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Abstract. In this paper we obtain a closed-form expression for the sum of the elements
lying on the nth diagonal of a Fibonacci triangle. This is achieved by obtaining and then
utilizing the ordinary generating functions of two subsequences of the sequence of diagonal
sums.

1. Introduction

It is well-known that the nth ‘diagonal sum’ of Pascal’s triangle is equal to Fn; see [4] and
[6]. Note that the nth diagonal comprises

⌊

n+1
2

⌋

elements, where bxc is the floor function,
denoting the largest integer not exceeding x.

1
1 1

1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

...

For example, highlighted in Pascal’s triangle above are the 5th and 8th diagonals. We have

1 + 3 + 1 = 5 = F5 and 1 + 6 + 10 + 4 = 21 = F8.

In this article we consider the corresponding situation for the Fibonacci triangle T shown
below, which was discussed recently in [3] in connection with an infinite matrix of 0’s and 1’s
that had been constructed from the Zeckendorf representations of the non-negative integers.
This triangle also appears as A058071 in Sloane’s On-line Encyclopedia of Integer Sequences

[8]. Furthermore, some of its properties were studied in [5] and [7].
The entry in position p (taken from left to right) of the rth row of T is equal to FpFr−p+1.

From [2], [3] and [6] we know that the rth row-sum of T is given by
r
∑

p=1

FpFr−p+1 =
1

5
(rFr+1 + 2(r + 1)Fr) .

This is the sequence of Fibonacci numbers convolved with themselves, and appears in [8] as
A001629.
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1
1 1

2 1 2
3 2 2 3

5 3 4 3 5

8 5 6 6 5 8
13 8 10 9 10 8 13

21 13 16 15 15 16 13 21
34 21 26 24 25 24 26 21 34

55 34 42 39 40 40 39 42 34 55
89 55 68 63 65 64 65 63 68 55 89

...

We are interested here in studying the nth diagonal sum An of T . The two examples
highlighted in T above show that

A6 = 8 + 3 + 2 = 13 and A9 = 34 + 13 + 10 + 6 + 5 = 68.

It is clear that An is equal either to

F1Fn + F2Fn−2 + F3Fn−4 + . . . + Fn+1

2

F1

or to

F1Fn + F2Fn−2 + F3Fn−4 + . . . + Fn

2
F2,

depending on whether n is odd or even, respectively. In fact, more generally it is possible to
write

An = F1Fn + F2Fn−2 + F3Fn−4 + . . .+ Fbn+1

2 cFn−2bn−1

2 c

=

bn+1

2 c
∑

p=1

FpFn−2(p−1). (1.1)

Let us term the above expression a ‘semi-stretched convolution’. In this paper we obtain
various ordinary generating functions associated with the sequence {An} and hence a closed-
form expression for An.

2. Generating Functions

It is easily checked that the first few terms of {An} are given by:

1, 1, 3, 4, 9, 13, 25, 38, 68, 106, . . . .

Our aim in this section is to obtain the ordinary generating function R(x) for {An},

R(x) = A1x+A2x
2 +A3x

3 + · · · ,

and two further generating functions associated with {An}.
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It is actually very straightforward to calculate R(x). Let G(x) be the ordinary generating
function for the Fibonacci numbers. Then from [6] we know that

G(x) = F1x+ F2x
2 + F3x

3 + · · ·

=
x

1− x− x2

=
1√
5

(

1

1− φx
− 1

1− φ̂x

)

,

where

φ =
1 +

√
5

2
and φ̂ =

1−
√
5

2
.

Now, noting that

R(x) =
(

F1x+ F2x
3 + F3x

5 + · · ·
) (

F1 + F2x+ F3x
2 + · · ·

)

,

we have

R(x) =
1

x
G
(

x2
)

· 1
x
G(x)

=
1

5x2

(

1

1− φx2
− 1

1− φ̂x2

)(

1

1− φx
− 1

1− φ̂x

)

.

However, it turns out that this is not particularly amenable with respect to finding a closed-
form expression for An, and the alternative approach we adopt here is to consider {An} as
two interleaved sequences, {Bn} and {Cn}, such that Bn = A2n−1 and Cn = A2n for n ≥ 1.
Let us now obtain the ordinary generating functions for {Bn} and {Cn}.

First,

F0 + F2x
2 + F4x

4 + · · · = 1

2
(G(x) +G(−x))

=
1

2
√
5

(

1

1− φx
− 1

1− φ̂x
+

1

1 + φx
− 1

1 + φ̂x

)

=
1√
5

(

1

1− φ2x2
− 1

1− φ̂2x2

)

.

Thus it is the case that the generating function Qeven(x) for the even-numbered Fibonacci
numbers is given by

F0 + F2x+ F4x
2 + · · · = 1√

5

(

1

1− φ2x
− 1

1− φ̂2x

)

.

From this it follows, on using the semi-stretched convolution (1.1), that the generating function

V (x) = C1x+C2x
2 + C3x

3 + · · ·
for {Cn} may be expressed as

V (x) = G(x)Qeven(x)

=
1

5x

(

1

1− φx
− 1

1− φ̂x

)(

1

1− φ2x
− 1

1− φ̂2x

)

. (2.1)

Similarly, since

F1x+ F3x
3 + F5x

5 + · · · = 1

2
(G(x)−G(−x)) ,
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it may be shown that the generating function Qodd(x) for the odd-numbered Fibonacci numbers
is given by

F1 + F3x+ F5x
2 + · · · = 1√

5

(

φ

1− φ2x
− φ̂

1− φ̂2x

)

,

and hence that the generating function

U(x) = B1x+B2x
2 +B3x

3 + · · ·
for {Bn} is

U(x) =
1

5

(

1

1− φx
− 1

1− φ̂x

)

(

φ

1− φ2x
− φ̂

1− φ̂2x

)

. (2.2)

Both U(x) and V (x) will be utilized in Section 3. Incidentally, we may retrieve R(x) from
these generating functions as follows:

R(x) =
1

x
U
(

x2
)

+ V
(

x2
)

=
1

5x2

(

1

1− φx2
− 1

1− φ̂x2

)

(

1 + φx

1− φ2x2
− 1 + φ̂x

1− φ̂2x2

)

=
1

5x2

(

1

1− φx2
− 1

1− φ̂x2

)(

1

1− φx
− 1

1− φ̂x

)

.

3. A Formula For An

Theorem 3.1.

An =
1

2

(

Fn+3 − F2bn

2 c−bn−5

2 c
)

.

Proof. We start by obtaining a formula for Cn. The right-hand side of (2.1) is multiplied out
and then, employing the method of partial fractions, is expressed in the form

1

5x

(

a

1− φ2x
+

b

1− φ̂2x
+

c

1− φx
+

d

1− φ̂x

)

for some a, b, c, d ∈ R. Subsequently, by expanding each term as a power series in x, comparing
coefficients on both sides of (2.1) and using the results

Fn =
1√
5

(

φn − φ̂n
)

and Fn + 2Fn−1 = φn + φ̂n,

which may be found in [1] and [6], it can be shown that

Cn =
1

2
(F2n+3 − Fn+3) .

Adopting a similar method with (2.2) leads to the result

Bn =
1

2
(F2n+2 − Fn+1) .

From these expressions for Bn and Cn it does indeed follow that

An =
1

2

(

Fn+3 − F2bn

2 c−bn−5

2 c
)

.

�

54 VOLUME 49, NUMBER 1



FIBONACCI DIAGONALS

To take an example,

A8 =
1

2

(

F11 − F2b 8

2c−b 3

2c
)

=
1

2
(F11 − F7)

= 38.

We note here that the sequence {An} does not appear in [8].

4. Further Comments

First, as is noted in [7], the following recurrence relations, valid for n ≥ 1, follow very easily
from the structure of T :

A2n+1 = A2n +A2n−1 + Fn+1 and A2n+2 = A2n+1 +A2n,

where A1 = A2 = 1.
Next, it is interesting that both {Bn} and {Cn} have mathematical lives of their own. We

state here, without proof, a number of results associated with these sequences. The interested
reader might like to consult [8] in this regard, where {Bn} and {Cn} appear as A094292 and
A056014, respectively.

The sequence {Bn} is associated with a particular one-dimensional random walk. Indeed,
Bn gives the number of finite integer sequences (m1,m2, . . . ,mn) of length n such that m1 = 2
and mn = 4, where 1 ≤ mj ≤ 4 and |mj −mj−1| ≤ 1 for j = 2, 3, . . . , n−1 and j = 2, 3, . . . , n,
respectively. Furthermore, Bn satisfies, for n ≥ 5, the recurrence relation

Bn = 4Bn−1 − 3Bn−2 − 2Bn−3 +Bn−4,

with B1 = 1, B2 = 3, B3 = 9 and B4 = 25. In addition we have the following formulas:

Bn =
2

5

4
∑

k=0

sin

(

2πk

5

)

sin

(

4πk

5

)(

1 + 2 cos

(

πk

5

))n+1

and

Bn =
1

2

bn

2 c
∑

k=0

(

n− k

k

)

(−1)kF3(n−k).

The sequence {Cn} is also associated with a one-dimensional random walk, the same one in
fact as mentioned above in connection with {Bn}, except that now m1 = 1. Also, Cn satisfies
the same recurrence relation as Bn, but with the initial conditions C1 = 1, C2 = 4, C3 = 13
and C4 = 38.
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