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Abstract. We give combinatorial proofs for some identities involving binomial sums that
have no closed form.

1. Introduction

The main result of this paper is a combinatorial proof of the following identity for 0 ≤ r ≤
m
2 − 1:

⌊m
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r

)
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⌊ r
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(
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)
+ (−1)r+1 .

The sum on the left-hand side appeared in connection with investigations about the arity gap
of polynomial functions [2]. There, only the fact that this sum is always odd was needed,
which is not hard to prove by induction. Clearly, the right-hand side reveals a much stronger
divisibility property.

In the course of the proof we will give three other expressions for the same sum. Before
presenting these, let us introduce the following notation.

Sn,r =

⌊n
2 ⌋∑

i=r+1

(
n

2i

)(
i− 1

r

)

Tn,r =
n∑

j=r+1

(
n

j

)(
j − 1

r

)

Un,r =
n∑
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⌊ r
2⌋∑

k=0

(
n− 2− 2k

r − 2k

)
+ (−1)r+1 .

We will prove the following identities relating these five sums.

Theorem 1.1. For all 0 ≤ r ≤ m
2 − 1, we have

Sm,r = Tm−1−r,r = Um−1−r,r = Vm−1−r,r = Wm−1−r,r.

Dedicated to Péter Hajnal on his fiftieth birthday.
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Nowadays, such identities can be proven automatically thanks to the machinery developed
by Petkovšek, Wilf, and Zeilberger [6], but we believe that the problem of finding combinatorial
proofs in the spirit of [1] is still of interest. Let us mention that the above sums have no closed
form. Indeed, considering, e.g., f (n) = T2n,n, creative telescoping [4, 9] finds the recurrence(

24n2 + 44n+ 16
)
f (n) +

(
21n2 + 37n+ 14

)
f (n+ 1)−

(
3n2 + 7n+ 2

)
f (n+ 2) = 0,

and algorithm Hyper [5] shows that the only hypergeometric solutions of this recurrence are
the functions of the form f (n) = c (−1)n. Clearly, T2n,n is not such a function, hence it does
not have a hypergeometric closed form. This implies that Tn,r and Tm−1−r,r do not have closed
forms either, and then Theorem 1.1 shows that the other four sums also do not have closed
forms. However, Wm−1−r,r stands out from the five expressions, since it is the only one where
the number of summands is independent of m; hence it may be regarded as a closed form, if
m is considered as the only variable (with r regarded as a parameter). Furthermore, one can
show that the five expressions in Theorem 1.1 have a common generating function∑

m≥2r+2

Sm,rx
m =

x2r+2

(1− x)(1− 2x)r+1
,

for fixed r ≥ 0.
Let us also note that replacing i−1 by i in Sm,r yields a simple closed form and the resulting

identity is one of the well-known Moriarty formulas [3, 7]:
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.

Similarly, replacing j − 1 by j in Tn,r, we get the easy-to-prove identity

n∑
j=r

(
n

j

)(
j

r

)
= 2n−r

(
n

r

)
.

The following table shows the value of Tn,r for n = 1, . . . , 10 and r = 0, . . . , 9.

0 1 2 3 4 5 6 7 8 9

1 1

2 3 1

3 7 5 1

4 15 17 7 1

5 31 49 31 9 1

6 63 129 111 49 11 1

7 127 321 351 209 71 13 1

8 255 769 1023 769 351 97 15 1

9 511 1793 2815 2561 1471 545 127 17 1

10 1023 4097 7423 7937 5503 2561 799 161 19 1

This table appears in OEIS (up to signs and other minor alterations) as A118801, A119258,
and A145661 [8]. The formula given for A118801 is equivalent to Wn,r, while the formula given
for A119258 is equivalent to Tn,r.
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The proof of Theorem 1.1 will be presented in the next section as a sequence of six propo-
sitions. First we define certain arrangements of dominos and squares, tiling a 1 × m board,
and prove that the number of such arrangements is Sm,r (see Proposition 2.1 below). Then
we define another kind of arrangement where we tile a 1× n board by three kinds of squares,
and show that Tn,r, Un,r, and Vn,r count the number of such arrangements (Propositions 2.2,
2.3 and 2.4). In Proposition 2.5 we give a bijection between the two kinds of arrangements
with n = m− 1− r, thereby proving the identity Sm,r = Tm−1−r,r. Finally, we consider Wn,r:
in Lemma 2.6, perhaps the trickiest part of the proof; we give a bijection between two special
subsets of arrangements, and in Proposition 2.7 we use this bijection to prove the identity
Tn,r = Wn,r. The title of the paper is explained by the fact that several times in the course
of the proof, squares towards the right end of the board (e.g., squares after the last domino)
will play a crucial role.

2. Proofs

We will consider coverings of a board of length m (i.e., a 1×m “chessboard”) by dominos
and white and black squares.

Each domino covers two consecutive cells of the board, and the dominos may not be turned
around, the white part of the domino is always on the left. We will refer to such coverings as
arrangements, and we will denote by Dm,r the set of all arrangements containing r dominos
and m−2r squares such that the first (leftmost) cell of the board is covered by a black square.
We partition this set into two subsets depending on the colors of the last squares, i.e., the
colors of the squares to the right of the last (rightmost) domino: let D−

m,r ⊆ Dm,r denote
the set of those arrangements, where all squares to the right of the last domino are black (if
any), and let D+

m,r = Dm,r \ D−
m,r denote the set of those arrangements where there is at least

one white square to the right of the last domino (not necessarily immediately adjacent to the
domino). Here is an example of an arrangement belonging to D+

17,3.

In the following proposition we count the arrangements of D+
m,r.

Proposition 2.1. For all 0 ≤ r ≤ m
2 − 1, we have

∣∣D+
m,r

∣∣ = Sm,r.

Proof. We give an interpretation for the sum Sm,r that is in a one-to-one correspondence with
the arrangements in D+

m,r. First we choose 2i squares of our board of length m (in this example
m = 17 and i = 5).

Then we color the squares of the board one by one from left to right, starting with black on
the first square, and changing the color after every chosen square.
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There are i−1 or i places on the board where the color is changing from white to black (going
from left to right), depending on whether or not the last square was among the 2i chosen
squares (the above example corresponds to the second case). We choose r of these places with
the restriction that in the second case we are not allowed to choose the last place (in this
example r = 2).

Clearly, the number of such colored boards with r marks over some white-to-black color
changes is Sm,r. Putting dominos in the r marked places such that the middle of each domino
is exactly at the place where the color changes from white to black (and removing the marks),
we obtain an arrangement belonging to D+

m,r.

This assignment is a bijection: to obtain the inverse, just put a mark over the middle of each
domino, and then remove the dots from the dominos. �

We will interpret Tn,r, Un,r, and Vn,r using another arrangement. Let us cover a board
of length n with three kinds of squares, white squares, black squares and (white) squares
decorated by a triangle (for brevity, we will refer to the latter as a decorated square).

Let Bn,r denote the set of those arrangements where the number of black squares is r, and the
final (rightmost) square is not black (i.e., it is either white or decorated). Just as in the case of
Dm,r, we consider the last squares, namely those squares to the right of the last black square:
let B−

n,r ⊆ Bn,r denote the set of those arrangements, where all squares to the right of the last

black square are white, and let B+
n,r = Bn,r \ B−

n,r denote the set of those arrangements where
there is at least one decorated square to the right of the last black square (not necessarily
immediately adjacent to the black square). Here is an example of an arrangement belonging
to B+

17,6.

Let us define the weight of an arrangement in Bn,r as follows. If the second-to-last square
of the board is not black, then the weight is 0 (recall that the last square is never black).
Otherwise, the weight is the length of the interval of consecutive black squares ending at the
second-to-last square of the board. The example above is of weight 0, and the arrangement
α appearing in the proof of Lemma 2.6 below is of weight 3. Let Be

n,r,Bo
n,r denote the set of

arrangements of even, odd weight, respectively, and let us define the sets B+,e
n,r ,B+,o

n,r ,B−,e
n,r ,B−,o

n,r

by taking B+,e
n,r = B+

n,r ∩ Be
n,r, etc.

In the following three propositions, we count the arrangements in B+
n,r in three different

ways, thereby proving the identity Tn,r = Un,r = Vn,r.

Proposition 2.2. For all 0 ≤ r ≤ n− 1, we have
∣∣B+

n,r

∣∣ = Tn,r.
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Proof. Choose j cells from the board, cover all other cells by white squares, cover the last one
of the chosen cells by a decorated square, and then put r black squares and j−1−r decorated
squares on the remaining j − 1 chosen cells. �
Proposition 2.3. For all 0 ≤ r ≤ n− 1, we have

∣∣B+
n,r

∣∣ = Un,r.

Proof. We claim that the summand of Un,r counts those arrangements in B+
n,r where the last

decorated square appears on cell j. First let us observe that the squares to the right of the
last decorated square are all white, by the definition of B+

n,r. Thus, we may choose the r black

squares from the j−1 squares to the left of the last decorated square in
(
j−1
r

)
many ways, and

then we may decorate the squares in an arbitrary subset of the remaining j − 1− r squares in
2j−1−r many ways. �
Proposition 2.4. For all 0 ≤ r ≤ n− 1, we have

∣∣B+
n,r

∣∣ = Vn,r.

Proof. We claim that the summand of Vn,r counts those arrangements in B+
n,r where the last

black square appears on cell n − j; note that by the definition of B+
n,r, we have j ≥ 1. The

preceding r − 1 black squares can be chosen in
(
n−1−j
r−1

)
ways. The remaining n − r squares

can then either be white or decorated, with the restriction that at least one of the j squares
to the right of the last black square has to be decorated. Thus we can determine the white
and decorated squares in 2n−r−j

(
2j − 1

)
many ways, so the total number of possibilities is(

n− 1− j

r − 1

)
· 2n−r−j ·

(
2j − 1

)
,

as claimed. �
The next proposition relates the two kinds of arrangements considered so far and proves

Sm,r = Tm−1−r,r.

Proposition 2.5. For all 0 ≤ r ≤ m
2 − 1, we have

∣∣D+
m,r

∣∣ = ∣∣∣B+
m−1−r,r

∣∣∣.
Proof. We construct a bijection from D+

m,r to B+
m−1−r,r as follows. An arrangement in D+

m,r

naturally divides the board into black and white intervals (regarding a domino as a white
square followed by a black square). Let us mark the first square of each interval.

Let us then replace each marked square by a decorated square unless it is part of a domino
(the right half of a domino is always marked, the left half may be marked or unmarked), and
replace each remaining black square by a white square, unless it is part of a domino.

Clearly, the original coloring can be recovered from this new arrangement. Finally, we remove
the first square of the board, the left half of each domino, and the white dots from the right
halves of the dominos.
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This new arrangement belongs to B+
m−1−r,r, since the first white square after the last domino

in the original arrangement becomes a decorated square in the new arrangement.
The above construction is indeed a bijection and its inverse can be constructed as follows.

Given an arrangement in B+
m−1−r,r, replace each black square by a domino, add a new black

square to the left end of the board, and color the squares (outside the dominos) from left to
right, changing the color at each decorated square. �

It remains to prove that Tn,r = Wn,r. The key ingredient for the proof is given by the
following lemma.

Lemma 2.6. For all 0 ≤ r ≤ n− 1, we have
∣∣∣B+,o

n,r

∣∣∣ = ∣∣∣B−,e
n,r

∣∣∣+ (−1)r+1.

Proof. We give an “almost bijection” between the sets B+,o
n,r and B−,e

n,r , leaving one arrangement

out from B+,o
n,r if r is odd, and leaving one arrangement out from B−,e

n,r if r is even. Let us consider

an arrangement α ∈ B+,o
n,r ∪ B−,e

n,r of weight k, and let us examine its last squares. The very
last square (i.e., the rightmost square of the board) is either white or decorated. Before that,
there is a sequence of k black squares; let us denote the first (leftmost) one of these squares
by B. If k = 0, then let us define B to be the last square of the board (no matter whether it
is white or decorated). Walking from square B to the left, let us denote the first non-white
(i.e., either black or decorated) square by A, provided there is such a square.

α

BA

The conjugate arrangement α is constructed in the following way. If A is a decorated square,
then we replace A by a black square and B by a white square. If A is a black square, then we
replace A by a decorated square and replace the white square preceding B by a black square
(B remains unchanged). In addition, in both cases we change the last square of the board, if
it is a white square, then we change it to a decorated square; if it is a decorated square, then
we change it to a white square. The arrangement α in the above example corresponds to the
first case with k = 3 (α ∈ B+,o

n,r ).

α

α

Another example illustrating the second case with k = 0 (β ∈ B−,e
n,r ).

β

β

The conjugate arrangement is not defined if square A does not exist, i.e., if k = r and all
the squares to the left of the black squares are white. There is only one such arrangement
in B+,o

n,r ∪ B−,e
n,r , namely the arrangement ε+ ∈ B+,o

n,r below if r is odd (here, r = 5) and the

arrangement ε− ∈ B−,e
n,r below if r is even (here, r = 6).
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ε
+

ε
−

Conjugation is a permutation of order two on the set B+,o
n,r ∪ B−,e

n,r \ {ε+, ε−} that changes the
parity of the weight, and it also changes the “sign” of the arrangement 1. Therefore, if r is odd,

then conjugation provides a bijection between B+,o
n,r \{ε+} and B−,e

n,r , hence
∣∣∣B+,o

n,r

∣∣∣ = ∣∣∣B−,e
n,r

∣∣∣+1.

Similarly, if r is even, then conjugation provides a bijection between B+,o
n,r and B−,e

n,r \ {ε−},
hence

∣∣∣B+,o
n,r

∣∣∣ = ∣∣∣B−,e
n,r

∣∣∣− 1. �

Proposition 2.7. For all 0 ≤ r ≤ n− 1, we have Tn,r = Wn,r.

Proof. We may express Tn,r with the aid of the previous lemma:

Tn,r =
∣∣B+

n,r

∣∣ = ∣∣B+,e
n,r

∣∣+ ∣∣B+,o
n,r

∣∣ = ∣∣B+,e
n,r

∣∣+ ∣∣B−,e
n,r

∣∣+ (−1)r+1 =
∣∣Be

n,r

∣∣+ (−1)r+1 .

It remains to prove that

∣∣Be
n,r

∣∣ = ⌊ r
2⌋∑

k=0

2n−r

(
n− 2− 2k

r − 2k

)
.

We claim that the summand counts the arrangements in Bn,r of weight 2k. Such an ar-
rangement can be built as follows. First we put an interval of 2k black squares on the board
such that the last one of these black squares is the second-to-last square of the board. Then
we have n− 2− 2k places where we can put the remaining r − 2k black squares.

2kn − 2 − 2k

Thus there are
(
n−2−2k
r−2k

)
possibilities regarding the placement of the black squares, and each

one of the remaining n − r squares can be either white or decorated, hence the number of
arrangements of weight 2k is indeed

2n−r

(
n− 2− 2k

r − 2k

)
.

�
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1This is actually true for all arrangements in Bn,r \
{
ε+, ε−

}
except for the “positive” ones of weight 0.
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[5] M. Petkovšek, Algorithms Poly and Hyper, http://www.math.upenn.edu/∼wilf/Hyper
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