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Abstract. Define the sequence {Un} as U0 = 0, U1 = 1, and Un = pUn−1 − Un−2 for
n ≥ 2. We study

∑

n

h=0
hm

(

n

h

)

Uh and
∑

n

h=0
(−1)n+hhm

(

n

h

)

Uh, and express them in terms of
two associated sequences. Special cases of p = 2, 3 lead to interesting binomial and Fibonacci
identities.

1. Introduction

For any positive integer p, define the sequence {Un}
∞
n=0 according to

U0 = 0, U1 = 1, Un = pUn−1 − Un−2, n ≥ 2.

The sequence {Un} generates the natural numbers when p = 2. For p > 2, some familiar
properties of the natural numbers can be found in {Un}. For instance, using Binet’s formula
(see below), it is easy to show that

n
∑

i=1

U2i−1 = U2
n,

which bears a close resemblance to
∑n

i=1
(2i − 1) = n2. For this reason we may regard Un a

generalization of the natural numbers.
As in the case of Fibonacci-Lucas sequences, we define the associated sequence {Vn} as

V0 = 2, V1 = p, Vn = pVn−1 − Vn−2, n ≥ 2.

Of particular interest is the case of p = 3, in which we find Un = F2n and Vn = L2n.
In this short note, we study two types of summations:

n
∑

h=0

hm
(

n

h

)

Uh, and
n
∑

h=0

(−1)n+hhm
(

n

h

)

Uh,

for some nonnegative integer m. We find relatively simple closed forms for them. Along
with an iterative technique and an “exchange” theorem, many combinatorial identities can
be obtained. Applications to the special cases of p = 2, 3 lead to well-known binomial and
Fibonacci identities.

2. Basic Binomial Identities Associated with Un

To facilitate our discussion, we define two new sequences {Xn} and {Yn} according to

X0 = 0, X1 = 1, Xn = (p + 2)(Xn−1 −Xn−2), n ≥ 2,

Y0 = 0, Y1 = 1, Yn = (p− 2)(Yn−1 + Yn−2), n ≥ 2.

Unless otherwise stated, we assume p > 2 throughout our exposition.

FEBRUARY 2011 57



THE FIBONACCI QUARTERLY

p i 0 1 2 3 4 5 6 7 8

Ui 0 1 2 3 4 5 6 7 8
Vi 2 2 2 2 2 2 2 2 2

2 Xi 0 1 4 12 32 80 192 448 1024
Yi 0 1 0 0 0 0 0 0 0

Ui 0 1 3 8 21 55 144 377 987
Vi 2 3 7 18 47 123 322 843 2207

3 Xi 0 1 5 20 75 275 1000 3625 13125
Yi 0 1 1 2 3 5 8 13 21

Ui 0 1 4 15 56 209 780 2911 10864
Vi 2 4 14 52 194 724 2702 10084 37634

4 Xi 0 1 6 30 144 684 3240 15336 72576
Yi 0 1 2 6 16 44 120 328 896

Table 1. Values of Ui, Vi, Xi, and Yi for different values of p.

The Binet forms for Un, Vn, Xn, and Yn are given below.

Un =
αn − βn

α− β
,

Vn = αn + βn,

Xn =
(α+ 1)n − (β + 1)n

α− β
,

Yn =
(α− 1)n − (β − 1)n

α− β
,

where

α =
p+

√

p2 − 4

2
and β =

p−
√

p2 − 4

2
.

They yield the following basic results.

Theorem 2.1. The following identities hold for all n ≥ 0:
n
∑

h=0

(

n

h

)

Uh = Xn, (2.1)

n
∑

h=0

h

(

n

h

)

Uh = n(Xn −Xn−1), (2.2)

n
∑

h=0

(−1)n+h

(

n

h

)

Uh = Yn, (2.3)

n
∑

h=0

(−1)n+hh

(

n

h

)

Uh = n(Yn + Yn−1). (2.4)

Proof. Since
n
∑

h=0

(

n

h

)

αh = (1 + α)n and

n
∑

h=0

(

n

h

)

βh = (1 + β)n,
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(2.1) follows immediately from Binet’s formulas. Likewise,

n
∑

h=0

(−1)n+h

(

n

h

)

αh = (−1)n
n
∑

h=0

(

n

h

)

(−α)h = (−1)n(1− α)n = (α− 1)n,

and
∑n

h=0
(−1)n+h

(n
h

)

βh = (β − 1)n give (2.3).
Observe that

n
∑

h=0

h

(

n

h

)

αh = α ·
d

dα

[

n
∑

h=0

(

n

h

)

αh

]

= α ·
d

dα
(1 + α)n.

Hence,
n
∑

h=0

h

(

n

h

)

αh = nα(1 + α)n−1 = n[(1 + α)n − (1 + α)n−1]. (2.5)

Similarly we obtain
n
∑

h=0

h

(

n

h

)

βh = n[(1 + β)n − (1 + β)n−1], (2.6)

which consequently yields (2.2). It is clear that (2.4) can be derived in a similar manner. �

These four identities lay the ground work for many more. Our main tools are the Iterative
Technique and the Exchange Theorem, as discussed in the following sections.

3. The Iterative Technique

A scrutiny of (2.5) and (2.6) suggests that an iterative technique for computing
∑n

h=0
hm

(n
h

)

Uh

and
∑n

h=0
(−1)n+hhm

(

n
h

)

Uh, where m ≥ 1, can be devised. In general, we find

n
∑

h=0

hm
(

n

h

)

th = t ·
d

dt

[

n
∑

h=0

hm−1

(

n

h

)

th

]

.

Since
∑n

h=0
hm−1

(n
h

)

th is a polynomial in (1 + t), say,

n
∑

h=0

hm−1

(

n

h

)

th =
∑

k≥0

ak(1 + t)k,

it then follows that

n
∑

h=0

hm
(

n

h

)

th =
∑

k≥0

akkt(1 + t)k−1 =
∑

k≥0

akk[(1 + t)k − (1 + t)k−1].

In light of (2.5) and (2.6), define an operator D on Xn as

DXn = n(Xn −Xn−1), for n ≥ 1.

It follows from the discussion above that, if
∑n

h=0
hm−1

(n
h

)

Uh is of the form
∑

k≥0
akXk, then

∑n
h=0

hm
(n
h

)

Uh = D
(

∑

k≥0
akXk

)

. Hence the coefficients ak can be computed iteratively.
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For example, from (2.2), we find

n
∑

h=0

h2
(

n

h

)

Uh = D

[

n
∑

h=0

h

(

n

h

)

Uh

]

= nD(Xn −Xn−1)

= nDXn − nDXn−1

= n2(Xn −Xn−1)− n(n− 1)[Xn−1 −Xn−2]

= n2Xn − n(2n− 1)Xn−1 + n(n− 1)Xn−2. (3.1)

Note that when p = 2, we have α = β = 1, and

Xn = lim
p→2

n
∑

h=0

(

n

h

)

αh − βh

α− β

= lim
p→2

n
∑

h=0

(

n

h

) h−1
∑

i=0

αh−1−iβi

=

n
∑

h=0

(

n

h

)

h

= n · 2n−1.

In addition, since Uh = h when p = 2, equation (3.1) becomes
n
∑

h=0

h3
(

n

h

)

= n2(n+ 3)2n−3.

This result can be easily verified by noting that
n
∑

h=0

h3
(

n

h

)

xh =

(

x
d

dx

)3

(1 + x)n,

and then by letting x = 1.
In an analogous manner, define the operator

∆Yn = n(Yn + Yn−1), for n ≥ 1.

Then one can deduce from (2.4) that
n
∑

h=0

(−1)n+hh2
(

n

h

)

Uh = n2Yn + n(2n− 1)Yn−1 + n(n− 1)Yn−2. (3.2)

In particular, when p = 3, Uh = F2h, and Yn = Fn, hence
n
∑

h=0

(−1)n+hh2
(

n

h

)

F2h = n2Fn + n(2n− 1)Fn−1 + n(n− 1)Fn−2.

Note that, similar to the Xn case, when p = 2, we have

Yn = (−1)n
n
∑

h=0

(−1)h
(

n

h

)

h =

{

0 if n 6= 1,

1 if n = 1,

which agrees with the definition of Yn.
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In general, for any m ≥ 1, the iterative process is summarized in the following theorem.

Theorem 3.1. For m ≥ 0, define the polynomials am,r(n) recursively according to

am,r(n) = (n− r)am−1,r(n)− (n− r + 1)am−1,r−1(n), m ≥ 1,

with the initial value a0,0(n) = 1, and the convention that am,r(n) = 0 if r < 0 or r > m.

Then
n
∑

h=0

hm
(

n

h

)

Uh =
m
∑

r=0

am,r(n)Xn−r, (3.3)

and
n
∑

h=0

(−1)n+hhm
(

n

h

)

Uh =
m
∑

r=0

(−1)ram,r(n)Yn−r, (3.4)

for all integers m ≥ 0.

Proof. Recall that
n
∑

h=0

hm
(

n

h

)

Uh = D

[

n
∑

h=0

hm−1

(

n

h

)

Uh

]

.

Hence,

m
∑

r=0

am,r(n)Xn−r = D

[

m−1
∑

r=0

am−1,r(n)Xn−r

]

=

m−1
∑

r=0

am−1,r(n) · (n − r)(Xn−r −Xn−r−1)

= am−1,0(n)Xn

+
m−1
∑

r=1

[(n − r)am−1,r(n)− (n− r + 1)am−1,r−1(n)]Xn−r

− (n−m+ 1)am−1,m−1(n)Xn−m.

By assuming am−1,r(n) = 0 if r < 0 or r > m− 1, we can write

m
∑

r=0

am,r(n)Xn−r =
m
∑

r=0

[(n− r)am−1,r(n)− (n− r + 1)am−1,r−1(n)]Xn−r.

The recurrence for am,r(n) follows directly by comparing coefficients. In a similar fashion,
define

n
∑

h=0

(−1)n+hhm
(

n

h

)

Uh =

m
∑

r=0

bm,r(n)Yn−r.

We find, via ∆,

bm,r(n) = (n− r)bm−1,r(n) + (n − r + 1)bm−1,r−1(n),

and it is clear from the derivation that bm,r(n) = (−1)ram,r(n). �
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It is obvious from the recurrence that am,r(n) is a polynomial of degree m for 0 ≤ r ≤ m,
and the leading coefficient of am,r(n) is positive if and only if r is even. In addition, the
telescoping nature in the recurrence for am,r(n) implies

m
∑

r=0

am,r(n) = 0.

Using induction, it is easy to verify that am,0(n) = nm,

bm,m(n) = n(n− 1) · · · (n−m+ 1) = P (n,m),

and

bm,m−1(n) =
m(2n−m+ 1)P (n,m− 1)

2
.

These observations help us derive some interesting results.
When p = 2, we find Uh = h, Y1 = 1, and Yn = 0 if n 6= 1. Hence, if we set m = n − 1,

equation (3.4) becomes
n
∑

h=0

(−1)n+hhn
(

n

h

)

= (−1)n−1an−1,n−1(n).

From
an−1,n−1(n) = (−1)n−1bn−1,n−1(n) = (−1)n−1P (n, n− 1),

we obtain the remarkable combinatorial identity
n
∑

h=0

(−1)n+hhn
(

n

h

)

= n!

Likewise, by setting m = n, we obtain
n
∑

h=0

(−1)n+hhn+1

(

n

h

)

=
n(n+ 1)!

2
.

We wish to mention one more identity that is not of the type already discussed so far. Note

that α−β =
√

p2 − 4, αβ = 1, α2 +1 = pα, and β2+1 = pβ. We find from the Binet’s forms
for Un that

(p2 − 4)

n
∑

h=0

(

n

h

)

U2
h =

n
∑

h=0

(

n

h

)

(αh − βh)2

=

n
∑

h=0

(

n

h

)

(α2h + β2h)− 2

n
∑

h=0

(

n

h

)

= (1 + α2)n + (1 + β2)n − 2 · 2n

= (pα)n + (pβ)n − 2n+1.

Therefore,
n
∑

h=0

(

n

h

)

U2
h =

pn(αn + βn)− 2n+1

p2 − 4
. (3.5)

In particular, for p > 2,
n
∑

h=0

(

n

h

)

U2
h =

pnVn − 2n+1

p2 − 4
. (3.6)
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When p = 3, Vn = L2n and Un = F2n, hence (3.6) reduces to

n
∑

h=0

(

n

h

)

F 2
2h =

3nL2n − 2n+1

5
.

The case of p = 2 requires a bit more work, as we need to take the limit as p approaches 2.
Since

αn =
1

2n

n
∑

j=0

(

n

j

)

pn−j(p2 − 4)j/2

and

βn =
1

2n

n
∑

j=0

(−1)j
(

n

j

)

pn−j(p2 − 4)j/2,

we have

αn + βn =
1

2n−1

[

pn +

(

n

2

)

pn−2(p2 − 4) +

(

n

4

)

pn−4(p2 − 4)2 + · · ·

]

.

Therefore, when p = 2, we find (recall that Uh = h if p = 2):

n
∑

h=0

(

n

h

)

h2 = lim
p→2

pn(αn + βn)− 2n+1

p2 − 4

= lim
p→2

1

2n−1

[(

n

2

)

p2n−2 +
p2n − 22n

p2 − 4

]

=

(

n

2

)

2n−1 +
1

2n−1
lim
p→2

n−1
∑

k=0

(p2)n−1−k · 4k

=

(

n

2

)

2n−1 +
1

2n−1
· n · 4n−1

= n(n+ 1)2n−2.

This result can be verified from
n
∑

h=0

(

n

k

)

h2xh =

(

x
d

dx

)2

(1 + x)n

by setting x = 1.

4. Exchange Theorem

Identity (3.3) asserts that

n
∑

h=0

hm
(

n

h

)

Uh =
m
∑

r=0

am,r(n)Xn−r.

If we follow the proofs of (2.3) and (3.4), it is not difficult to show that

n
∑

h=0

(−1)n+hhm
(

n

h

)

Xh =
m
∑

r=0

(−1)ram,r(n)Un−r.

Comparing the two results, we may regard {Un} and {Xn} an exchangeable pair of sequences.
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In an almost identical manner, it is easy to prove that

n
∑

h=0

(

n

h

)

Yh = Un,

from which we deduce that

m
∑

h=0

hm
(

n

h

)

Yh =

m
∑

r=0

am,r(n)Un−r.

Compared to (3.4), it is clear that {Yn} and {Un} also form an exchangeable pair of sequences.
More important is the fact that the proofs rely on Binet’s formulas only. Hence, identical

results hold for similar sequences sharing the same Binet’s forms, which in turn depend on the
initial values. This means as long as two sequences share the same initial values, and their
distinct characteristic roots differ by one, we expect them to form an exchangeable pair of
sequences.

For instance, let Pn and Qn be two sequences with the same initial values P0 = Q0 = 0,
and P1 = Q1 = 1. Then if λ1, λ2 and µ1, µ2 are their distinct characteristic roots, such that
µi − λi = 1, their Binet’s forms will be

Ph =
λh
1 − λh

2

λ1 − λ2

=
(µ1 − 1)h − (µ2 − 1)h

µ1 − µ2

,

and

Qh =
µh
1 − µh

2

µ1 − µ2

=
(λ1 − 1)h − (λ2 − 1)h

λ1 − λ2

.

The following Exchange Theorem becomes immediate.

Theorem 4.1. The identities

n
∑

h=0

hm
(

n

h

)

Ph =

m
∑

r=0

am,r(n)Qn−r, (4.1)

and
n
∑

h=0

(−1)n+hhm
(

n

h

)

Qh =

m
∑

r=0

(−1)ram,r(n)Pn−r (4.2)

hold for all integers m ≥ 0.

As an illustration let us apply the Exchange Theorem to the identities (2.1) and (2.2). The
application of the theorem transforms them to

n
∑

h=0

(

n

h

)

Xh = Un,

n
∑

h=0

h

(

n

h

)

Xh = n(Un − Un−1).
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Now, by noting the fact that for p = 3, Un = F2n and Xn = Fn, we can deduce the Fibonacci
identities (see [1])

n
∑

h=0

(

n

h

)

Fh = F2n,

n
∑

h=0

h

(

n

h

)

Fh = n(F2n − F2n−2) = nF2n−1.

The identity (3.1), on applying Theorem 4.1, yields
n
∑

h=0

h2
(

n

h

)

Xh = n2Un − n(2n− 1)Un−1 + n(n− 1)Un−2,

which reduces to the following Fibonacci identity when p = 3:
n
∑

h=0

h2
(

n

h

)

Fh = n2F2n − n(2n − 1)F2n−2 + n(n− 1)F2n−4.

5. Closing Remarks

In this short note, we have demonstrated how the iterative technique and the Exchange
Theorem could lead to familiar and some surprising identities. It would be interesting to see
if they can be applied to other sequences and what kinds of new identities they may produce.
Another research project is to study the properties of the coefficients am,r. Finally, can these
techniques be generalized any further?
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