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Abstract. In this note, we shall study some additive properties of the Fibonacci sequence
F . In particular, we prove a lower and an upper bound for the quantity sup

A⊆N
{d(A) :

(A− A) ∩ F = ∅}.

1. Introduction

Let N = A1∪· · ·∪Ak be any k−partition of natural numbers. Denote by E = E(A1, . . . , Ak)
the set of all positive even integers, which cannot be written as the sum of two different
monochromatic numbers. Erdős, Sarközy, and Sós [2] proved that for every 2−coloring of N
we have

E(n) = |E ∩ [n]| ≤ log n

log((1 +
√
5)/2)

(1.1)

for every n ∈ N. They also showed that there is a 2−partition of N = A∪B such that 2n ∈ E
for all n ∈ N. Thus,

E(A,B)(n) ≥ blog2 nc.
Furthermore, for any k−coloring they obtained the following estimate

E(n) ≤ 3n1−2−k−1

, (1.2)

so that considering the finite version of the problem [n] = A1 ∪ · · · ∪ Ak the exceptional set
has size o(n) for every k = o(log log n). This solves a problem posed by Roth (see problem E9
in [3]).

In the first part of this note we prove that the inequality (1.1) is the best possible. More
precisely, we will provide a simple construction of a 2−coloring of N such that no number
Gn = 2Fn (where (Fn)n∈N is the Fibonacci sequence) has a monochromatic representation.

We will also improve the inequality (1.2) for log log n � k = o((log n)2/3+o(1)). In the later
part of the paper we consider the intersection property of the Fibonacci sequence. We show
that every set A ⊆ N such that (A − A) ∩ {F1, F2, . . .} = ∅ has lower density smaller than
7/36. On the other hand, we prove that there exists such a set with density 19/110. With
some effort one can improve both bounds using the same argument, however we are not able
to obtain the best possible estimate for the density of sets with such property.

We keep the following notation. Let N stand for the set of all positive integers. For a set
A ⊆ N its counting function is denoted by A(n) := |A∩ [n]|, where [n] = {1, . . . , n}. For a real
number x we define ||x|| as the distance from the nearest integer number. Furthermore d(A)
and d(A) stand for the lower and the upper density of A, respectively. By A+B we mean the
set of all numbers represented in the form a+ b, a ∈ A, b ∈ B and A+̂B is the set of numbers
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written as a sum of distinct elements. Finally, by F we denote the set of all Fibonacci numbers.

2. Monochromatic Sums

Our first result shows that one cannot improve (1.1). Our construction is quite straightfor-
ward and makes use of Fibonacci numbers.

Theorem 2.1. There exists a 2−partition N = A ∪B such that

Gn = 2Fn ∈ E(A,B), (2.1)

where (Fn)n∈N is the Fibonacci sequence.

Proof. We construct recursively two sequences of sets An and Bn such that An ∪ Bn = [Gn]
and

An ⊆ An+1, Bn ⊆ Bn+1

for all n ∈ N. We start with A1 = A2 = {1}, B1 = B2 = {2}, and A3 = {1, 4}, B3 = {2, 3}.
Clearly, no Gk has a monochromatic representation. Now assume that An and Bn such that
An ∪Bn = [Gn] and

Gk /∈ (An+̂An) ∪ (Bn+̂Bn), k ∈ N

have already been defined. Let

An+1 = An ∪ {Gn+1 − x : x ∈ Bn ∩ [Gn−1 − 1]} ∪ SA, (2.2)

Bn+1 = Bn ∪ {Gn+1 − x : x ∈ An ∩ [Gn−1 − 1]} ∪ SB,

where

SA =

{

{Gn+1}, if Gn ∈ Bn,

∅, if Gn /∈ Bn.

SB =

{

{Gn+1}, if Gn ∈ An,

∅, if Gn /∈ An.

We have to check that no number Gk possesses a monochromatic representation. Since Gk+2 >
2Gk for all k ∈ N and An ⊆ An+1, Bn ⊆ Bn+1 it is enough to show that Gn+1, Gn+2 /∈
(An+1+̂An+1) ∪ (Bn+1+̂Bn+1). Suppose that there are integers x, y ∈ An+1, x > y, (the case
x, y ∈ Bn+1 is identical) such that x + y = Gn+1. However, it follows from the definition of
An+1 that x, y < Gn, hence, x, y ∈ An, contradicting the inductive assumption. Now suppose
that for some x, y ∈ An+1, x > y, we have x+ y = Gn+2. Clearly Gn < y < x < Gn+1, and by
(2.2), Gn+1 − x,Gn+1 − y ∈ Bn. Therefore,

(Gn+1 − x) + (Gn+1 − y) = 2Gn+1 −Gn+2 = Gn+1 −Gn = Gn−1,

which is again impossible.
Finally, letting

A =
⋃

n∈N

An, B =
⋃

n∈N

Bn

we obtain a 2−partition with required property. �

Next, the results show that in the finite version of the problem we have |E(A1, . . . , Ak)| =
o(n) for all k = o((log n)3/4+o(1)). Denote by ν3(n) the maximal size of a subset of [n] not
containing any nontrivial three term arithmetic progression.
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Theorem 2.2. Let [n] = A1 ∪ · · · ∪Ak be a k−partition. Then

E(A1, . . . , Ak)(2n) ≤ kν3(n). (2.3)

Proof. Let E/2 = {e/2 : e ∈ E} and put Ei = E/2 ∩ Ai, i = 1, 2, . . . , k. We show that every
set Ei does not contain any nontrivial arithmetic progression of length three. Indeed, suppose
that a, a + d, a + 2d ∈ Ei for some a, d ∈ N and 1 ≤ i ≤ k. Then 2a + 2d ∈ E has a
monochromatic representation

2a+ 2d = a+ (a+ 2d) ∈ Ai+̂Ai,

which is a contradiction. Hence, for every 1 ≤ i ≤ k

|Ei| ≤ ν3(n)

and the result follows. �

The best known upper bound on ν3 is due to Sanders [4], who showed that

ν3(n) � n/(log n)3/4+o(1).

Thus by Theorem 2.2, E(A1, . . . , Ak)(n) � kn/(log n)2/3+o(1), so that E(A1, . . . , Ak)(n) =

o(n), for k = o((log n)3/4+o(1)).
Finally, we observe that (1.2) can be improved for k = 3. It follows from the proof of

Theorem 4 in [1] that there is a constant C > 0 such that for every set E ⊆ [n] of size Cn1/2

of even numbers there exist distinct positive integers a1, a2, a3, a4 with all sums ai + aj , 1 ≤
i < j ≤ 4, in E. Therefore, the upper bound 3n15/16 in (1.2) can be replaced by Cn1/2.

3. Intersection Properties of the Fibonacci Sequence

In this section we shall study intersection properties of the Fibonacci sequence. More
precisely, we prove a lower and an upper bound for the quantity

sup
A⊆N

{d(A) : (A−A) ∩ F = ∅}.

Notice that, if (A−A) ∩ F = ∅, then sets

A,A+ 2, A+ 3, A + 5

are pairwise disjoint. This shows that d(A) ≤ 1/4. One can easily improve this bound,
observing that if a ∈ A, then at most one among elements a + 1, . . . , a + 9 belongs to A, so
that d(A) ≤ 1/5. Our next theorem provides further refinement of the above inequality.

Theorem 3.1. Suppose that A ⊆ N and (A−A) ∩ F = ∅. Then

d(A) ≤ 7

36
= 0.19(4).

Proof. Since the proof consists of many similar cases, which can be treated in the same way,
we will not present all details. Let A be a set such that (A − A) ∩ F = ∅ and let a be an
arbitrary element of A. Then, clearly none of the numbers a+1, a+2, a+ 3, a+5 belong to
A. If a+4 /∈ A, then the “local” density of A in the interval [a, a+5] is 1/6, so we assume that
a+4 ∈ A. Hence, {a+5, a+6, a+7}∩A = ∅ and in view of 5, 8 ∈ F also a+8, a+9 /∈ A. We can
assume that a+ 10 ∈ A, otherwise A contains at most 2 integers from the interval [a, a+ 10].
If a+ 14 /∈ A then again the “local” density of A on the interval [a, a+ 15] is 3/16. Thus, we
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assume that a+14 ∈ A. Then, clearly {a+11, a+12, a+13, a+15, a+16, a+17, a+18}∩A = ∅.
Using a similar argument (and the fact that 34 ∈ F ) one can show that

A ∩ [a, a+ 35] = {a, a+ 4, a+ 10, a + 14, a+ 20, a + 24, a+ 30},
otherwise there is a positive integer i ≤ 35 such that

|A ∩ [a, a+ i]| ≤ 7

36
(i+ 1).

Therefore, for every positive integer n one can find a sequence of elements a1, . . . , ak ∈ A∩ [n]
and a sequence of integers i1, . . . , ik ∈ [35] such that a1 = minA, aj+1 is the smallest element
of A greater than aj + ij , [ak + ik + 1, n] ∩A = ∅ and

|A ∩ [aj , aj + ij ]| ≤
7

36
(ij + 1).

Thus,

|A ∩ [n]| =
k

∑

j=1

|A ∩ [aj , aj + ij ]| ≤
k

∑

j=1

7

36
(ij + 1) ≤ 7

36
(n+ 35),

so that

d(A) ≤ 7

36
.

�

Our last theorem shows that Theorem 3.1 is not far from the best possible.

Theorem 3.2. There exists a set A0 ⊆ N such that (A0 −A0) ∩ F = ∅ and

d(A0) =
19

110
= 0.1(72).

To prove Theorem 3.2, we will need the following lemmas.

Lemma 3.3 (Ruzsa, Tuza, Voigt [5]). Let (di)i∈N be a sequence such that di+1 ≥ αdi for some

α > 1 and all i. Then there exists a real number x such that for every i ≥ 1

‖xdi‖ ≥ δ :=
1

2
− 1

2α − 2
.

Since we will not directly apply Lemma 3.3, we briefly sketch the idea of its proof. Using
lacunarity of (di)i∈N one can show that there exists a sequence of integers (zi)i∈N such that

Ii+1 =

[

zi+1 + δ

di+1
,
zi+1 + 1− δ

di+1

]

⊆ Ii =

[

zi + δ

di
,
zi + 1− δ

di

]

(3.1)

for all i ∈ N. Then, for every y ∈ Ii we have ‖ydi‖ ≥ δ (i = 1, 2, . . .). Thus x is the unique
element in

⋂∞
j=0 Ij. Furthermore, it follows from the proof that the choice of zi+1 is arbitrary,

provided that (3.1) is satisfied.
For the Fibonacci sequence (Fn)n∈N one can take α = 3/2, which is too small to prove

Theorem 3.2. Therefore, we consider the subsequence (F3n+3)n∈N of even Fibonacci numbers.

Lemma 3.4. For every positive integer n we have

F3n+6 ≥ 4
4

17
F3n+3. (3.2)
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Proof. If n = 1 we have

F9 = 34 ≥ 4
4

17
· F6 = 33

15

17
.

For n ≥ 2. (3.2) is equivalent to

34F3n+2 ≥ 21F3n+3

13F3n+2 ≥ 21F3n+1

13F3n ≥ 8F3n+1

5F3n ≥ 8F3n−1

5F3n−2 ≥ 3F3n−1

2F3n−2 ≥ 3F3n−3

2F3n−4 ≥ F3n−3

F3n−4 ≥ F3n−5.

The last inequality is clearly satisfied. �

Proof of Theorem 3.2. By Lemma 3.3 and 3.4 there exists a real number x such that

‖xF3n+3‖ ≥ δ = 19/55 (3.3)

for every n ≥ 1. We have to check that F3 = 2 also satisfies the above inequality. It will be
done if we show that there is an integer z0 such that

In =

[

zn + δ

F3n+3
,
zn + 1− δ

F3n+3

]

⊆ I0 =

[

z0 + δ

2
,
z0 + 1− δ

2

]

for some n ≥ 1. As mentioned before, we can choose any zi+1 provided that (3.1) is fulfilled.
Taking z1 = 1, z2 = 6 we have

I2 =

[

349

1870
,
366

1870

]

⊆ I1 =

[

74

440
,
91

440

]

.

For z0 = 1, obviously

I2 =

[

349

1870
,
366

1870

]

⊆ I0 =

[

19

110
,
91

110

]

,

hence x ∈ I0 and (3.3) holds for every n ≥ 0.
Finally, we define A0 by

A0 = {k ∈ 2N : ‖xk‖ < δ/2}.
Then, clearly A0 −A0 shares no element with F .
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E-mail address: schoen@amu.edu.pl

FEBRUARY 2011 27


