4qB_0\mu + 2(1+q)qC_0 - (1+q^2)B_0 = 0, (2.3)$$

$$4qC_0\mu + 2qC_0 - (1+q)B_0 = 0. (2.4)$$

Both lead to

$$B_0 = \frac{1+q+\sqrt{1-6q+q^2}}{2} C_0.$$

VOLUME 48, NUMBER 4

364

Together with $B_0 = (1 + 3qC_0)/(1 + q)$, we find

$$C_0 = \frac{(1+q)\sqrt{1-6q+q^2} - (1-4q+q^2)}{2q(1-7q+q^2)},$$

and

$$B_0 = \frac{3\sqrt{1 - 6q + q^2} - (1 + q)}{2(1 - 7q + q^2)},$$

as found by Hirschhorn [2]. They are also the generating functions for sequences A110122 and A132262, respectively, in *OEIS* [5]. Furthermore, from (2.3), we find

$$-[4qB_0\nu + 2(1+q)qC_0 - (1+q^2)B_0] = -(4qB_0\nu - 4qB_0\mu) = 4q(\mu - \nu)B_0.$$

A similar result for C_r can be derived from (2.4). From these we obtain the surprisingly simple main results of Hirschhorn:

$$B_r = B_0 \nu^r = B_0 \left(\frac{(1-q)^2 - (1+q)\sqrt{1-6q+q^2}}{8q} \right)^r,$$

$$C_r = C_0 \nu^r = C_0 \left(\frac{(1-q)^2 - (1+q)\sqrt{1-6q+q^2}}{8q} \right)^r.$$

3. Closing Remarks

There are other methods that one could use to find the generating functions. For instance, Prodinger [4] used bivariate generating functions and the kernel method to derive identical results.

References

- P. Fahr and C. M. Ringel, A partition function for Fibonacci numbers, J. Integer Sequences, 11 (2008), Article 08.1.4.
- [2] M. D. Hirschhorn, On recurrences of Fahr and Ringel arising in graph theory, J. Integer Sequences, 12 (2009), Article 09.6.8.
- [3] Y.-H. H. Kwong and D. G. Rogers, A matrix method for counting Hamiltonian cycles on grid graphs, European J. Combin., 15 (1994), 277–283.
- [4] H. Prodinger, Generating functions related to partition formulae for Fibonacci numbers, J. Integer Sequences, 11 (2008), Article 08.1.8.
- [5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/.
- [6] R. P. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth & Brooks/Cole, Monterey, CA, 1986.

MSC2010: 11B37, 11B39.

Department of Mathematical Sciences, SUNY Fredonia, Fredonia, NY 14063 $E\text{-}mail\ address:\ kwong@fredonia.edu$