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Abstract. In this paper we show how the expectation of a particular random variable gives
rise to an infinite series whose coefficients are certain functions of the Fibonacci numbers.
A general result follows from this which, when specialized to varying degrees, leads both to
well-known and lesser-known identities. Also, by considering a different random variable, we
go on to obtain corresponding results for the Lucas numbers. Finally, we look at series arising
from higher moments.

1. Introduction

In probability theory it is frequently the case that the random variables of interest are
themselves functions of other, generally simpler, random variables. As an example of this,
consider the random variable X ∼ B(n, p). This denotes the fact that X follows a binomial
distribution for which the number of trials is n and the probability of success on a particular
trial is equal to p. Note that we may regard X as the sum of n Bernoulli random variables,
each identically and independently distributed as the random variable B possessing the mass
function f(b) given by f(0) = 1− p and f(1) = p, where 0 < p < 1.

The random variables Y and W we consider here are a little more complicated than X,
yet are nonetheless functions of a series of identically and independently distributed random
variables. We look at the infinite series that arise as a consequence of taking the limits of the
expectations of Y and W , and arrive at general results concerning series involving Fibonacci
and Lucas numbers. On specializing these results we are able to generate a number of well-
known identities in addition to some that may be less familiar.

We first set up the machinery for defining Y . Let B be the Bernoulli random variable
referred to in the previous paragraph, and let C be a ‘constant’ random variable taking the
value 1, with mass function g(c) given by g(1) = 1. Next, let {k1, k2, k3, . . .} be a strictly
increasing sequence of positive integers. Finally, we define {X1,X2,X3, . . .} to be a sequence
of independent random variables for which Xn is distributed as B if n = km for some m ∈ N,
but as C otherwise.

Let us now consider, for a particular sequence {k1, k2, k3, . . .}, the random variable Y defined
by way of the following infinite continued fraction:

Y =
X1

1 +
X2

1 +
X3

1 + · · · .
(See [1] and [5] for details of mathematical properties of continued fractions.) First, if X1 = 0
then Y = 0. Next, suppose that for some kr ≥ 2, Xkr = 0 but Xm = 1 for m = 1, 2, . . . , kr−1.

Then Y is the reciprocal of the (kr − 1)th convergent to φ = 1+
√
5

2 , the golden ratio. Thus in
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this case Y is given by

Y =
Fkr−1

Fkr

.

We next calculate E(Y ), the expectation of Y . To this end,

P

(

Y =
Fkr−1

Fkr

)

= P(X1 = X2 = . . . = Xkr−1 = 1 and Xkr = 0)

= pr−1(1− p).

Therefore,

E(Y ) =
∞
∑

r=1

P

(

Y =
Fkr−1

Fkr

)

Fkr−1

Fkr

=

∞
∑

r=1

pr−1(1− p)
Fkr−1

Fkr

=
Fk1−1

Fk1

− p
Fk1−1

Fk1

+ p
Fk2−1

Fk2

− p2
Fk2−1

Fk2

+ · · · . (1.1)

On noting that
Fk1−1

Fk1

+ p
Fk1−1

Fk1

+ p
Fk2−1

Fk2

+ p2
Fk2−1

Fk2

+ · · ·

is a convergent series (see [4], remembering that 0 < p < 1), it follows that (1.1) is an absolutely
convergent series. Thus, we may rearrange its terms without altering the sum to obtain

E(Y ) =
Fk1−1

Fk1

+ p

(

Fk2−1

Fk2

− Fk1−1

Fk1

)

+ p2
(

Fk3−1

Fk3

− Fk2−1

Fk2

)

+ · · ·

=
Fk1−1

Fk1

+

∞
∑

r=1

pr
(

Fkr+1−1

Fkr+1

− Fkr−1

Fkr

)

.

Then, using d’Ocagne’s identity Fn+1Fm − FnFm+1 = (−1)nFm−n, which may be found in
[7], it follows that

E(Y ) =
Fk1−1

Fk1

+
∞
∑

r=1

pr
FkrFkr+1−1 − Fkr−1Fkr+1

FkrFkr+1

=
Fk1−1

Fk1

+

∞
∑

r=1

pr
(−1)kr−1Fkr+1−kr

FkrFkr+1

.

Also
∣

∣

∣

∣

∣

(−1)kr−1Fkr+1−kr

FkrFkr+1

∣

∣

∣

∣

∣

=
Fkr+1−kr

FkrFkr+1

≤ 1

Fkr

,

so the sum
∞
∑

r=1

(−1)kr−1Fkr+1−kr

FkrFkr+1
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does indeed exist. Thus, by Abel’s Theorem (see [3] or [8]), it is the case that

lim
p→1−

∞
∑

r=1

pr
(−1)kr−1Fkr+1−kr

FkrFkr+1

=
∞
∑

r=1

(−1)kr−1Fkr+1−kr

FkrFkr+1

.

Then, noting that limp→1− E(Y ) = 1
φ
, we obtain the result

Fk1−1

Fk1

+

∞
∑

r=1

(−1)kr−1Fkr+1−kr

FkrFkr+1

=
1

φ
=

√
5− 1

2
, (1.2)

where limp→1− denotes the limit as p approaches 1 from below.

2. Special Cases

On letting kn = n in (1.2) we have the well-known result
∞
∑

r=1

(−1)r−1

FrFr+1
=

1

φ
, (2.1)

which can be found on the website [2] as result (79). However, the following generalization of
(2.1), obtained from (1.2) by setting kn = m(n − 1) + 1 for some m ∈ N, might not be quite
so well-known:

1

φ
=

F0

F1
+

∞
∑

r=1

(−1)m(r−1)F(mr+1)−(m(r−1)+1)

Fm(r−1)+1Fmr+1

=

∞
∑

r=1

(−1)m(r−1)Fm

Fm(r−1)+1Fmr+1
.

When m is even, m = 2n say, we have the particularly appealing formula
∞
∑

r=1

1

F2n(r−1)+1F2nr+1
=

1

φF2n
.

Also, with kn = n2, we obtain

1

φ
=

∞
∑

r=1

(−1)r
2−1F(r+1)2−r2

Fr2F(r+1)2

=

∞
∑

r=1

(−1)r−1F2r+1

Fr2F(r+1)2
,

and indeed similar results follow for any strictly increasing polynomial sequences.
Next, with kn = 2n−1, it follows that

1

φ
=

∞
∑

r=1

(−1)2
r−1−1F2r−2r−1

F2r−1F2r

=

∞
∑

r=1

(−1)2
r−1−1

F2r

= 1−
∞
∑

r=2

1

F2r
,
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giving

∞
∑

r=0

1

F2r
=

1

F1
+

1

F2
+

∞
∑

r=2

1

F2r

= 2 +
3−

√
5

2

=
7−

√
5

2
,

which is known as the Millin series [6].
Taking this idea further, we have, with kn = 3n−1,

1

φ
=

∞
∑

r=1

(−1)3
r−1−1F3r−3r−1

F3r−1F3r

=

∞
∑

r=1

F2·3r−1

F3r−1F3r
.

Then, using the results F2r = Fr (Fr−1 + Fr+1) and Lr = Fr−1 + Fr+1, we obtain the remark-
able identity

1

φ
=

∞
∑

r=0

F3r−1 + F3r+1

F3r+1

=

∞
∑

r=0

L3r

F3r+1

.

Finally, we may index the Fibonacci numbers with themselves to give the rather amusing
result

∞
∑

r=1

(−1)Fr+1−1FFr

FFr+1
FFr+2

=
1

φ
.

3. Lucas Sums

Now let B1 and B2 be a pair of jointly-distributed discrete random variables with joint
mass function f(b1, b2) given by f(3, 0) = 1 − p and f(1, 1) = p, where 0 < p < 1, and
let C1 and C2 be a pair of ‘constant’ random variables with joint mass function g(c1, c2)
given by g(1, 1) = 1. Once more {k1, k2, k3, . . .} represents a strictly increasing sequence
of positive integers, although we now impose the extra condition that k1 ≥ 2. We define
{(U2, V2), (U3, V3), (U4, V4), . . .} to be a sequence of independent pairs of random variables for
which (Un, Vn) is distributed as (B1, B2) if n = km for some m ∈ N, but as (C1, C2) otherwise
(the fact that the indexing starts at 2 is simply a matter of notational convenience).

We now consider the random variable W given by

W =
1

U2 +
V2

U3 +
V3

U4 + · · · .
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Arguing as in Section 1, we obtain

P

(

W =
Lkr−1

Lkr

)

= P ((Uki , Vki) = (1, 1) for i = 1, 2, . . . , r − 1 and (Ukr , Vkr) = (3, 0))

= pr−1(1− p),

which leads eventually to the result

lim
p→1−

E(W ) =
1

φ
=

Lk1−1

Lk1

+

∞
∑

r=1

LkrLkr+1−1 − Lkr−1Lkr+1

LkrLkr+1

. (3.1)

There is no equivalent of d’Ocagne’s identity for the Lucas numbers, so the numerator under the
sum in (3.1) cannot be simplified in general. However, we do have the result L2

n−Ln−1Ln+1 =
5(−1)n. Thus, with kn = n+ 1, n = 1, 2, 3, . . ., it follows that

1

φ
=

L1

L2
+

∞
∑

r=1

L2
r+1 − LrLr+2

Lr+1Lr+2

=
1

3
+

∞
∑

r=1

5(−1)r+1

Lr+1Lr+2
,

which gives

∞
∑

r=1

5(−1)r−1

LrLr+1
=

5

L1L2
−

∞
∑

r=1

5(−1)r

Lr+1Lr+2

=
5

3
−

(

1

φ
− 1

3

)

.

On simplifying, we arrive at the result

∞
∑

r=1

(−1)r−1

LrLr+1
=

3− φ

5
.

4. Higher Moments

Using similar arguments to those given previously, we see that

lim
p→1−

E(Y n) =
1

φn
=

(

Fk1−1

Fk1

)n

+

∞
∑

r=1

(

FkrFkr+1−1

)n −
(

Fkr−1Fkr+1

)n

(

FkrFkr+1

)n . (4.1)

For the special case n = 2 and kr = r, for r = 1, 2, 3, . . ., it follows from (4.1) that

1

φ2
=

∞
∑

r=1

F 4
r − (Fr−1Fr+1)

2

(FrFr+1)
2

=

∞
∑

r=1

(

F 2
r − Fr−1Fr+1

) (

F 2
r + Fr−1Fr+1

)

(FrFr+1)
2

=

∞
∑

r=1

(−1)r−1
(

2F 2
r + (−1)r

)

(FrFr+1)
2 .
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