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Abstract. We prove that certain sequences of finite continued fractions associated with a
2-periodic continued fraction with period a, b > 0 are moment sequences of discrete signed
measures supported in the interval [−1, 1], and we give necessary and sufficient conditions in
order that these measures are positive. For a = b = 1 this proves that the sequence of ratios
Fn+1/Fn+2, n ≥ 0, of consecutive Fibonacci numbers is a moment sequence.

1. Introduction

The motivation for this paper is the observation in Corollary 1.3: the sequence Fn+1/Fn+2

of quotients of Fibonacci numbers is the moment sequence of a probability measure µ, i.e.,

Fn+1/Fn+2 =

∫

xn dµ(x), n = 0, 1, . . . , (1.1)

where µ is the discrete measure

µ = ϕδ1 +
√
5

∞
∑

k=1

ϕ4kδ(−ϕ2)k . (1.2)

Here ϕ = (
√
5− 1)/2 and δa denotes the Dirac measure having the mass 1 concentrated at the

point a ∈ R. We recall that F0 = 0, F1 = 1, and Fn+1 = Fn +Fn−1, n ≥ 1. Formula (1.1) can
be proved easily from the so-called Binet formula

Fn =
1√
5

(

1 +
√
5

2

)n

(1− qn), (1.3)

where q = (1−
√
5)/(1 +

√
5). From this we get (q = −ϕ2)

Fn+1

Fn+2
= ϕ

1− qn+1

1− qn+2
= ϕ

∞
∑

k=0

(1− qn+1)q(n+2)k

= ϕ+ ϕ
∞
∑

k=1

(1− q)(−q)2k−1qnk = ϕ+
√
5

∞
∑

k=1

ϕ4k(−ϕ2)nk.
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It is well-known that the difference equation xn+1 = xn + xn−1 of the Fibonacci numbers
appears in the study of the continued fraction

1

1 +
1

1 +
1

1 +
1

1+...

. (1.4)

In this paper we generalize the result above by studying the continued fraction

1

a+
1

b+
1

a+
1

b+...

(1.5)

and the sequence (sn(a, b, w)) of its modified convergents (to simplify the notation we remove
the dependence on a, b > 0 and w ≥ 0):

s0 = w, s1 =
1

a+ w
, s2 =

1

a+
1

b+ w

, s3 =
1

a+
1

b+
1

a+ w

, · · · . (1.6)

For w = 0 we obtain the sequence of convergents to (1.5).
Note that sn(a, a, 1/a) = sn+1(a, a, 0) for a > 0, n ≥ 0.
Our main result is Theorem 1.2 stating that the sequence (sn(a, b, w)) is the moment se-

quence of a signed discrete measure ρ concentrated on the interval [−1, 1], i.e.,

sn(a, b, w) =

∫ 1

−1
xn dρ(x). (1.7)

Since ρ is discrete, the integral in (1.7) is an infinite series. In addition we give a necessary
and sufficient condition involving the parameters a, b, w in order that ρ is a positive measure.
The result (1.1) appears as a special case.

Since this paper combines results about continued fractions with results about moment
sequences, we give some explanation about these concepts.

The last chapter of Euler’s masterpiece Introductio in Analysin Infinitorum (Vol. I), in
English version [6], is devoted to continued fractions. Euler considered there 1- and 2-periodic
continued fractions to get rational approximations to square roots of natural numbers. We
say that a continued fraction of the form

1

a1 +
1

a2 +
1

a3 +
1

a4+...

(1.8)

is k-periodic if aj+k = aj for j = 1, 2, . . ..
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If a natural number n is sum of two squares n = m2 + l2 of natural numbers, then for
a = 2m/l the convergents of the 1-periodic continued fraction

1

a+
1

a+
1

a+
1

a+...

(1.9)

give rational approximations to
√
n. Indeed, this continued fraction converges to a positive

number x such that x = 1/(a+x), i.e., it converges to the positive root of x2+ax−1 which is

x =
−a+

√
a2 + 4

2
= −m

l
+

√
n

l
.

For example, for n = 5, Euler took m = 1, l = 2, and so a = 1; the continued fraction (1.9)
converges then to (

√
5− 1)/2. In this example, the rational approximations are

0

1
,

1

1
,

1

2
,

2

3
,

3

5
,

5

8
, · · · (1.10)

which are ratios of consecutive Fibonacci numbers Fn. For a relation between quotients of
consecutive Fibonacci numbers and electrical networks see [14, p.43].

When n is not a sum of two squares, Euler considered a 2-periodic continued fraction of the
form

1

a+
1

b+
1

a+
1

b+...

(1.11)

to get rational approximations to
√
n. To do that, Euler was implicitly using Pell’s equation

m2n = d2 − 1. Assuming that n is not a square of a natural number, Pell’s equation has
always infinitely many solutions m,d ∈ N, cf. [9, p.210]. By taking positive integers a, b for
which ab = 2d − 2, the 2-periodic continued fraction above gives rational approximations to√
n. Indeed, the continued fraction (1.11) converges to the positive root of ax2+abx− b given

by

x =
−ab+

√
a2b2 + 4ab

2a
= −d− 1

a
+

m
√
n

a
.

For instance, for n = 7, Euler took m = 3, d = 8, a = 2, b = 7, and for these values of a, b the
continued fraction (1.11) converges to (−7 + 3

√
7)/2.

For the 2-periodic continued fraction (1.11) the sequence sn = sn(a, b, w) defined in (1.6)
satisfies

sn+2 =
1

a+
1

b+ sn

, (1.12)

and we leave to the reader to see by induction that sn can be given by the formula

sn =
Nn

Dn
, n ≥ 0, (1.13)
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where the sequences (Nn)n and (Dn)n are defined recursively by

Nn+2 = bDn +Nn, n ≥ 0, (1.14)

Dn+2 = abDn + aNn +Dn, n ≥ 0, (1.15)

with the initial conditions N0 = w, N1 = 1, D0 = 1, D1 = a+ w. By solving these difference
equations we find an explicit formula for sn leading to (1.7), see Section 2.

When a = b the situation is simpler because (1.12) is replaced by

sn+1 =
1

a+ sn
, (1.16)

and in this case

sn =
Dn−1

Dn
,

where Dn is the solution of the difference equation

Dn+1 = aDn +Dn−1, n ≥ 0, (1.17)

with initial conditions D−1 = w, D0 = 1.
The general difference equation of second order with constant coefficients xn+1 = axn+bxn−1

has been studied by Kalman and Mena in [12].
Let us give a few comments about the special case (1.17). The parameter a in (1.17) can

be parametrized a = 2 sinh θ, θ > 0 and in the form

xn+1 = 2 sinh θ xn + xn−1, n ≥ 1, (1.18)

which has been studied by Ismail in [11]. Using the initial conditions x0 = 0, x1 = 1, Ismail
denoted the solution Fn(θ) and he called these numbers generalized Fibonacci numbers. They
are natural numbers when 2 sinh θ is a natural number, and the Fibonacci numbers correspond
to 2 sinh θ = 1.

Let us now recall some facts about moment sequences. For details see [1]. The moments
sn, n ≥ 0, of a positive (Borel) measure µ on the real line are defined as

sn =

∫

R

xndµ(x), n ≥ 0, (1.19)

assuming that these integrals are finite.
Sequences of moments of positive measures were characterized by Hamburger in [8]. A

necessary and sufficient condition is that all the Hankel matrices

Hn = (si+j)
n
i,j=0 , n = 0, 1, . . . (1.20)

are positive semidefinite.
Moment sequences of positive measures concentrated on [0,∞) were characterized by Stielt-

jes in his fundamental memoir [16]. In addition to (1.20) also the matrices

H′
n = (si+j+1)

n
i,j=0 , n = 0, 1, . . . (1.21)

shall be positive semidefinite.
It is remarkable that Stieltjes obtained his result long before Hamburger. For the early

history of the moment problem see [13].
In [10] Hausdorff characterized moment sequences of positive measures concentrated on the

unit interval [0, 1] by complete monotonicity, i.e.,

(−1)n(∆ns)k ≥ 0 for all n, k ≥ 0,
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where

(∆0s)k = sk, (∆s)k = (∆1s)k = sk+1 − sk, (∆
ns)k = (∆n−1(∆s))k, n ≥ 2.

For a proof see also [1, 17, 4]. Moment sequences of positive measures on the interval [−1, 1]
can be characterized as bounded Hamburger moment sequences, i.e. bounded sequences (sn)
such that all the Hankel matrices (1.20) are positive semidefinite.

By the results above, moment sequences of positive measures form certain convex cones
of real-valued sequences. Given a moment sequence of a positive measure one can ask if the
measure is uniquely determined by the sequence. Stieltjes was the first to observe that this
need not be the case, and we speak about an indeterminate moment problem in that case, see
[1] for details. Here it is enough to mention that for a bounded moment sequence (1.19) the
measure µ is uniquely determined and is concentrated on the interval [−1, 1].

If we generalize (1.19) by considering signed measures on the interval [−1, 1], then the
corresponding set of moment sequences form a proper subspace M of the vector space B(N0)
of bounded real sequences. Since any signed measure is the difference of two positive measures,
we see that each sequence inM is the difference of two bounded Hamburger moment sequences.
It follows that each sequence from M is the moment sequence of a uniquely determined signed
measure concentrated on the interval [−1, 1].

We denote by C([−1, 1]) the Banach space of continuous functions f : [−1, 1] → R with the
supremum norm

‖f‖∞ = sup{|f(x)| | x ∈ [−1, 1]}.
The following result is an easy consequence of the fact that the dual space of C([−1, 1]) is the
vector space of signed measures on [−1, 1].

Proposition 1.1. A sequence (cn) of real numbers belongs to M if and only if there exists a

constant A > 0 such that for all real polynomials p(x) =
∑n

k=0 akx
k

∣

∣

∣

∣

∣

n
∑

k=0

akck

∣

∣

∣

∣

∣

≤ A‖
n
∑

k=0

akx
k‖∞.

We note in passing that the situation is different if one considers signed measures on the
whole real line. By a result of Boas, cf. [17, p. 138], see also [5], any sequence of real numbers
is a moment sequence of a signed measure, and it is even possible to choose a signed measure
of the form f(x) dx where f is a Schwartz function.

After these preliminaries we can now formulate our main theorem.

Theorem 1.2. For a, b, w ∈ R, a, b > 0, w ≥ 0, the sequence (sn(a, b, w)) defined in (1.6) is

the sequence of moments of the discrete signed measure ρ supported in [−1, 1] and defined by

ρ =
1

a
(1− q)δ1 +

1

2a

(

1

q
− q

) ∞
∑

k=0

(

αk+1 + βk+1
)

δqk+1 +
(

αk+1 − βk+1
)

δ−qk+1 , (1.22)

where

q =
2 + ab−

√
a2b2 + 4ab

2
(1.23)

and

α =
q(aw − (1 − q))

qaw + 1− q
, β =

qa− (1− q)w

a+ (1− q)w
(1.24)

verify 0 < q < 1, |α|, |β| < 1.
Moreover, the measure ρ is positive if and only if the following conditions hold
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(i) a ≥ b,

(ii) w ≥ −b/2 +
√

(b/2)2 + b/a

(iii) w ≥ −(a+ b)/4 +
√

((a+ b)/4)2 + 1.

In particular for a ≥ b and w = 1, the measure ρ is always positive. Taking a = b =
2 sinh θ > 0, and w = 1/a we get the following result.

Corollary 1.3. For any θ > 0 the sequences

Fn+1(θ)

Fn+2(θ)
, and

Fn+3(θ)

Fn+2(θ)
, n ≥ 0 (1.25)

of quotients of successive generalized Fibonacci numbers Fn(θ) defined by (1.18) are moment

sequences of the positive discrete measures µθ and νθ = (2 sinh θ)δ1 + µθ, where

µθ = e−θδ1 + 2cosh θ

∞
∑

k=1

e−4kθδ(−e−2θ)k . (1.26)

In particular for 2 sinh θ = 1 the sequence Fn+1/Fn+2, n ≥ 0, is the moments of the probability

measure

µ = ϕδ1 +
√
5

∞
∑

k=1

ϕ4kδ(−ϕ2)k , (1.27)

where ϕ = (
√
5− 1)/2.

Remark 1.4. Using Binet’s formula (1.3) for the Fibonacci numbers, it is easy to see that
Fn+1, n ≥ 0, is a moment sequence of the measure

τ =

√
5 + 1

2
√
5

δ(1+
√
5)/2 +

√
5− 1

2
√
5

δ(1−
√
5)/2.

A similar formula holds for the generalized Fibonacci numbers of Ismail, see [11, formula (2.2)].

Remark 1.5. It was proved in [3] that Fα/Fn+α, n ≥ 0 is the moment sequence of a signed
measure µα on [−1, 1] and with total mass 1. Here α is a natural number and the signed
measure µα is a probability measure precisely when α is an even number. The orthogonal
polynomials corresponding to µα are little q-Jacobi polynomials, where q = (1−

√
5)/(1+

√
5).

Little q-Jacobi polynomials belong to the q-Askey scheme of orthogonal polynomials, and they
are treated in [7]. The results above were used to prove Richardson’s formula for the elements
in the inverse of the Filbert matrix (1/F1+i+j), cf. [15]. These results were extended to
generalized Fibonacci numbers in [11]. For an extension to quantum integers see [2].

2. Proofs

Proof of Theorem 1.2. First of all, we find a closed expression for the denominators Dn of
the modified convergents sn defined in (1.6).

From (1.14) and (1.15) we get

Dn+2 = a(bDn +Nn) +Dn = aNn+2 +Dn,

hence

Nn =
Dn −Dn−2

a
, n ≥ 2, (2.1)
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so if Dn is determined, then we can find a formula for Nn and finally for sn because of (1.13).
The formula (2.1) can be extended to n = 0, 1 by defining D−2 = 1 − aw and D−1 = w.
Inserting (2.1) in (1.15), we find that

Dn+2 = (2 + ab)Dn −Dn−2, n ≥ 0, (2.2)

with initial conditions D−2 = 1− aw, D−1 = w, D0 = 1 and D1 = a+ w.
That means that the sequences (D2n) and (D2n+1) are both solutions of the difference

equation
xn+1 = (2 + ab)xn − xn−1, n ≥ 0,

with initial conditions x−1 = 1 − aw,w, x0 = 1, a + w, respectively. Any solution of this
difference equation has the form c0q

n
0 + c1q

n
1 , where q0 and q1 are the solutions of x2 − (2 +

ab)x+ 1 = 0. We write

q =
2 + ab−

√
a2b2 + 4ab

2
, (2.3)

so that q and 1/q are the solutions of x2 − (2 + ab)x + 1 = 0, and 0 < q < 1. We then know
that there exist numbers c0, c1, d0, d1 such that

D2n = c0q
−n + c1q

n, n ≥ −1, (2.4)

D2n+1 = d0q
−n + d1q

n, n ≥ −1. (2.5)

Using the initial conditions D−2 = 1 − aw, D−1 = w, D0 = 1 and D1 = a + w, we get two
systems of linear equations with two unknowns, and solving them we find

c0 =
1− q + qaw

1− q2
, c1 =

q(1− q − aw)

1− q2
, (2.6)

d0 =
a+ (1− q)w

1− q2
, d1 =

q((1− q)w − qa)

1− q2
. (2.7)

Note that c0, d0 > 0. Writing α = −c1/c0 and β = −d1/(qd0), we find

α =
q(aw − (1− q))

qaw + 1− q
, β =

qa− (1− q)w

a+ (1− q)w
, (2.8)

and it is clear that |α|, |β| < 1 because a > 0, 0 < q < 1 and w ≥ 0.
We need to establish some technical properties of α and β, which we collect in the following

lemma.

Lemma 2.1.

(1) α ≥ 0 if and only if w ≥ −b/2 +
√

(b/2)2 + b/a.
(2) Assume w > 0. Then −β ≤ α if and only if a ≥ b.
(3) If w = 0 then β = −α = q.

(4) α ≥ β if and only if w ≥ −(a+ b)/4 +
√

((a+ b)/4)2 + 1.

Proof. 1. By (2.8) we have that α ≥ 0 is equivalent to q + aw − 1 ≥ 0, hence to

1− aw ≤ q =
2 + ab−

√
a2b2 + 4ab

2
,

or
√

a2b2 + 4ab ≤ 2aw + ab,

which is equivalent to aw2 + abw − b ≥ 0 because a > 0. Since a, b > 0 and w ≥ 0, we finally
get that α ≥ 0 if and only if

w ≥ −b/2 +
√

(b/2)2 + b/a.
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2. According to (2.8), −β ≤ α if and only if

(1− q)w − aq

a+ (1− q)w
≤ q(aw − (1− q))

qaw + 1− q
,

and a straightforward computation gives that this is equivalent to

w(1 + q)(q2 − (2 + a2)q + 1) ≤ 0.

Using that q satisfies q2− (2+ab)q+1 = 0, the left-hand side of this inequality can be reduced
to w(1 + q)aq(b− a), and for w > 0 the result follows.

3. Follows by inspection.
4. We similarly get that α ≥ β if and only if

w2 + w(a+ b)/2 − 1 ≥ 0,

which is equivalent to the given condition because w ≥ 0. �

We now continue the proof of Theorem 1.2.
Using (2.1), we can write

sn =
Nn

Dn
=

1

a

Dn −Dn−2

Dn
=

1

a

(

1− Dn−2

Dn

)

.

From the formulas (2.4) and (2.6), and taking into account that α = −c1/c0, we have

D2n−2

D2n
=

c0q
−n+1 + c1q

n−1

c0q−n + c1qn
= q

1− αq2n−2

1− αq2n

= q(1− αq2n−2)

∞
∑

k=0

αkq2nk

= q

(

1 + (1− q−2)

∞
∑

k=0

αk+1q2n(k+1)

)

,

showing that s2n =
∫

t2ndµ, n ≥ 0, where the measure µ is defined as

µ =
1

a
(1− q)δ1 +

1

a

(

1

q
− q

) ∞
∑

k=0

αk+1δqk+1 . (2.9)

In a similar way, it can be proved that s2n+1 =
∫

t2n+1dν, n ≥ 0, where the measure ν is
defined as

ν =
1

a
(1− q)δ1 +

1

a

(

1

q
− q

) ∞
∑

k=0

βk+1δqk+1 . (2.10)

Take now the reflected measures µ̌ and ν̌ of µ and ν with respect to the origin:

µ̌ =
1

a
(1− q)δ−1 +

1

a

(

1

q
− q

) ∞
∑

k=0

αk+1δ−qk+1 ,

ν̌ =
1

a
(1− q)δ−1 +

1

a

(

1

q
− q

) ∞
∑

k=0

βk+1δ−qk+1 .

The measure ρ = (µ + µ̌)/2 + (ν − ν̌)/2 then has the same even moments as µ and the same
odd moments as ν. That is, the nth moment of ρ is just sn, n ≥ 0. A simple computation
shows that the measure ρ is given by (1.22).
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It is clear that the measure ρ is positive if and only if

αk+1 + βk+1, αk+1 − βk+1 ≥ 0, k ≥ 0,

i.e., if and only if α ≥ 0 and −α ≤ β ≤ α. The second part of Theorem 1.2 follows now by
applying Lemma 2.1. �

Proof of Corollary 1.3. For a = b = 2 sinh θ > 0 and w = 1/a we see that the three conditions
of Theorem 1.2 are satisfied, so sn = sn(a, a, 1/a) is a moment sequence of a positive measure
ρ = µθ. We prove that sn = Fn+1(θ)/Fn+2(θ) by induction. This formula holds for n = 0 by
inspection and clearly sn+1 = 1/(a+ sn). We therefore find, assuming the formula for a fixed
n

sn+1 =
1

a+ Fn+1(θ)/Fn+2(θ)
=

Fn+2(θ)

aFn+2(θ) + Fn+1(θ)
=

Fn+2(θ)

Fn+3(θ)
.

A small calculation shows that α = −β = q2, q = e−2θ, e−θ = (1− q)/a and µθ = ρ defined in
(1.22) is given by (1.26). By the difference equation (1.18) we find

Fn+3(θ)

Fn+2(θ)
= 2 sinh θ +

Fn+1(θ)

Fn+2(θ)
,

so also Fn+3(θ)/Fn+2(θ) is a moment sequence and the corresponding measure νθ is given as
2 sinh θ δ1 + µθ. �

3. Concluding remarks

Euler did not use 3-periodic continued fractions (nor any other periodicity bigger than 2) to
find rational approximations of square roots of natural numbers: to use 3-periodic continued
fractions is not more useful than to use 1-periodic continued ones, and to use 4-periodic
continued fractions is not more useful than to use 2-periodic ones, and so forth, cf. [6, p.322].

One can consider modified convergents sn like (1.6) for a 3-periodic continued fraction of
positive periods a, b, c. Using the same approach as before, we can find three signed measures
µ0, µ1 and µ2 on [−1, 1] such that the (3n + i)th moment of µi is equal to s3n+i, i = 0, 1, 2,
n ≥ 0. However, we are not able to construct a measure on R from these three measures
having its (3n + i)th moment equal to the nth moment of µi, i = 0, 1, 2. The same happens
for k-periodicity when k > 2.

By Hamburger’s theorem it follows that det(Hn) ≥ 0 for all the Hankel matrices of moments
of a positive measure, see (1.20).

Computations indicate that if we consider the sequence (sn(a, a, c, 1)), then some of the
above determinants are negative except when c = a, so it does not seem possible to extend
our results to k-periodic continued fractions for k > 2.
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