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Abstract. We show a hitherto undiscovered connection between Fibonacci matrices and
modular forms, using standard properties of Fn to prove a convergence result for infinite
series. No prior knowledge of modular forms is required.

1. Introduction

In this paper, we examine a Fibonacci matrix that arises naturally in the theory of modular
forms, and we show how the asymptotic properties of Fn can be used to prove a convergence
theorem for infinite series. This application was described in several talks [8, 10] but has
never appeared in written form. No prior experience with the theory of modular forms will be
assumed.

A Fibonacci matrix is a square matrix A with the following properties: for each integer k,
every entry of Ak is equal in absolute value to some Fn; and every Fn appears as an entry in
some Ak. The best-known Fibonacci matrix [4] is

Q =

(
1 1
1 0

)
.

However, the subject of our study is its less renowned fraternal twin, which will be defined in
Section 3.

Modular forms are complex functions with a sort of invariance on the modular group or one
of its subgroups. For example, if f (z + 1) = c1f(z) and f(−1/z) = c2z

kf(z) for all complex
z with positive imaginary part, then f is said to be a “modular form of weight k on the full
group.” Here k is a fixed parameter, usually taken to be real. (We are ignoring certain analytic
requirements for the sake of brevity, as they have no bearing at all on the results of this paper.)

On the other hand, one could replace the transformation z → z+1 with some other integral
translation and obtain a form whose invariance (the ten-dollar word for this is modularity)
takes place on a subgroup instead.

Just as the translation z → z + t and the inversion z → −1/z generate a group of trans-
formations, so too do the corresponding constants c1, c2 give rise to a system of multipliers
on the group of matrices representing those transformations. Typically, each linear fractional
transformation is represented by a 2× 2 matrix M of determinant 1, so the multiplier can be
written as υ (M) . For example, if we choose to write the map z → −1/z in the form

z → 0z − 1

1z + 0
,

then the relevant matrix is

T =

(
0 −1
1 0

)
,
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hence υ (T ) = c2. We distinguish between υ (M) and υ (−M), though M and −M represent
the same linear fractional transformation.

For fixed real weight and multiplier system, under the classical assumption |υ| ≡ 1, the
space of entire modular forms on the full modular group is finite-dimensional. (A form is
entire if it satisfies certain analytic and growth conditions. See [5] for details.) In that case,
as well as for certain other groups, the standard method for constructing a basis involves the
use of Poincaré series, expressions that look like this:

g (z) =
∑ exp {2πi (ν + ε) (Mz)/t}

υ (M) (cz + d)k
. (1.1)

Here ν is an integer, cz + d is the denominator of the linear fractional transformation defined
by the matrix M , t is the minimal positive translation in the group, and ε is defined by
c1 = exp(2πiε) with 0 ≤ Re (ε) < 1 (so that 0 ≤ ε < 1 when we assume that |υ| ≡ 1). The
sum is taken over all “lower rows” of the group; that is, only one matrix with each lower
row c, d is included. It is easy to check that the function is well-defined. Under the above
assumptions (fixed real weight, etc.), a standard result [6] states that by varying the parameter
ν in (1.1), one obtains a basis for the space of entire modular forms so long as k is real and
greater than 2.

For complex weight, one finds precisely the opposite situation. Whereas for real weight, the
right-hand side of (1.1) is absolutely convergent (hence modular), and the absolute series is
uniformly convergent on compact subsets of the complex upper half-plane (hence g is analytic
there), for nonreal weight the absolute series is not even pointwise convergent at any point!
This despite the fact that nontrivial forms of nonreal weight do exist [9, 12].

2. Enter Fn

The preceding divergence result was proved for the full modular group and for one important
subgroup in [11, 12], in each case by establishing divergence on a cyclic subgroup. What
of other groups? It turns out that if we apply the same approach to functions satisfying
f (z + 3) = c1f (z), this method leads immediately to Fibonacci matrices of order 2! (Fibonacci
matrices of higher orders have also been the subject of continued scrutiny, for example in
[2, 3, 7].)

Define T as before,

Sλ =

(
1 λ
0 1

)
,

and S = S1. For integer λ, we have Sλ = Sλ. The proof of Poincaré series divergence in [11,
12] for λ = 1, 2 relies on showing that a particular subseries diverges, namely the sum on the
cyclic group generated by S2T. The current proof for λ = 3 will use the cyclic group

⟨
S3T

⟩
instead, which will entail additional complications involving Fn.

Observe that for n ∈ Z,(
S2T

)n
=

(
2 −1
1 0

)n

=

(
n+ 1 −n
n −(n− 1)

)
,

while for n ∈ Z+, (
S3T

)n
=

(
3 −1
1 0

)n

=

(
F2(n+1) −F2n

F2n −F2(n−1)

)
.
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(Note the amusing identity: (−1)j+1 (S3T
)n
ij

= F2(−1)j+1(S2T )nij
for n ∈ Z+.) For a negative

integer n, likewise,(
S3T

)n
=

(
−F−2(n+1) F−2n

−F−2n F−2(n−1)

)
=

(
F2(n+1) −F2n

F2n −F2(n−1)

)
.

Hence S3T is almost a Fibonacci matrix: it is true that its powers contain only {±Fn} as
entries, but on the other hand, not every Fn appears in some power of S3T . What explains
the fact that half of the Fibonacci numbers have gone missing?

3. Where Have All the Fn’s Gone?

The key is that S3T has a “square root” that will fill in the missing terms of the Fibonacci
sequence. While it’s easy enough to find all square roots of this particular matrix directly,
here’s a theorem that will accomplish the same end while also applying more generally.

Theorem. Let A =
(

α β
γ δ

)
∈ M2 (C), the set of 2 × 2 matrices with complex entries. If

B ∈ M2 (C) with B2 = A ̸= cI, then

B = ±


√
α− δ + t2

β

t+
√
α− δ + t2

γ

t+
√
α− δ + t2

t

 ,

where t satisfies the polynomial equation

(
t4 t2 1

) χ2 − 4∆
8δ∆− 2χ

(
δ2 +∆

)(
δ2 −∆

)2
 = 0,

which has degree at most 4. Here ∆ and χ are the determinant and trace, respectively, of A,
and the radical symbol should be interpreted according to the convention 0 ≤ arg

√
w < π.

The proof is mechanical, so we leave it as an exercise (in algebra or faith). It should be
pointed out that the theorem does not guarantee the existence of a square root for every
matrix. Rather, in the event that a square root exists, the theorem specifies what form it will
take.

Corollary 1. Let λ ∈ C and B ∈ M2 (C). If B2 = SλT, then

B =
1

±
√
λ+ 2

(
λ+ 1 −1
1 1

)
or

1

±
√
λ− 2

(
λ− 1 −1
1 −1

)
.

That is, SλT has two square roots when λ = ±2, and four square roots otherwise.

Corollary 2. (S3T )
1/2 = ± 1√

5

(
4 −1
1 1

)
, ±
(

2 −1
1 −1

)
.

Interestingly, no value of (S3T )
1/2 is an element of the group ⟨S3, T ⟩.

Remark. While each 1 × 1 matrix has one or two complex square roots, a 2 × 2 matrix can
have two or four of them, or infinitely many (as in the case of the identity matrix and its
scalar multiples), or none at all. In any event both

(
2 −1
1 −1

)
and its opposite are true Fibonacci

matrices, for (
2 −1
1 −1

)n

=

(
Fn+2 −Fn

Fn −Fn−2

)
,
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and in this way the “missing” Fn are restored. Essentially, we have used a matrix argument
to interpolate the Fibonacci recursion.

Like Q, this matrix can be used to prove a variety of identities.

4. Main Result: Application to Poincaré Series

We show that Poincaré series on the group G3 = ⟨S3, T ⟩ are absolutely divergent for all
nonreal weights. Recall that

(S3T )
n =



(
F2n+2 −F2n

F2n −F2n−2

)
, n > 0,

(
−F−(2n+2) F−2n

−F−2n F−(2n−2)

)
, n < 0,

and the lower rows of these matrices are distinct. (The same relation can be written as a
single expression if we permit the use of negative subscripts; but the piecewise point of view
will better serve our purposes.)

The absolute series of interest here is∑
:=

∑
M∈⟨S3⟩\G3

∣∣∣∣∣exp {2πi (ν + ε) (Mz)/3}
υ (M) (cz + d)k

∣∣∣∣∣ ,
which indicates that the sum is taken over all lower rows of the group G3 as described earlier.
We have:

∑
>

∑
M∈⟨S3T ⟩

∣∣∣∣∣exp {2πi (ν + ε) (Mz)/3}
υ (M) (cz + d)k

∣∣∣∣∣
>

∞∑
n=1


∣∣∣∣∣ exp

{
2πi
3 (ν + ε)

(
S3T

)n
z
}

υ ((S3T )n) (F2nz − F2n−2)
k

∣∣∣∣∣+
∣∣∣∣∣∣

exp
{

2πi
3 (ν + ε)

(
S3T

)−n
z
}

υ
(
(S3T )−n) (−F2nz + F2n+2)

k

∣∣∣∣∣∣


=

∞∑
n=1

exp
{
Re
(
2πi
3 (ν + ε) F2n+2z−F2n

F2nz−F2n−2

)}
|υ ((S3T )n)|

∣∣∣(F2nz − F2n−2)
k
∣∣∣ +

exp
{
Re
(
2πi
3 (ν + ε) −F2n−2z+F2n

−F2nz+F2n+2

)}
∣∣υ ((S3T )−n)∣∣ ∣∣∣(−F2nz + F2n+2)

k
∣∣∣


=

∞∑
n=1

exp
{

−2π
3 Im

(
(ν + ε) F2n+2z−F2n

F2nz−F2n−2

)}
|υ ((S3T )n)|

∣∣∣(F2nz − F2n−2)
k
∣∣∣ +

exp
{

−2π
3 Im

(
(ν + ε) −F2n−2z+F2n

−F2nz+F2n+2

)}
∣∣υ ((S3T )−n)∣∣ ∣∣∣(−F2nz + F2n+2)

k
∣∣∣
 .

Ordinarily, evaluating an expression of the form υ (M1M2) requires the use of a complicated
“consistency condition”, by virtue of which υ is consistent with the invariance of its accom-
panying modular form. Fortunately, in this particular case (according to calculations in [12])
we have instead simple multiplicativity:

υ
((
S3T

)n)
= υ

(
S3
)n

υ (T )n = (c1c2)
n ,

υ
((

S3T
)−n
)
= υ

(
S3
)−n

υ (T )−n = (c1c2)
−n ,
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where c1 = υ
(
S3
)
and c2 = υ (T ). Also c1 = e2πiε, and the only possible values for c2 are ±i−k

or ±i−k+1. Thus
∣∣υ ((S3T

)n)∣∣ = ∣∣e2πiεi−k
∣∣n = e−2πn Im(ε)

∣∣e−k log i
∣∣n = e−2πn Im(ε)

∣∣e−kiπ/2
∣∣n =

e−2πn Im(ε)+Im(k)nπ/2 for n ∈ Z+, and likewise
∣∣∣υ ((S3T

)−n
)∣∣∣ = e2πn Im(ε)− Im(k)nπ/2. For

convenience, let ξ = e2π Im(ε−k/4) so that
∣∣υ ((S3T

)n)∣∣ = ξ−n and
∣∣∣υ ((S3T

)−n
)∣∣∣ = ξn. As

readers of the The Fibonacci Quarterly are well aware,
Fj+1

Fj
→ α =

√
5+1
2 , the golden ratio,

as j → ∞. Since lim
j→∞

Fj+2

Fj
= α2, we have F2n+2z−F2n

F2nz−F2n−2
= F2n

F2n−2

(F2n+2/F2n)z−1
(F2n/F2n−2)z−1 → α2 for fixed z.

Similarly, −F2n−2z+F2n

−F2nz+F2n+2
→ α−2. Thus, we are interested in convergence of the series

∞∑
n=1

exp
{
−2πα2 Im (ν + ε) /3

}
ξ−n

∣∣∣(F2nz − F2n−2)
k
∣∣∣ +

exp
{
−2πα−2 Im (ν + ε) /3

}
ξn
∣∣∣(−F2nz + F2n+2)

k
∣∣∣

 ,

where ξ = exp {2π Im (ε− k/4)}.
When k /∈ Z, we cannot in general write (z1z2)

k as zk1z
k
2 . However, a positive real factor can

be factored out, so that

(F2nz − F2n−2)
k = F k

2n (z − F2n−2/F2n)
k ,

(−F2nz + F2n+2)
k = F k

2n (−z + F2n+2/F2n)
k .

(Again, z is fixed here since we are proving pointwise divergence.) Then convergence of the
preceding series is equivalent to convergence of

∞∑
n=1

ξnF
−Re(k)

2n +

∞∑
n=1

ξ−nF
−Re(k)

2n ,

with ξ = exp {2π Im (ε− k/4)}. We know that Fj ∼ αj , and so it suffices now to prove
divergence of

∞∑
n=1

ξnα−2nRe(k) +
∞∑
n=1

ξ−nα−2nRe(k) =
∞∑
n=1

(
ξα−2Re(k)

)n
+

∞∑
n=1

(
ξ−1α−2Re(k)

)n
=

∑
1
+
∑

2
.

Now,
∑

1 diverges if ξα−2Re(k) ≥ 1, which is to say

exp {2π Im (ε− k/4)} ≥ exp (2 Re(k) logα) ,

i.e. π Im (ε− k/4) ≥ Re(k) logα. Meanwhile
∑

2 diverges if −π Im (ε− k/4) ≥ Re(k) logα.
That implies divergence of

∑
>
∑

1+
∑

2 everywhere except possibly when −Re(k) logα <
π Im (ε− k/4) < Re(k) logα; and as in Section 1 we make the technical assumption Re(k) > 2.
(Convergence of the series (1) is not well understood for small positive weights; see [6, p. 36],
and [1, p. 468].)
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y

x

For example, if Im ε = 0, then we have excluded the shaded region{
k = x+ iy | x < 2 or |y| > (4/π)x log

((
1 +

√
5
)
/2
)}

shown in the figure above. The un-
shaded region shows possible convergence, and other subgroups besides our cyclic group ⟨S3T ⟩
can be used to establish divergence for these remaining nonreal values of k. In this way, it
can be shown that the only weights where convergence takes place are real, i.e. the classical
case. For another example, when Im ε = 1, each of the subgroups ⟨S3T ⟩,

⟨
S2
3T
⟩
,
⟨
S3
3T
⟩
, and

so on, results in a different divergence region. Each of the aforementioned subgroups leads to
a sequence of entries that resembles Fn in its recurrence relation, asymptotic behavior, and
Binet-style general formula; indeed, these sequences constitute an interesting generalization of
the Fibonacci sequence. (Moreover, other relations between SλT and Fn are apparent if we
relax the requirement that λ ∈ Z. For example,(

S√
5T
)n

=

(
Fn + Fn+2 −Fn

√
5

Fn

√
5 −Fn − Fn−2

)
=

(
Ln+1 −Fn

√
5

Fn

√
5 −Ln−1

)
,

when n ∈ 2Z+.)
Thus, using standard properties of the Fibonacci sequence, we have proved divergence of

the absolute Poincaré series on the group G3 = ⟨S3, T ⟩ for nonreal weights.
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