
SUMS OF SECOND ORDER LINEAR RECURRENCES
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Abstract. This paper examines second order linear homogeneous recurrence relations with
coefficients in finite rings. The first section determines conditions under which such sequences
are purely periodic. The second section focuses on sums of second order linear recurrences
over Zp, where p is an odd prime. In particular, the question of when the sum of two uniformly
distributed second order sequences over Zp is uniformly distributed is answered.

1. Purely Periodic Second Order Linear Recurrences

Throughout this section R is a finite local commutative ring with maximal ideal M and
multiplicative identity 1R. Let Z denote the integers and N denote the nonnegative integers.

A sequence s = {s0, s1, . . .} of elements in R is purely periodic with period n, if n is the
smallest positive integer for which sn+i = si for all i ∈ N. Assume s is generated by the second
order linear recurrence sn+2 = asn+1+bsn for all n ∈ N, where a, b, s0, s1 are fixed elements of
R. The characteristic polynomial corresponding to this sequence is given by f(x) = x2−ax−b.
In this section, we establish conditions in terms of a, b, s0, and s1 which determine when the
corresponding sequence is purely periodic.

The first case we will examine is when b ∈ R −M , that is, b is a unit in R. We appeal to
two theorems from McKenzie and Overbay [5]. The first theorem gives a factorization of f(x)
in an extension ring and the second uses this factorization to establish a bound on the period
of the resulting purely periodic sequence.

Theorem 1.1. Let f(x) = x2 − ax − b ∈ R[x] where b ∈ R − M . Then there exists a ring
S which contains R as a subring, an element r1 ∈ S, and an element r2 ∈ R[r1] such that
f(x) = x2 − ax− b = (x− r1)(x− r2).

Proof. See Theorem 2.1 [5]. �
We note that the product of r1 and r2 is b, which is a unit. Thus, the roots of f are units in

this case. We let |r1| denote the order of the element r1. This is the smallest positive integer

for which r
|r1|
1 = 1R. We write nR to denote the characteristic of the R. The next theorem

establishes that the sequence s with characteristic polynomial f(x) is purely periodic and gives
bounds on the period of s.

Theorem 1.2. Let S be a ring which contains R as a subring and let r1 and r2 be units in S
such that f(x) = (x− r1)(x− r2). Let λ be the least common multiple of |r1| and |r2|. Then s
is purely periodic with period dividing λ · nR.

Proof. See Theorem 2.3 [5]. �
Putting these together, we obtain the following theorem.

Theorem 1.3. Let f(x) = x2− ax− b ∈ R[x] be the characteristic polynomial of the sequence
s in R, where b is a unit in R. Then s is purely periodic.
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It is interesting to note that when b is a unit, the sequence s corresponding to f will always
be purely periodic regardless of whether s0, s1, and a are units. Furthermore, this includes
the cases where f has a repeated root or is irreducible in R[x].

The case where b is not a unit, that is b ∈ M , is more difficult to analyze. We first consider
the subcase where a ∈ M , so a and b are both non-units. We obtain the following result.

Theorem 1.4. Let f(x) = x2− ax− b ∈ R[x] be the characteristic polynomial of the sequence
s in R, where a, b ∈ M . Then s is purely periodic if and only if si = 0 for all i ∈ N.

Proof. Regardless of the choices for s0 and s1 it is clear that s2 ∈ M since s2 = as1 + bs0,
where a, b ∈ M . Similarly, s3 = as2 + bs1 ∈ M . Since s2, s3 ∈ M , then s4 = as3 + bs2 ∈ M2

and s5 = as4 + bs3 ∈ M2. More generally, si ∈ M ⌊i/2⌋. Since R is a finite local ring with
maximal ideal M , then there exists a positive integer k for which Mk = {0}. Hence, for all
i ∈ N with i ≥ 2, if ⌊i/2⌋ ≥ k, then si = 0. Thus, s will only be purely periodic if s0 = s1 = 0,
forcing si = 0 for all i ∈ N. �

This theorem applies when f can be factored in R[x] as f(x) = (x − r1)(x − r2), where
r1, r2 ∈ M . Here we have b = −r1r2 ∈ M and a = r1 + r2 ∈ M . Hence, s will be purely
periodic if and only if s0 = s1 = 0. The theorem also applies in the case where a, b ∈ M , but
f does not have any zeros in M . Consider f(x) = x2 − 3x − 3 in Z9[x]. In this example we
have a = b = 3 ∈ M , but f does not have any zeros in M .

Next we consider the subcase where b ∈ M and a ∈ R − M . To determine if s is purely
periodic, we also need to examine the initial conditions. When the initial conditions consist
of one unit and one non-unit, the resulting sequence is not purely periodic as we see in the
following theorem.

Theorem 1.5. Let f(x) = x2− ax− b ∈ R[x] be the characteristic polynomial of the sequence
s in R, where b ∈ M and a ∈ R−M . If exactly one of s0 and s1 is in M , then s is not purely
periodic.

Proof. Suppose s0 ∈ M and s1 ∈ R−M . Then bs0 ∈ M and as1 ∈ R−M . The sum of these
two, s2, is also in R−M . Now for i ≥ 3, si ∈ R−M since it is formed by adding an element of
M with an element of R−M . Since s0 was not a unit, it follows that s is not purely periodic.

Similarly, if s0 ∈ R − M and s1 ∈ M , we have both bs0 ∈ M and as1 ∈ M . Now the
remaining terms of the sequence are linear combinations of elements of M . Hence, si ∈ M for
i ≥ 2. Since s0 was a unit, s is not purely periodic. �

When b ∈ M , a ∈ R − M and both s0 and s1 are in M , the resulting sequence consists
entirely of elements of M . However, this sequence may or may not be purely periodic as the
following example illustrates.

Example 1.6. Let f(x) = x2 − x − 6 ∈ Z9[x]. If s0 = 6 and s1 = 3, then the resulting
sequence is given by 6, 3, 3, 3, . . .. However, if we change the initial conditions to s0 = 3 and
s1 = 3, the resulting sequence is 3, 3, 3, 3, . . ..

Similarly, when b ∈ M , a ∈ R−M and both s0 and s1 are in R−M , the resulting sequence
consists entirely of units. Again, this sequence may or may not be purely periodic, depending
on the choice of initial conditions.

Example 1.7. Let f(x) = x2 − x − 6 ∈ Z9[x]. Let s0 = 1 and s1 = 1, then the resulting
sequence is given by 1, 1, 7, 4, 1, 7, 4, . . .. If the initial conditions are s0 = 1 and s1 = 7, the
resulting sequence is 1, 7, 4, 1, 7, 4, . . ..
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In these examples, f(x) = x2−x− 6 = (x− 3)(x− 7) has one zero in M and one in R−M .
This helps us characterize the sequences by the types of zeros of f . In particular, when the
zeros of f are both units, then s is purely periodic. When the zeros of f are both non-units,
then s is not purely periodic unless it is the zero sequence. Finally, if the zeros of f consist of
one unit and one non-unit, then the resulting sequence is possibly purely periodic.

2. Sums of Second Order Linear Recurrences

In this section, R ≃ Zp where p is an odd prime. We let sn+2 = asn+1 + bsn for all n ∈ N,
where a, b ̸= 0, s0, s1 ∈ R be the second order linear recurrence over R with characteristic
polynomial f(x) = x2 − ax− b. Since b ̸= 0 and R is a field, it follows that b is a unit. Hence,
the sequence s is purely periodic. Much is known about the distribution properties of second
order linear recurrences over finite fields (see for example [1, 2, 4, 6, 7, 8, 9, 10]). In particular,
we have the following result of Niederreiter and Shiue.

Theorem 2.1. Let s be a uniformly distributed second order linear recurrence over a finite
field of odd order. Let f(x) be the characteristic polynomial associated with s, then f(x) must
have a multiple root.

Proof. This immediately follows from Corollary 3 [8]. �

Now consider the polynomial g(x) = bx2 + ax− 1 corresponding to the second order linear
recurrence as defined above. Note that i is a zero of g(x) if and only if i−1 is a zero of
f(x) = x2 − ax − b. Hence, if the sequence corresponding to g(x) is uniformly distributed,
then g(x) = b(x− i)2, where i is a unit in R.

When g(x) = b(x − i)2, it is not necessarily true that s is uniformly distributed. When
we have such a factorization, it is true that the period of s divides p(p − 1) [8, Lemma 3].
Since s is purely periodic, it is sufficient to consider the first p(p − 1) terms to determine if
the sequence is uniformly distributed.

Consider the polynomial
∑m−1

j=0 sjx
j ∈ R[x], where the coefficient sj is the jth term of the

sequence s. We now appeal to the following theorem to express the first m terms of s as the
coefficients of a finite generating function.

Theorem 2.2. Let s be the sequence generated by the second order recurrence sn+2 = asn+1+
bsn for all n ∈ N, where a, b ̸= 0, s0, s1 ∈ R. Let g(x) = bx2 + ax − 1 = b(x − i)2 and

h(x) = (s1 − as0)x+ s0. Let m = p(p− 1). Then
∑m−1

j=0 sjx
j = h(x)·(xm−1)

g(x) .

Proof. See Theorem 1.2 [5]. �

The remainder of this section is devoted to examining the sum of two sequences in R of the

form (αx+β)·(xm−1)
(x−i)2

. Any uniformly distributed sequence generated by a second order linear

recurrence corresponds to such a rational function where αx+ β = b−1h(x).

Theorem 2.3. Let m = p(p− 1) and let i ̸= 0, j ̸= 0, α, β, δ, and γ be elements of R. Then

the coefficients of (αx+β)·(xm−1)
(x−i)2

+ (δx+γ)·(xm−1)
(x−j)2

are uniformly distributed in R if and only if

ik(αi+ β) ̸= −jk(δj + γ) for all k ∈ N.
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Proof. We note that xm − 1 = [(x− 1)(x− 2) . . . (x− (p− 1))]p, where 1, 2, . . . , (p− 1) are the
distinct nonzero elements of R. Now we have:

xm − 1 = [(x− 1)(x− 2) . . . (x− (p− 1))]p

= (x− 1)p(x− 2)p . . . (x− (p− 1))p

= (xp − 1)(xp − 2) . . . (xp − (p− 1)).

Let r ∈ R, then

xp − r

(x− r)2
= xp−2 + 2rxp−3 + 3r2xp−4 + · · ·+ (p− 2)rp−3x+ (p− 1)rp−2

and
xm − 1

xp − r
= xp(p−2) + rxp(p−3) + r2xp(p−4) + · · ·+ rp−3xp + rp−2.

Hence,

xm − 1

(x− r)2
= (xp−2 + 2rxp−3 + 3r2xp−4 + · · ·+ (p− 2)rp−3x+ (p− 1)rp−2)

× (xp(p−2) + rxp(p−3) + r2xp(p−4) + · · ·+ rp−3xp + rp−2)

=
(p−2∑
t=0

(t+ 1)rtxp−2−t
)
·
(p−2∑
s=0

rsxp(p−2−s)
)
.

Now

(αx+ β) · (xm − 1)

(x− i)2
+

(δx+ γ) · (xm − 1)

(x− j)2

= (αx+ β)
(p−2∑
t=0

(t+ 1)itxp−2−t
)
·
(p−2∑
s=0

isxp(p−2−s)
)

+ (δx+ γ)
(p−2∑
t=0

(t+ 1)jtxp−2−t
)
·
(p−2∑
s=0

jsxp(p−2−s)
)
.

The resulting polynomial has degreem−1 and consists ofm terms. Them coefficients of this
polynomial are represented by (w+1)(αik+1+δjk+1)+w(βik+γjk) for all w ∈ {0, 1, . . . , p−1}
and all k ∈ {0, 1, . . . , p− 2}. Now fix k ∈ {0, 1, . . . , p− 2} and let u,w ∈ {0, 1, . . . , p− 1} with
u ̸= w. We note that for any fixed k, if for all u,w ∈ {0, 1, . . . , p− 1} with u ̸= w,

(u+ 1)(αik+1 + δjk+1) + u(βik + γjk) ̸= (w + 1)(αik+1 + δjk+1) + w(βik + γjk),

then each element of R occurs exactly once as a coefficient for this particular k value. Further,
should this hold for all k ∈ {0, 1, . . . , p − 2}, then each element of R will appear exactly
p− 1 times within the first m terms. Hence, the sequence is uniformly distributed. Thus, we
consider the case where

(u+ 1)(αik+1 + δjk+1) + u(βik + γjk) = (w + 1)(αik+1 + δjk+1) + w(βik + γjk),

where k is fixed and u ̸= w.
Now we have:

(u+ 1)(αik+1 + δjk+1) + u(βik + γjk) = (w + 1)(αik+1 + δjk+1) + w(βik + γjk),

which implies
(u− w)(αik+1 + δjk+1) + (u− w)(βik + γjk) = 0.
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Since u ̸= w, this can be simplified as

αik+1 + δjk+1 + βik + γjk = 0,

which reduces to

ik(αi+ β) = −jk(δj + γ).

Since the steps are reversible, it follows that if ik(αi + β) = −jk(δj + γ) for some fixed
value of k, then (u + 1)(αik+1 + δjk+1) + u(βik + γjk) = (w + 1)(αik+1 + δjk+1) + w(βik +
γjk) for arbitrary u,w ∈ {0, 1, . . . , p − 1} with u ̸= w. Thus, all p coefficients of the form
(w+1)(αik+1 + δjk+1) +w(βik + γjk) are equal for some k. Hence, at least one element of R
appears more than p− 1 times, so the coefficients are not uniformly distributed. �

The last theorem tells us when the sum of two rational functions of the form (αx+β)·(xm−1)
(x−i)2

has uniformly distributed coefficients. Each of the two separate rational functions which
form this sum may or may not have uniformly distributed coefficients. This gives us three
possibilities to consider. Before we do this, we want to consider the special case were one of
the two rational functions is zero.

We let δ = γ = 0. In this case, the coefficients of (αx+β)·(xm−1)
(x−i)2

will be uniformly distributed

if and only if αi + β ̸= 0. In other words, g(x) has a zero i of multiplicity two, but it is
not a zero of αx + β. We will show that this is equivalent to known conditions for uniform
distribution given in the following theorem.

Theorem 2.4. Let s be the sequence given by sn+2 = asn+1 + bsn for all n ∈ N, where
a, b, c = s0, d = s1 ∈ R. Then s is uniformly distributed over R if and only if a2 + 4b = 0 and
ad+ 2bc ̸= 0.

Proof. See Theorem 2 [10]. �

Note that the conditions a2 + 4b = 0 and ad+ 2bc ̸= 0 force both a and b not to be zero.

Theorem 2.5. Let s be the sequence given by sn+2 = asn+1 + bsn for all n ∈ N, where
a, b ̸= 0, c = s0, d = s1 ∈ Rp. Let g(x) = bx2 + ax − 1, α = b−1(d − ac), and β = b−1c. The
following are equivalent:

(i) a2 + 4b = 0 and ad+ 2bc ̸= 0;
(ii) g(x) = bx2 + ax− 1 = b(x− i)2 for some i ∈ R− {0} and αi+ β ̸= 0.

Proof. Applying the quadratic formula to g(x) = bx2+ax−1, we see that i = −a(2b)−1 = 2a−1

is a double zero of g(x) if and only if a2 + 4b = 0.
Also

αi+ β = 0 ⇔ b−1(d− ac)(2a−1) + b−1c = 0

⇔ 2da−1 − 2c+ c = 0

⇔ 2ad− a2c = 0

⇔ 2ad+ 4bc = 0

⇔ 2bc+ ad = 0.

�
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These distribution conditions for second order linear recurrences lead to certain subgroups
of Zp ×Zp. Consider sn+2 = asn+1 + bsn with a, b, c = s0, d = s1 ∈ Zp. We have the following
theorem of Burke.

Theorem 2.6. Let p be an odd prime such that p divides a2 + 4b, then the set

H(a,b) = {(c, d) | p divides ad+ 2bc}

is a subgroup of Zp × Zp.

Proof. See Proposition 1 [2]. �

When b ̸= 0, the elements of H(a,b) are the pairs of initial conditions (s0, s1) for which
sn+2 = asn+1 + bsn yields a non-uniformly distributed sequence. Of course, the condition
p divides a2 + 4b implies g(x) = bx2 + ax − 1 has a multiple root and can be factored as
g(x) = b(x− i)2.

For a fixed non-zero value of i ∈ Zp, it is easy to verify that the set Hi = {(α, β) | αi+β = 0}
also forms an additive subgroup of Zp × Zp. It is the cyclic group of order p generated by

(1,−i). If (α, β) ∈ Hi the coefficients of (αx+β)·(xm−1)
(x−i)2

will not be uniformly distributed and

when (α, β) /∈ Hi the coefficients will be uniformly distributed.
We observe that sets Hi − (0, 0) for i = 1, 2, . . . , p− 1 form a partition of

(Zp − {0})× (Zp − {0})

where (α, β) is related to (δ, γ) if and only if αγ = βδ. This follows since αi+ β = 0 = δi+ γ
implies that i = −βα−1 = −γδ−1, which gives us αγ = βδ.

Example 2.7. Let p = 5, then

H1 = {(0, 0), (1, 4), (2, 3), (3, 2), (4, 1)},

H2 = {(0, 0), (1, 3), (2, 1), (3, 4), (4, 2)},

H3 = {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)},

and

H4 = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)}.

This concludes our discussion of the special case where one of the rational functions in
Theorem 2.3 is zero. Each of the two rational function in Theorem 2.3 may or may not have
coefficients which are uniformly distributed. We end this paper by considering the various
possibilities.

In the case where (αx+β)·(xm−1)
(x−i)2

and (δx+γ)·(xm−1)
(x−j)2

both have coefficients that are not uni-

formly distributed, then αi+ β = 0 and δj + γ = 0, which forces ik(αi+ β) = −jk(δj + γ) for
any k. Thus, the sum will not be uniformly distributed.

When the coefficients of both rational functions are uniformly distributed, their sum may
or may not have uniformly distributed coefficients. This will depend on whether ik(αi+ β) =
−jk(δj + γ) for some k.
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Example 2.8. Let p = 5, α = 1, β = 0, and i = 2. This gives us the following uniformly
distributed sequence:

(αx+ β) · (xm − 1)

(x− i)2
=

(x) · (x20 − 1)

(x− 2)2
= x19 + 4x18 + 2x17 + 2x16 + 2x14

+ 3x13 + 4x12 + 4x11 + 4x9 + x8

+ 3x7 + 3x6 + 3x4 + 2x3 + x2 + x.

Now let δ = 4, γ = 0, and j = 3. This gives us another uniformly distributed sequence.

(δx+ γ) · (xm − 1)

(x− j)2
=

(4x) · (x20 − 1)

(x− 3)2
= 4x19 + 4x18 + 3x17 + 2x16 + 2x14

+ 2x13 + 4x12 + x11 + x9 + x8 + 2x7

+ 3x6 + 3x4 + 3x3 + x2 + 4x.

In this case, ik(αi+β) = −jk(δj+γ) has a solution when k = 1, so the sum of the sequences
is not uniformly distributed. In fact,

(x) · (x20 − 1)

(x− 2)2
+

(4x) · (x20 − 1)

(x− 3)2
= 3x18 + 4x16 + 4x14 + 3x12 + 2x8 + x6

+ x4 + 2x2.

Example 2.9. Let p, α, β, and i be the same as in the last example. Now let δ = 2, γ = 0,
and j = 3. This gives us the uniformly distributed sequence:

(δx+ γ) · (xm − 1)

(x− j)2
=

(2x) · (x20 − 1)

(x− 3)2
= 2x19 + 2x18 + 4x17 + x16 + x14 + x13

+ 2x12 + 3x11 + 3x9 + 3x8 + x7 + 4x6

+ 4x4 + 4x3 + 3x2 + 2x.

In this case, ik(αi + β) = −jk(δj + γ) has no solution, so the sum of the sequences is
uniformly distributed. In fact,

(x) · (x20 − 1)

(x− 2)2
+

(2x) · (x20 − 1)

(x− 3)2
= 3x19 + x18 + x17 + 3x16 + 3x14 + 4x13

+ x12 + 2x11 + 2x9 + 4x8 + 4x7 + 2x6

+ 2x4 + x3 + 4x2 + 3x.

Finally, in the case where the coefficients of one rational function are uniformly distributed
and the others are not, we see that one side of the equation

ik(αi+ β) = −jk(δj + γ)

is equal to zero and the other is not. Thus, the resulting sum has uniformly distributed
coefficients.

We note that when we add two second order linear recurrences of the form (αx+β)·(xm−1)
(x−i)2

,

the coefficients correspond to a linear recurrence, but the order may be as high as four. In the
case where this sum is a fourth order linear recurrence for which the characteristic polynomial
has distinct double roots, conditions for uniform distribution are also given in Theorem 4B
[8].
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