A CHARACTERIZATION OF CONVERGING DUCCI SEQUENCES OVER \mathbb{Z}_{2}

CHRISTIAN AVART

Abstract

It is well-known that any Ducci sequence generated by a vector of length a power of 2 will eventually reach the null vector. As an easy consequence, all vectors obtained by concatenating several copies of a vector of length 2 eventually reach the null vector. We prove a converse to this statement for Ducci sequences over the field \mathbb{Z}_{2}. Namely that over \mathbb{Z}_{2}, the only vectors converging to the null vector are the vectors obtained by concatenation of several copies of a vector of length a power of 2 .

1. Introduction to Ducci Sequences

Let $k \in \mathbb{N}$ and let $\vec{x}=\left(a_{0}, a_{1}, \ldots, a_{k-1}\right) \in \mathbb{N}^{k}$. We define a map $T: \mathbb{N}^{k} \rightarrow \mathbb{N}^{k}$ by

$$
T(\vec{x})=T\left(a_{0}, a_{1}, \ldots, a_{k-1}\right)=\left(\left|a_{0}-a_{1}\right|,\left|a_{1}-a_{2}\right|, \ldots,\left|a_{k-1}-a_{0}\right|\right) .
$$

The sequence $\left(T^{n}(\vec{x})\right)_{n \in \mathbb{N}}$ generated by the iterations of T is called a Ducci sequence. Ducci sequences have been extensively studied and often rediscovered. We now mention a well-known result motivating the work presented in this paper.

Let $\vec{x}=\left(a_{0}, a_{1}, \ldots a_{k-1}\right) \in \mathbb{N}^{k}$. If there exists $a \in \mathbb{N}$ such that for every $0 \leq i \leq k$, $a_{i} \in\{0, a\}$, we will say that \vec{x} is a simple vector. A well-known result states that for every $\vec{x} \in \mathbb{N}^{k}$, there exists $n \in \mathbb{N}$ such that $T^{n}(\vec{x})$ is simple. We derive an important consequence of this fact.

Let $\vec{x}=\left(a_{0}, a_{1}, \ldots, a_{k-1}\right)$ be a simple vector whose coordinates are in $\{0, a\}$. First, rewrite \vec{x} as $\left(a \cdot \epsilon_{0}, a \cdot \epsilon_{1}, \ldots, a \cdot \epsilon_{k-1}\right)$, where $\epsilon_{i}=1$ if $a_{i}=a$ and 0 , otherwise. Notice that for every $k \in \mathbb{N}$, $T^{k}\left(a \cdot \epsilon_{0}, a \cdot \epsilon_{1}, \ldots, a \cdot \epsilon_{k-1}\right)=a \cdot T^{k}\left(\epsilon_{0}, \epsilon_{1}, \ldots, \epsilon_{k-1}\right)$. Since every Ducci sequence eventually reaches a simple vector this implies that in order to study the asymptotical behavior of Ducci sequences, it is sufficient to study vectors with coordinates in $\{0,1\}$. Note also that when $a_{i} \in\{0,1\}$, the operation $\left|a_{i}-a_{i+1}\right|$ is equivalent to $a_{i}+a_{i+1}(\bmod 2)$. This justifies the importance of the map $T: Z_{2}^{k} \rightarrow \mathbb{Z}_{2}^{k}$ defined by

$$
T\left(a_{0}, a_{1}, \ldots, a_{k-1}\right)=\left(a_{0}+a_{1}, a_{1}+a_{2}, \ldots, a_{k-1}+a_{0}\right)
$$

We will call the sequences generated by iteration of this map Ducci sequences over \mathbb{Z}_{2}.

2. Notation and Result

In order to simplify the notation, the indices of the coordinates of any vector $\vec{x} \in \mathbb{N}^{k}$ will be written modulo k so that, for example, $a_{k}=a_{0}$ and $a_{k+1}=a_{1}$.

If for some integer $m T^{m}(\vec{x})=\vec{x}$, we say that \vec{x} is cyclic. If m is the smallest such integer, we say that \vec{x} is m-cyclic. If for some integer m we have $T^{m}(\vec{x})=\vec{y}$ and \vec{y} is cyclic, we say that \vec{y} belongs to the cycle generated by \vec{x}. Note that \vec{x} does not necessarily belong to the cycle generated by itself. If for some integer $m T^{m}(\vec{x})=\overrightarrow{0}$, we say that \vec{x} is nilpotent.

THE FIBONACCI QUARTERLY

Given $k, l \in \mathbb{N}$ and two vectors $\vec{x}=\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ and $\vec{y}=\left(y_{0}, y_{1}, \ldots, y_{l}\right)$ we denote by $\vec{x} \vee \vec{y}$ their concatenation $\left(x_{0}, x_{1}, \ldots, x_{k}, y_{1}, y_{2}, \ldots, y_{l}\right)$. We also write $\vec{x} \vee \vec{x} \ldots \vee \vec{x}=\vee^{(m)} \vec{x}$, the concatenation of \vec{x} with itself m times and $\vee^{(1)} \vec{x}=\vec{x}$.

It is easy to see that for any $\vec{x} \in \mathbb{Z}_{2}^{k}$ and for any positive integers n, m the following relation holds:

$$
\begin{equation*}
T^{n}\left(\vee^{(m)} \vec{x}\right)=\vee^{(m)} T^{n}(\vec{x}) . \tag{2.1}
\end{equation*}
$$

In particular, $T^{n}(\vec{x})=\overrightarrow{0}$ implies $T^{n}\left(\vee^{(m)} \vec{x}\right)=\overrightarrow{0}$ for every m.
It is well-known that if $k=2^{l}$ for some l, then any $\vec{x} \in \mathbb{Z}_{2}^{k}$ is nilpotent. Together with (2.1), this implies that for any $m \in \mathbb{N}$ and any $\vec{x} \in \mathbb{Z}_{2}^{2^{l}}$, the vector $\vee^{(m)} \vec{x}$ is nilpotent. The goal of this paper is to prove that any nilpotent vector in \mathbb{Z}_{2} is obtained this way.

Proposition 2.1. Let $\vec{x} \in \mathbb{Z}_{2}^{k}$ be a nonzero vector. If \vec{x} is nilpotent, there exist $l, m \in \mathbb{N}$ and $\vec{y} \in \mathbb{Z}_{2}^{2^{l}}$ such that $\vec{x}=\vee^{(m)} \vec{y}$.

3. Proof of Proposition 2.1

Proof. For any vector $\vec{x}=\left(a_{0}, a_{1}, \ldots, a_{k-1}\right) \in \mathbb{Z}_{2}^{k}$ we define $r(\vec{x})=\left(a_{1}, a_{2}, \ldots, a_{k-1}, a_{0}\right)$. Observe that $T(\vec{x})=\vec{x}+r(\vec{x})$. We obtain by induction

$$
T^{n}(\vec{x})=\sum_{i=0}^{n}\binom{n}{i} r^{i}(\vec{x}) .
$$

Now suppose $T^{n}(\vec{x})=\overrightarrow{0}$. Then for any l such that $2^{l} \geq n$ we have $T^{2^{l}}(\vec{x})=\overrightarrow{0}$. Combining with the previous equality and using the fact that $\binom{2^{l}}{i} \equiv 0(\bmod 2)$ for $1 \leq i \leq 2^{l}-1$ we obtain

$$
T^{2^{l}}(\vec{x})=\sum_{i=0}^{2^{l}}\binom{2^{l}}{i} r^{i}(\vec{x})=\vec{x}+0+0+\cdots+0+r^{2^{l}}(\vec{x})=\overrightarrow{0}
$$

In other words $\vec{x}=r^{2^{l}}(\vec{x})$ and for every $i \in[k], a_{i}=a_{i+2^{l}}$.
Consider the Euclidean division of 2^{l} by $k, 2^{l}=m k+r$, where $0 \leq r<k$ is the remainder. Then $a_{i}=a_{i+2^{l}}=a_{i+m k+r}=a_{i+r}$, i.e., the coordinates of \vec{x} are r-periodic. Let $d=(k, r)$, the greatest common divisor of k and r. By Bezout's Theorem there exists $a, b \in \mathbb{Z}$ such that $a k+b r=d$. Since the coordinates of \vec{x} are k-periodic and r-periodic we have $a_{i}=a_{i+a k}=$ $a_{i+a k+b r}=a_{i+d}$ so that the coordinates of \vec{x} are d-periodic. Since $d \mid k$ and $d \mid r$ we also have $d \mid m k+r=2^{l}$ so that $d=2^{l^{\prime}}$ for some $l^{\prime} \leq l$. Since $d \mid k$ and \vec{x} is d-periodic, $\vec{x}=\mathrm{V}^{(m)} \vec{y}$ for $\vec{y}=\left(a_{0}, a_{1}, \ldots, a_{2^{\prime}-1}\right)$, concluding the proof.

4. Conclusion

By combining Proposition 2.1 with the remark mentioned in the introduction, we obtain the following theorem.
Theorem 4.1. A vector $\vec{x} \in \mathbb{Z}_{2}^{k}$ is nilpotent if and only if it can be written as the concatenation of several copies of a vector of length a power of 2.

Note that Proposition 2.1 also provides a necessary condition for a vector in \mathbb{N}^{k} to be nilpotent. Let $\vec{x}=\left(a_{0}, a_{1}, \ldots, a_{k-1}\right)$ be a vector in \mathbb{N}^{k} and consider the vector $\vec{y}=\left(b_{0}, b_{1}, \ldots, b_{k-1}\right)$ where $b_{i}=a_{i}(\bmod 2)$. If \vec{x} is nilpotent, so is \vec{y} over \mathbb{Z}_{2}. By Proposition 2.1 this implies that \vec{y} is the concatenation of vectors of length a power of 2 , which in return gives us a condition on the parity of the a_{i} 's.

A CHARACTERIZATION OF CONVERGING DUCCI SEQUENCES OVER \mathbb{Z}_{2}

References

[1] A. Ehrlich, Periods in Ducci's n-number game of differences, The Fibonacci Quarterly, 26.2 (1990), 302305.
[2] H. Glaser and G. Schoffl, Ducci sequences and Pascal's triangle, The Fibonacci Quarterly, 33.4 (1995), 313-324.
[3] A. Ludington Furno, Cycles of differences of integers, J. Number Theory, 13 (1981), 255-261.
[4] A. Ludington-Young. Length of the n-number game, The Fibonacci Quarterly, 28.3 (1990), 259-265.
MSC2010: 11B02
Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia 30303
E-mail address: matcxa@langate.gsu.edu

