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Abstract. The paper provides an approximation up to a bounded additive error for the
sequence whose general term is the reciprocal of the tail of series of reciprocals of a given
binary recurrent sequence.

1. Introduction and Goals

Let {Gn}n≥0 be a linear recurrence satisfying the recursion

Gn =

m
∑

i=1

aiGn−i, n ≥ m, (1.1)

with ai ∈ R, 1 ≤ i ≤ m,m ∈ N and with Gn > 0, for n ≥ 1. For integer n ≥ 1, we define the
associated sequences

hn = hn ({Gt}t≥0) =
1

∑∞
i=n

1
Gi

,Hn = Hn ({Gt}t≥0) = bhn + .5c. (1.2)

Let {G′
n}n≥0 be another linear recurrence satisfying the recursion

G′
n =

m′

∑

i=1

a′iG
′
n−i, n ≥ m, (1.3)

with a′i ∈ R, 1 ≤ i ≤ m′,m′ ∈ N. We define the test sequence of {Gn}n≥0 relative to the
recursion (1.3) by

tn = Hn −

m′

∑

i=1

a′iHn−i, n ≥ m′ + 1. (1.4)

We say that the sequence {Gn}n≥0 is almost-recursive with respect to the recursion (1.3) if
tn = O(1). If in (1.1) and (1.3) m = m′, and ai = a′i, 1 ≤ i ≤ m, we say that the sequence
{Gn}n≥0 is almost-recursive with respect to itself, or simply almost-recursive.

Ohtsuka and Nakamura [1] prove that for integer n ≥ 2,
⌊

1
∑∞

i=n
1
Fi

⌋

= Fn−2 +

(

(−1)n − 1

2

)

. (1.5)

The corresponding identity when the nearest integer function is used is

Hn ({Fm}m≥0) = Fn−2, n ≥ 2. (1.6)
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While revising this paper, the author learned that Komatsu [2] proved a variety of general-
izations of (1.5). For example, he proves that if un = aun−1 + un−2 + · · · + un−s, n ≥ s, u0 ≥
0, uk ∈ N, 0 ≤ k ≤ s− 1, a, s ∈ N then there is a constant n0 such that

Hn ({um}m≥0) = un − un−1, n ≥ n0. (1.7)

Notice that (1.7) includes as special cases the Pell numbers and the Generalized Fibonacci
numbers with recursion Gn = aGn−1 +Gn−2, G0 = 0, G1 = 1. We can reformulate (1.6) and
(1.7) as stating that the Fibonacci numbers and the sequence {un}n≥0 are almost-recursive
with respect to themselves with their test sequences eventually becoming identically zero.

We can now outline the rest of this paper. Given an arbitrary second order recursion,

Gn = can + dbn, with a, b, c, d ∈ R, cd 6= −1, a > 0,max{1, |b|} < a, (1.8)

the main theorem, proven in Section 3, with the consequences to it proven in Section 4,
explicitly computes a sequence {G′

n}n≥0 such that {Gn}n≥0 is almost recursive with respect to
any recursion which {G′

n}n≥0 satisfies. We are then assured that the test sequence is bounded.
However the main theorem says nothing about the nature of the test sequence (other than

it is bounded). The test sequences of recursions that are almost recursive with respect to
another sequence do not seem to have any special properties. However, the test sequences
of recursions that are almost recursive with respect to themselves exhibit periodicity and a
variety of other interesting properties. Accordingly, in Section 2, we explore many examples
and present several conjectures and open problems.

2. Examples and Conjectures

Throughout this section we study sequences {Gn}n≥0 satisfying (1.8) and also satisfying

b2 < a. (2.1)

Knowledge of the full statement of the main theorem and its corollaries is not needed in this
section. It suffices to cite two results: (i) Corollary 4.3 of Section 4 which asserts that any
recursive sequence satisfying (1.8) and (2.1) is almost recursive with respect to itself, and (ii)
Proposition 4.1 which implies that {Gn}n≥0 satisfies the recursion Gn = (a+b)Gn−1−abGn−2.
Using (1.2) and (1.4) we can then compute the test sequence, {tn}n≥3.

We first introduce well-known terminology and notation useful in describing these sequences.

Definition 2.1. A sequence is periodic if for some non-negative integer l, tn = tn+l for all
n > n0. Without loss of generality, we may assume l and n0 smallest.

l is called the length of the period. Furthermore, if n0 = 0 then the sequence is called purely
periodic; otherwise it is called periodic, or if we wish to give emphasis, eventually periodic.

We notationally indicate the period by 〈pi, i = 1, . . . , l〉.
We follow the usual convention of letting pi+ml = pi,m ∈ N .
We say the period is anti-symmetric if l is even and if pi = pi+l/2, 1 ≤ i ≤ l/2.
Two periods, p, q, of two different sequences are said to be similar if their lengths are equal

and for some non-negative integer, c, pi = εqi+c, 1 ≤ i ≤ l, ε ∈ {−1, 1}. Intuitively, similarity
refers to a translation with a possible sign change. Since similarity is an equivalence relation,
we may freely speak about the period class or the similarity class.

Prior to presenting the next definition we first mention conjectures which hold in all exam-
ples studied.

Conjecture 2.2. If (1.8) and (2.1) hold then the test sequence is eventually periodic.
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Comment: Eventual periodicity also seems to hold for sequences of higher orders, for
example the Tribonacci numbers (cf. [2]), provided these sequences are almost recursive with
respect to themselves. However, we have not found periodicity in sequences which are almost
recursive with respect to other sequences, even though the main theorem and its consequences
state that their test sequences are bounded.

Conjecture 2.3. Suppose (1.8) and (2.1) hold. Suppose further that the test sequence is
eventually periodic with period p and (period) length l. Then if p is not identically zero, then
max1≤i≤l pi > 0 and min1≤i≤l pi < 0.

Comment: Note, Conjecture 2.3 is true in all examples reviewed, independent of the signs
of c and d. Note, that if p and p′ are two similar periods that differ by a sign then their max
and min will be reversed. This motivates the next definition.

Definition 2.4. The max-min set of a period is (max |pi|,min |pi|).

We now present examples. We start with a simple example illustrating many of our previous
definitions. In the remainder of the paper we use parenthesis, braces, and angle-brackets to
indicate sets, infinite sequences, and finite sequences, respectively.

Example 2.5. In (1.8), let 〈a, b, c, d〉 = 〈18, 4, 1, 1〉. Using (1.2), we can compute

Hn

(

{Gt}t≥0

)

n≥1
= {21, 320, 5566, 99375, 1785517, 32126355, . . .}.

By (1.8), (2.1), and Conjecture 2.2, the sequence {Gn}n≥0, is almost recursive with respect to
itself. By (1.4), {tn}n≥3 = {38,−37, 19,−19, 19,−19, 19,−19, . . .}. Thus the sequence {tn}n≥3

appears to be eventually periodic with period length 2 with the underlying period possessing
anti-symmetry.

The following example gives an interesting illustration of the known fact that an assertion
of periodicity is dependent on the length of the initial segment of the sequence computed.

Example 2.6. In (1.8), let a = 17, b = 4, c = −1, d = −3. Define vectors

v1 = 〈−17,−2, 35,−18,15,32,33, 17,−1,15,34, − 1, 17, 0,−1, 18,−16,−16〉,

v2 = 〈−17,−2, 35,−19,35,−15,−35, 17,−1,15,34, − 1, 17, 0,−1, 18,−16,−16〉, and

v3 = 〈−17,−2, 35,−19,35,−15,−35, 17,−2,36,−34, − 1, 17, 0,−1, 18,−16,−16〉.

In defining the vi, i = 1, 2, 3, we have used boldface to highlight the differences between the vi.
More specifically, v1 differs from v2 at positions 4,5,6,7 and v2 and v3 differ at positions 9,10,
and 11. By (1.4), 〈t1, t2, . . . , t198〉 = v1v2v2v3v3v3v3v3v3v3v3.

If we had only computed 54 terms then the sequence v1v2v2 suggests that v2 is the period.
However, after computing 198 terms we see that v3 is probably the true period.

This example emphasizes the fact that each assertion of periodicity in the examples pre-
sented in this section is a conjecture. Any particular example can be proven using either the
algebraic methods of Ohtsuka and Nakamura [1], or the analytic (power series) methods of
Komatsu [2]. The challenge in these conjectures and open problems is to find proofs that cover
a wide range of cases.

In studying further examples we focus on the following five attributes of test sequences and
their periods.

* The period, (actually a representative of the period class), p,
* The period length, l,

FEBRUARY 2011 43



THE FIBONACCI QUARTERLY

* The max-min set, (max1≤i≤l |pi|,min1≤i≤l |pi|),
* The period sum,

∑

1≤i≤l pi, and

* Anti-symmetry.

However, in the examples we reviewed, pure periodicity was rare, and therefore, it is not
studied further in this section.

a 18 22 34 38 42 46 62
l 2 2 1 6 10 5 2
max−min (19,19) (23,23) (0,0) (78,76) (85,44) (93,47) (62,1)
∑

pi 0 0 0 37 0 -135 -61

Table 1. Period lengths, max-min sets, and period sums for the given value
of a with b = 4, c = 1, d = 1 in (1.8).

Table 1 shows these attributes for 〈a, b, c, d〉 = 〈18 + 4i, 4, 1, 1〉, i ∈ {0, 1, 4, 5, 6, 7, 11}. In
interpreting the table notice that we have anti-symmetry when a = 18, 22. To see this, recall
by the conjectures that the max and min have opposite signs. Since the period length is 2, it
follows that 〈19,−19〉 and 〈23,−23〉 are representatives of the similarity class of the periods
of the test sequences for a = 18 and a = 22, respectively. A more sophisticated example of
anti-symmetry occurs when 〈a, b, c, d〉 = 〈70, 4, 1, 1〉 with period p = 〈70, 1,−70,−1〉.

In Table 1, notice that certain periods are anti-symmetric, certain periods have singleton
max-min sets, and certain periods have zero period-sums (even though they are not anti-
symmetric and even though their max and min differ). Table 1, as well as the other examples
and table in this section, suggest obvious open questions.

Open Questions:

* Are there an infinite number of quadruples 〈a, b, c, d〉 whose periods have a given period
length?

* For which quadruples and how frequently do we have
∑

pi = 0?
* Can we characterize those quadruples, and describe the frequency of quadruples, with
antisymmetric periods or with singleton max-min sets?

* These periods of test sequences are reminiscent of the periodic continued fractions
of quadratic irrationals. The analogy suggests seeking parametrically defined infinite
subsets of quadruples whose periods exhibit common patterns.

(a, b) (10,3) (13,3) (16,3) (17,4) (24,4) (34,5) (39,6)
l 48 41 55 18 30 575 10
max−min (11,11) (14,14) (17,17) (35,35) (49,50) (70,70) (120,118)
∑

pi 0 72 0 0 69 0 0

Table 2. Period lengths, max-min sets, and period sums for the given value
of a, b with c = 1, d = 1, in (1.8). The only example with anti-symmetry is
a = 10, b = 3.

Table 2 explores several other quadruples with a variety of properties. Again the table
suggests several open questions.
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We close this section with an example exploring certain parameters varying while others
remain fixed.

Example 2.7. In (1.8) let a = 5 and b = 2. As we let c, d vary over a wide range of
integer pairs we observe that the periods of the associated test sequences are always similar to
〈0, 0, 1,−6, 6,−5,−1, 5, 1,−6, 5〉.

Several other pairs of 〈a, b〉 with small b seem to have one period class independent of the
choice of 〈c, d〉. In the general case although we don’t have single period classes the period
lengths seem to have a non-trivial common multiple. The number of period lengths associated
with a fixed a and b also appears to sometimes be bounded (as c and d arbitrarily vary).

3. The Main Theorem

In this section we present and prove the main theorem.

Theorem 3.1. Let a, b, c, d and {Gn}n≥0 be defined as in (1.8). Let k0 be the unique non-
negative integer satisfying,

∣

∣

∣

∣

bk0+1

ak0

∣

∣

∣

∣

< 1 ≤

∣

∣

∣

∣

bk0

ak0−1

∣

∣

∣

∣

. (3.1)

Let hn be defined by (1.2). Then for sufficiently large n, there are computable constants ek, k =
1, 2, . . . , such that

hn = hn ({Gt}t≥0) = c
a− 1

a
an + c

a− 1

a

k0
∑

k=1

ek

(

bk

ak−1

)n

+O(1). (3.2)

Proof. By (1.8),

Gm = cam
(

1 +
dbm

cam

)

.

Also by (1.8), for sufficiently large m, the rightmost fraction above is bounded by 1 in absolute
value. Thus, for sufficiently large m,

1

Gm
=

1

cam

(

1 +
dbm

cam

)−1

=
1

cam



1 +
∑

k≥1

(−1)k
(

d

c

)k ( b

a

)mk




=
1

cam
+
∑

k≥1

(−1)k
(

dk

ck+1

)(

bk

ak+1

)m

.
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Taking sums and regrouping to emphasize the corresponding geometric series, we obtain, using
(1.2), that for sufficiently large n,

1

hn
=

∑

m≥n

1

Gm

=
1

ca−1
a an

+
∑

k≥1

(−1)k
(

dk

ck+1

)(

ak+1

ak+1 − bk

)(

bk

ak+1

)n

(3.3)

=
1

ca−1
a an



1 +
∑

k≥1

fk

(

b

a

)kn


 ,

where

fk = (−1)k
dk

ck
ak(a− 1)

ak+1 − bk
. (3.4)

In taking these sums, we need not worry about absolute convergence since we are working
with exponentially decaying sequences. By considering the two cases of positive or negative b

in the equation fk = (−1)k
(

d
c

)k a−1
a−( b

a
)k
, and by (1.8), we see

|fk| <

(∣

∣

∣

∣

d

c

∣

∣

∣

∣

)k

, k ≥ 1. (3.5)

Consequently, it follows that for

L >
log(|dc |)

log
(

a
|b|

) ,

and for sufficiently large N , that for all n > N > L,

∣

∣

∣

∣

∣

∑

k≥1

fk

(

b

a

)kn
∣

∣

∣

∣

∣

<
∑

k≥1

(∣

∣

∣

∣

d

c

∣

∣

∣

∣

)k ( |b|

a

)kn

≤
∑

k≥1

(

|b|

a

)k(N−L)

<

(

|b|

a

)(N−L)

< 1. (3.6)

Define

Z =
∑

k≥1

fk

(

b

a

)kn

. (3.7)

Then (3.6) shows |Z| =

∣

∣

∣

∣

∣

∣

∑

k≥1

fk

(

b

a

)kn
∣

∣

∣

∣

∣

∣

< 1. Hence, by (3.3) we obtain

hn = c
a− 1

a
an (1 + Z)−1 = c

a− 1

a
an



1 +
∑

l≥1

(−1)lZ l



 . (3.8)
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We recognize in (3.8) the main term from (3.2). To obtain the other terms, we expand Z l

using the multinomial formula.

Z l =





∑

k≥1

fk

(

b

a

)kn




l

=
∑

i1≥0,...,il≥0
i1+···+il=l

∑

1≤k1<k2<···<kl

(

l

i1, . . . , il

)

f i1
k1
. . . f il

kl

(

b

a

)(i1k1+···+ilkl)n

=
∑

k≥1

fk,l

(

b

a

)kn

,

where

fk,l =
∑

i1≥0,...,il≥0
i1+···+il=l

1≤k1<k2<···<kl
k1i1+···+klil=k

(

l

i1, . . . , il

)

f i1
k1
. . . f il

kl
. (3.9)

Hence, by (3.8)-(3.9), we obtain (for sufficiently large n)

hn = c
a− 1

a
an + c

a− 1

a

∑

k≥1

∑

l≥1

(−1)lfk,l

(

bk

ak−1

)n

,

= c
a− 1

a
an + c

a− 1

a

k0
∑

k=1

ek

(

bk

ak−1

)n

+ c
a− 1

a

∑

k>k0

ek

(

bk

ak−1

)n

, (3.10)

with

ek =
∑

l≥1

(−1)lfk,l, k ≥ 1. (3.11)

To complete the proof of (3.2) we need to make two observations.
First note, that for each fixed k, the apparently infinite sum over l in (3.9) and (3.11) in

fact stops at l = k. To see this, notice that if i1k1+ · · ·+ ilkl = k, with 1 ≤ k1 < · · · < kl, then

l = i1 + · · ·+ il ≤ i1k1 + · · ·+ ilkl = k.

Second, we must estimate the third summand on the right hand side of (3.10).

First we fix k > k0 and, using (3.9) and (3.11), estimate |ek|, the coefficient of an
(

b
a

)kn
.

The index of summation in (3.9) counts partitions of k with i1 parts equal to k1, i2 parts
equal to k2 and so on up to il parts equal to kl. The multinomial coefficient counts the
number of ways of permuting these parts within the sum. Hence, this quantity is the same as
the number of ways of writing k1 + · · ·+ kl = k, with positive integers k1, . . . , kl and since this
number equals

(

k
l−1

)

the sum of all these binomial coefficients over all possible l is bounded

above by 2k−1.
By (3.9) and (3.5),

f i1
k1
f i2
k2

· · · f il
kl
<

(∣

∣

∣

∣

d

c

∣

∣

∣

∣

)k1i1+k2i2+···+klil

=

(∣

∣

∣

∣

d

c

∣

∣

∣

∣

)k

.
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Combining these two estimates it follows, that for large enough n, say for all n > n0, that
an estimate of the third summand on the right-hand side of (3.10) is

c
a− 1

a

∑

k>k0

ek

(

bk

ak−1

)n

< c
a− 1

a
an

∑

k≥k0+1

2k−1

(∣

∣

∣

∣

d

c

∣

∣

∣

∣

)k ( |b|

a

)kn

< c
a− 1

a

(∣

∣

∣

∣

2d

c

∣

∣

∣

∣

)k0+1( |b|k0+1

ak0

)n
∑

k≥0

(∣

∣

∣

∣

2d

c

∣

∣

∣

∣

(

|b|

a

)n)k

(3.12)

< O(1),

where n0 is large enough so that
∣

∣

2d
c

∣

∣

(

|b|
a

)n0

< 1. Such a choice is possible, since by (1.8)

|b|
a < 1. The O(1) result now follows from (3.1).
Note the subtlety throughout the proof, that certain constants must be independent of both

k and n.
Equation (3.2) now follows from (3.10) and (3.12). �

Comment: Note that the O(1) in (3.2) which come from (3.12) is in fact o(1) except if
ak0−1 = |b|k0 , which can happen for example when {Gn}n≥0 are the Fibonacci numbers.

4. Consequences of the Main Theorem

In this section we produce explicit computations and formulate consequences of the main
theorem for almost-recursiveness. The following well-known fact about recursive sequences
facilitates statements of corollaries to the main theorem.

Proposition 4.1. Suppose ri, 1 ≤ i ≤ m,m ∈ N, are distinct reals and gi, 1 ≤ i ≤ m are
arbitrary reals (not necessarily distinct from each other). Then the sequence,

Jn =

m
∑

i=1

gir
n
i ,

satisfies the recursion Jn =
∑m

i=1miJn−i, with the mi defined by

Xm −

m
∑

i=1

mix
m−mi =

m
∏

i=1

(x− ri).

Corollary 4.2. {Gt}t≥0 is almost-recursive with respect to any recursion satisfying the recur-

sive sequence ca−1
a an + ca−1

a

∑k0
k=1 ek

(

bk

ak−1

)n
.

Proof. Using the notation of Proposition 4.1 and Theorem 3.1, let m = k0 + 1, r1 = a,

g1 = ca−1
a , and for 1 ≤ i ≤ k0, let ri+1 = bi

ai−1 , and gi+1 = ca−1
a ei. The result now follows by

(1.2). �

The following identity is useful in computations. By (3.9),

fk,1 = fk, k = 1, 2, . . . . (4.1)

Corollary 4.3. If (1.8) and (2.1) holds then {Gt}t≥0 is almost-recursive with respect to itself.
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Proof. By (3.1) and the assumptions, we have k0 = 1. By (3.2), (3.4), (3.9), (3.11), and (4.1),
we have

hn = c
a− 1

a
an + d

(a− 1)2

a2 − b
bn +O(1). (4.2)

Proposition 4.1 asserts that both Gn = can+dbn and ca−1
a an+d (a−1)2

a2−b
bn, satisfy a second order

recursion whose coefficients are given by the non-monic terms in the polynomial, (x−a)(x−b) =
x2 − (a+ b)x+ ab. Therefore, {Gt}t≥0 is recursive with respect to itself. �

Corollary 4.4. The Fibonacci numbers are almost-recursive with respect to themselves [1].

Proof. In the main theorem, let c = 1√
5
, a =

√
5+1
2 , b = −

√
5+1
2 , and d = − 1√

5
. Then {Gn}n≥0 =

{Fn}n≥0. By (3.1), k0 = 0. The main theorem implies that the Fibonacci numbers are almost-
recursive with respect to any recursion satisfying the sequence {ca−1

a an}n≥0. It immediately
follows that the Fibonacci numbers are almost-recursive with respect to themselves, since
{Fn}n≥0 and {ca−1

a an}n≥0 both satisfy the Fibonacci recursion. �

Equation (4.2) describes {hn}n≥1 when k0 = 1, in Theorem 3.1. The next proposition deals
with the case k0 = 2. It is an interesting exercise to prove similar Propositions for the cases
k = 3, 4, . . .. However, for this paper, we suffice with Corollaries 4.3 and 4.5.

Corollary 4.5. If in (1.8), k0 = 2, then

hn = c
a− 1

a
an + d

(a− 1)2

a2 − b
bn +

(a− 1)2ad2

c

(

a− 1

(a2 − b)2
−

1

a3 − b2

)(

b2

a

)n

+O(1). (4.3)

Proof. By (3.2), (3.4), (3.9), (3.11), and (4.1). �

Example 4.6. In the Main Theorem let c = 1, a = 3, b = 2, and d = 1. Then, by (1.8),
Gn = 3n + 2n. By (3.1), since b2 > a but b3 < a2, k0 = 2. Using Proposition 4.5 we compute

hn ({3
m + 2m}m≥0) =

2

3
· 3n +

4

7
· 2n −

36

1127

(

4

3

)n

+O(1).

{Gn}n≥0 is almost-recursive with respect to any recursion satisfying the sequence determined
by the first three summands on the right hand side, whose first few terms are

{3.1, 8.2, 22.5, 63.0, 180.2, 522.4, . . .}.

Note that this sequence is approximated well by {Hn}n≥1 = {3, 8, 23, 63, 180, 522, . . .}. The
coefficients for a recursion for {Gn}n≥0 may be obtained by expanding the polynomial

(X − 3)(X − 2)

(

X −
4

3

)

.

We can then compute the sequence {3tn}n≥4 = {−16, 25,−12, 3,−13, 12, 3,−13, 12, 0, 0, . . .}.
As indicated earlier in the paper, although this sequence is bounded, it does not seem to exhibit
periodicity.
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