ON THE DISTRIBUTION OF THE EULER FUNCTION WITH FIBONACCI NUMBERS

JEAN-MARC DESHOUILLERS AND FLORIAN LUCA

Abstract

Here, we show that the distribution function of $\phi\left(F_{n}\right) / F_{n}$ is strictly increasing in the interval $[0,1]$. We also show that the summatory function of $\phi\left(F_{n}\right) / F_{n}$ is dense modulo 1.

1. Introduction

Let $\phi(n)$ be the Euler function of the positive integer n. It is well-known that $\phi(n) / n$ has a distribution function; that is, for each real number $u \in[0,1]$, the density

$$
D_{\phi}(u)=\lim _{x \rightarrow \infty} \frac{1}{x} \#\{n \leq x: \phi(n) / n \leq u\}
$$

exists. Moreover, $D_{\phi}(0)=0, D_{\phi}(1)=1$, and the function $D_{\phi}(u)$ is strictly increasing and continuous. This was proved by Schoenberg [9]. This result is often said to mark the dawn of probabilistic number theory. In this paper, we look at the distribution function for $\phi\left(F_{n}\right) / F_{n}$, where $\left(F_{m}\right)_{m \geq 1}$ is the Fibonacci sequence given by $F_{1}=1, F_{2}=1$ and $F_{m+2}=F_{m+1}+F_{m}$ for all $m \geq 1$. There are quite a few papers in the literature treating problems concerning the distribution function for the Euler function with linear recurrence arguments. For example, by modifying appropriately the proof of Theorem 3 in [6], it follows that for each $u \in[0,1]$, the density

$$
D_{F}(u):=\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: \phi\left(F_{n}\right) / F_{n} \leq u\right\}
$$

exists. Moreover, $D_{F}(0)=0, D_{F}(1)=1$ and the function $D_{F}(u)$ is nondecreasing and continuous. It has not been proved before that $D_{F}(u)$ is strictly increasing. A weaker result, namely that $\left\{\phi\left(F_{n}\right) / F_{n}\right\}_{n \geq 1}$ is dense in [0,1] appears in Section 4 of [7]. Here, we prove that this is indeed the case.

Theorem 1.1. The function $D_{F}(u)$ is strictly increasing in the interval $[0,1]$.
A study of multiplicative functions, the distributions of which are strictly increasing, is the topic of [2].

In the previous paper [3], we proved that various means involving the Euler function in the interval $[1, m]$ are dense modulo 1 . More specifically, we showed that the sequences of general terms

[^0]
ON THE DISTRIBUTION OF THE EULER FUNCTION WITH FIBONACCI NUMBERS

$$
\begin{aligned}
& s_{n}:=\sqrt{\sum_{m \leq n} \phi(m)}, \quad a_{n}:=\frac{1}{n} \sum_{m \leq n} \phi(m), \\
& g_{n}:=\left(\prod_{m \leq n} \phi(m)\right)^{1 / n}, \quad h_{n}:=\frac{n}{\sum_{m \leq n} \frac{1}{\phi(m)}},
\end{aligned}
$$

respectively, are all dense modulo 1. The first three of them have a linear growth, while the last one has sub-linear growth which is why its study is easier. In the subsequent paper [4], H . Iwaniec together with the first author showed that the sequence $\left(a_{n}\right)_{n \geq 1}$ is in fact uniformly distributed modulo 1. In the paper [5], it was shown that the sequence of general term

$$
\begin{equation*}
c_{n}:=\sum_{m \leq n} \frac{\phi\left(m^{2}+1\right)}{m^{2}+1} \tag{1.1}
\end{equation*}
$$

is also dense modulo 1 . Here, we treat a sequence similar to $\left(c_{n}\right)_{n \geq 1}$, but where the polynomial input $m^{2}+1$ is replaced by the m th Fibonacci number F_{m}. We have the following result.

Theorem 1.2. The sequence of general term

$$
f_{n}:=\sum_{m \leq n} \frac{\phi\left(F_{m}\right)}{F_{m}}
$$

is dense modulo 1.
We point out that it follows as a special case of a result from [8], that

$$
\frac{f_{n}}{n}=\Gamma_{f}+O\left(\frac{(\log \log n)^{2}}{\log n}\right),
$$

where

$$
\Gamma_{f}:=\sum_{d \geq 1} \frac{\mu(d)}{d z(d)},
$$

where for a positive integer k the number $z(k)$ denotes the smallest positive integer m such that $k \mid F_{m}$, and $\mu(k)$ is the Möbius function of k. The number $z(k)$ is sometimes called the order of appearance of k in the Fibonacci sequence. The constant Γ_{f} is different from 0 ; hence, the sequence $\left(f_{n}\right)_{n \geq 1}$ has linear growth. Observe that the sequence $\left(F_{n}\right)_{n \geq 1}$ has exponential growth.

For a positive integer ℓ and a real number $x>1$ we put $\log _{\ell} x$ for the recursively defined function $\log _{1} x:=\log x$ and $\log _{\ell} x:=\max \left\{\log _{\left.\left(\log _{\ell-1} x\right), 1\right\} \text {. For a positive integer } m \text { we write }}\right.$ $p(m)$ for the smallest prime factor of m, with the convention that $p(1)=1$, and $\omega(m)$ and $\tau(m)$ for the number of distinct prime divisors of m and the total number of divisors of m, respectively. We write c_{1}, c_{2}, c_{3}, etc., for some computable constants which might depend on some other parameters and which are labeled increasingly throughout the paper. We use the Landau symbol O and the Vinogradov symbol \ll with their usual meanings.

THE FIBONACCI QUARTERLY

2. Preliminaries

Let $\alpha:=(1+\sqrt{5}) / 2$ and $\beta:=(1-\sqrt{5}) / 2$ be the characteristic roots of the Fibonacci sequence. Then

$$
F_{m}=\frac{\alpha^{m}-\beta^{m}}{\alpha-\beta} \quad \text { for all } \quad m \geq 1
$$

Let $m=n j$ for some positive integers j and n. Put

$$
F_{n}^{(j)}:=\frac{F_{n j}}{F_{n}}=\frac{\alpha^{n j}-\beta^{n j}}{\alpha^{n}-\beta^{n}} .
$$

Then $F_{n j}=F_{j} F_{n}^{(j)}$. Furthermore, it is well-known that if p is any prime factor dividing both F_{j} and $F_{n}^{(j)}$, then p divides both n and F_{j}. In particular, if the smallest prime factor of n exceeds F_{j}, then F_{j} and $F_{n}^{(j)}$ are coprime.

The following results appear in [7]. For a positive integer m, let $\mathcal{P}_{m}:=\{p: z(p)=m\}$.
Lemma 2.1. We have the estimate

$$
\begin{equation*}
\sum_{p \in \mathcal{P}_{m}} \frac{1}{p} \ll \frac{\log m}{m} . \tag{2.1}
\end{equation*}
$$

A better estimate than (2.1) is Lemma 8 in [1], which asserts that the estimate

$$
\sum_{p \in \mathcal{P}_{m}} \frac{1}{p-1} \leq \frac{12+2 \log \log m}{\phi(m)}
$$

holds for all $m \geq 2$.
The working horse of our paper is the following result which is Lemma 8 in [7].
Lemma 2.2. Let $j \in \mathbb{N}, \varepsilon>0, \gamma \in(0,1)$ and $A>0$ be all given. Then there exist infinitely many n with $p(n)>A$ such that

$$
\frac{\phi\left(F_{n}^{(j)}\right)}{F_{n}^{(j)}} \in(\gamma, \gamma+\varepsilon)
$$

3. The Proofs

3.1. Proof of Theorem 1.1. Let $\gamma \in(0,1)$ and $\varepsilon>0$ be arbitrary. Use Lemma 2.2 with $j=1$ in order to conclude that there is some m such that

$$
\begin{equation*}
\frac{\phi\left(F_{m}\right)}{F_{m}} \in\left(\gamma+\frac{\varepsilon}{2}, \gamma+\varepsilon\right) . \tag{3.1}
\end{equation*}
$$

Fix such a positive integer m. Choose numbers $n:=m \ell$ for some positive integer ℓ. We let $y>m$ be a parameter to be made more precise later and look only at the positive integers ℓ which are free of primes $p \leq y$. The proportion of them is

$$
\begin{equation*}
\prod_{p \leq y}\left(1-\frac{1}{p}\right)>\frac{c_{2}}{\log y} \tag{3.2}
\end{equation*}
$$

where, by Mertens' Theorem, we can take $c_{2}:=e^{-\gamma} / 2$ provided that y is sufficiently large. Since $p(\ell)>m$, it follows that ℓ and m are coprime so that

$$
\begin{equation*}
\frac{\phi\left(F_{n}\right)}{F_{n}}=\frac{\phi\left(F_{m}\right)}{F_{m}} \frac{\phi\left(F_{\ell}^{(m)}\right)}{F_{\ell}^{(m)}} \tag{3.3}
\end{equation*}
$$

It suffices to show that there is a positive proportion of such ℓ with the property that

$$
\begin{equation*}
1-\frac{\varepsilon}{4}<\frac{\phi\left(F_{\ell}^{(m)}\right)}{F_{\ell}^{(m)}} \tag{3.4}
\end{equation*}
$$

because then by estimates (3.1), (3.2), and (3.4), it will follow easily that there exists a positive proportion of n such that

$$
\frac{\phi\left(F_{n}\right)}{F_{n}} \in(\gamma, \gamma+\varepsilon)
$$

showing that in fact $D_{F}(\gamma+\varepsilon)>D_{F}(\gamma)$. Since this is true for arbitrary $\gamma \in(0,1)$ and $\varepsilon>0$, we conclude the proof of this theorem.

To construct the positive proportion of positive integers ℓ with the desired property (3.4), we proceed as follows. Note first that

$$
\begin{align*}
\frac{\phi\left(F_{\ell}^{(m)}\right)}{F_{\ell}^{(m)}} & =\prod_{\substack{z(p) \mid m \ell \\
z(p) \nmid m}}\left(1-\frac{1}{p}\right)=\prod_{\substack{d_{1} \mid \ell \\
d_{1}>1}} \prod_{d_{2} \mid m} \prod_{z(p)=d_{1} d_{2}}\left(1-\frac{1}{p}\right) \\
& =\exp \left(\sum_{\substack{d_{1} \mid \ell \\
d_{1}>1}} \sum_{d_{2} \mid m} \sum_{p \in \mathcal{P}_{d_{1} d_{2}}} \frac{1}{p}+O\left(\sum_{z(p)>y} \frac{1}{p^{2}}\right)\right) \\
& >\exp \left(-c_{3} \sum_{\substack{d_{1} \mid \ell \ell \\
d_{1}>1}} \sum_{d_{2} \mid m} \frac{\log \left(d_{1} d_{2}\right)}{d_{1} d_{2}}+O\left(\frac{1}{y}\right)\right) \tag{3.5}
\end{align*}
$$

In the above estimates, we used Lemma 2.1 together with the fact that since $p \equiv \pm 1$ $(\bmod z(p))$ holds for all primes $p \neq 5$, then if $z(p)=d_{1} d_{2}$ for some divisor $d_{1}>1$ of ℓ and some divisor d_{2} of m, it follows that $d_{1}>y$, so $p \geq z(p)-1 \geq d_{1}-1>y-1$. Let c_{4} be the implicit constant in the Landau symbol in (3.5). Since $d_{1}>y>m \geq d_{2}$, we have

$$
\frac{\log \left(d_{1} d_{2}\right)}{d_{1} d_{2}} \leq \frac{\log \left(d_{1}^{2}\right)}{d_{1}}=\frac{2 \log \left(d_{1}\right)}{d_{1}}
$$

so

$$
\sum_{\substack{d_{1} \mid \ell \\ d_{1}>1}} \sum_{d_{2} \mid m} \frac{\log \left(d_{1} d_{2}\right)}{d_{1} d_{2}} \leq 2 \tau(m) \sum_{\substack{d \mid \ell \\ d>1}} \frac{\log d}{d}
$$

Observing that $\log 1=0$, we get with $c_{5}:=2 \tau(m) c_{3}+c_{4}$ and

$$
S_{\ell}:=\sum_{d \mid \ell} \frac{\log d}{d}
$$

that the inequality

$$
\frac{\phi\left(F_{\ell}^{(m)}\right.}{F_{\ell}^{(m)}}>\exp \left(-c_{5} S_{\ell}\right) \quad \text { holds }
$$

THE FIBONACCI QUARTERLY

Now observe that

$$
\begin{aligned}
\sum_{\ell \leq x} S_{\ell} & =\sum_{\ell \leq x} \sum_{d \mid \ell} \frac{\log d}{d}=\sum_{\substack{p(d)>y \\
d \leq x}} \frac{\log d}{d} \sum_{\substack{\ell \leq x \\
\ell \equiv 0 \\
(\bmod d)}} 1 \\
& =\sum_{\substack{p(d)>y \\
d \leq x}} \frac{\log d}{d}\left\lfloor\frac{x}{d}\right\rfloor \leq x \sum_{d>y} \frac{\log d}{d^{2}} \leq x \int_{y-1}^{\infty} \frac{(\log t) d t}{t^{2}}<\frac{c_{6} x \log y}{y} .
\end{aligned}
$$

Thus, a first moment argument shows that the set of $\ell \leq x$ such that $S_{\ell} \geq 1 / \sqrt{y}$ is of cardinality $<c_{6}(\log y) / \sqrt{y}$. If y is so large that

$$
\frac{c_{2}}{\log y}-\frac{c_{6}(\log y)}{\sqrt{y}}>0,
$$

it then follows, by estimate (3.2), that a positive proportion of our ℓ have the property that $S_{\ell}<1 / \sqrt{y}$. For such ℓ, we have

$$
\frac{\phi\left(F_{\ell}^{(m)}\right)}{F_{\ell}^{(m)}}>\exp \left(-c_{5} S_{\ell}\right)>1-c_{5} S_{\ell}>1-\frac{c_{5}}{\sqrt{y}}>1-\frac{\varepsilon}{4}
$$

provided also that $y>\left(4 c_{5} / \varepsilon\right)^{2}$. This is what we wanted to prove.

4. The Proof of Theorem 1.2

Here we proceed as in [3], or as in Section 5 of [7]. We first let $k>1$ be an integer. Then we choose $\varepsilon>0$ small enough with respect to k in a way that will be made more precise later. Put $K:=k!^{2}$. We let n be such that $n \equiv 0(\bmod K)$. Write $n:=K \ell$. Now substitute for $j=1, \ldots, k$,

$$
\begin{equation*}
n+j=K \ell+j=j\left(\frac{K}{j} \ell+1\right)=: j n_{j}, \quad \text { for } \quad j=1, \ldots, k . \tag{4.1}
\end{equation*}
$$

Assume that the smallest prime factor of $n_{1} n_{2}, \ldots, n_{k}$ is $>F_{k}$. Then, $F_{n+j}=F_{j} F_{n_{j}}^{(j)}$ and the two factors on the right are coprime. Hence,

$$
\frac{\phi\left(F_{n+j}\right)}{F_{n+j}}=\frac{\phi\left(F_{j}\right)}{F_{j}} \frac{\phi\left(F_{n_{j}}^{(j)}\right)}{F_{n_{j}}^{(j)}} .
$$

For simplicity, write $C_{j}:=\phi\left(F_{j}\right) / F_{j}$. We want to choose n such that the inclusion

$$
\frac{\phi\left(F_{n+j}\right)}{F_{n+j}} \in\left(\frac{\varepsilon}{2}, \varepsilon\right)
$$

holds. This is equivalent to

$$
\begin{equation*}
\frac{\phi\left(F_{n_{j}}^{(j)}\right)}{F_{n_{j}}^{(j)}} \in\left(\frac{\varepsilon}{2 C_{j}}, \frac{\varepsilon}{C_{j}}\right) . \tag{4.2}
\end{equation*}
$$

But C_{j} is sub-unitary, so the condition we need is that ε is sufficiently small. Clearly, $C_{1}=$ $C_{2}=1$ and $C_{3}=1 / 2$. Since the inequality

$$
\frac{\phi(m)}{m} \geq \frac{c_{7}}{\log \log m}
$$

ON THE DISTRIBUTION OF THE EULER FUNCTION WITH FIBONACCI NUMBERS

holds for all $m>3$ with some positive constant c_{7}, it follows that if $j \geq 4$ (hence, $F_{j} \geq 3$), then

$$
C_{j}=\frac{\phi\left(F_{j}\right)}{F_{j}} \geq \frac{c_{7}}{\log \log F_{j}}>\frac{c_{7}}{\log j} \geq \frac{c_{7}}{\log k},
$$

holds for all $4 \leq j \leq k$, where we used the fact that the inequality $F_{j}<e^{j}$ holds for all $j \geq 1$. Now taking $\varepsilon:=1 /(\log k)^{2}$, we then get that

$$
\frac{\varepsilon}{C_{j}} \leq \frac{1}{c_{7} \log k}
$$

and the quantity on the right above is <1 for all sufficiently large k.
Putting $\gamma_{j}:=2 \varepsilon /\left(3 C_{j}\right)$ and taking $\varepsilon_{1}:=\min \left\{\varepsilon /\left(12 C_{j}\right)\right\}$, Lemma 2.2 applied with ε replaced by ε_{1} successively with $j=1, \ldots, k$ implies that there exist m_{1}, \ldots, m_{k} which are pairwise coprime and such that the smallest prime factor of $m_{1} m_{2} \cdots m_{k}$ exceeds F_{k} and such that furthermore

$$
\begin{equation*}
\frac{\phi\left(F_{m_{j}}^{(j)}\right)}{F_{m_{j}}^{(j)}} \in\left(\gamma_{j}, \gamma_{j}+\varepsilon_{1}\right) \subseteq\left(\frac{2 \varepsilon}{3 C_{j}}, \frac{\varepsilon}{C_{j}}\right) \quad \text { for } \quad j=1, \ldots, k \tag{4.3}
\end{equation*}
$$

Indeed, for $j:=1$, we choose $\gamma:=\gamma_{1}$ and $A:=F_{k}$ and invoke Lemma 2.2 with ε replaced by ε_{1} to find m_{1} such that containment (4.3) holds with $j=1$. Next, we choose $j:=2, A:=F_{k} m_{1}$, and $\gamma:=\gamma_{2}$ and apply again Lemma 2.2 with ε replaced by ε_{1} to get m_{2} whose smallest prime factor exceeds both F_{k} and m_{1} such that containment (4.3) holds for $j=2$. So m_{2} is coprime to m_{1}. Inductively, we construct m_{1}, \ldots, m_{k} with the desired distributional and arithmetic properties. Now to get to n satisfying (4.2), we first use the Chinese Remainder Lemma to solve $n_{j} \equiv 0\left(\bmod m_{j}\right)$, which is possible since m_{1}, \ldots, m_{k} are coprime in pairs. This puts ℓ into an arithmetic progression N modulo $M:=m_{1} \ldots m_{k}$. Writing $\ell:=N+M \lambda$, we get that

$$
(n+1)(n+2) \cdots(n+k)=k!m_{1} m_{2} \cdots m_{k} Q(\lambda),
$$

where $Q(X) \in \mathbb{Z}[X]$ is a linear polynomial with simple roots which factors in linear factors over the integers. By the sieve, there exist constants c_{8} and c_{9} such that for large x, there are $>c_{7} x /(\log x)^{k}$ values of $\lambda \leq x$ with the property that the smallest prime factor of $Q(\lambda)$ exceeds $x^{c 9}$. Thus, if we write $n_{j}:=m_{j} \ell_{j}$, then $\omega\left(\ell_{j}\right)<c_{10}$. For large x (say, so large that $x^{c 9}>F_{k m_{j}}$), we have

$$
\frac{\phi\left(F_{n_{j}}^{(j)}\right)}{F_{n_{j}}^{(j)}}=\frac{\phi\left(F_{m_{j}}^{(j)}\right)}{F_{m_{j}}^{(j)}} \frac{\phi\left(F_{\ell_{j}}^{\left(j m_{j}\right)}\right)}{F_{\ell_{j}}^{\left(j m_{j}\right)}} .
$$

The primes dividing $F_{\ell_{j}}^{\left(j m_{j}\right)}$ all have indices of appearance divisible by a prime factor of ℓ_{j}, which is larger than $x^{c_{9}}$. Thus, by Lemma 2.1, we get easily via an argument similar to the one used in the proof of Theorem 1.1, that

$$
\begin{equation*}
\frac{\phi\left(F_{\ell_{j}}^{\left(j m_{j}\right)}\right)}{F_{\ell_{j}}^{\left(j m_{j}\right)}}=\exp \left(O\left(\frac{\log x}{x^{c_{9}}}\right)\right), \tag{4.4}
\end{equation*}
$$

where the constant implied by the last O symbol above depends on $j m_{j}$ (in fact, for large x it depends only on $\left.\tau\left(j m_{j}\right)\right)$. At any rate, as x tends to infinity, the right-hand side in estimate (4.4) above tends to 1 , so if x is sufficiently large then this quantity will become larger than

THE FIBONACCI QUARTERLY

$1-\varepsilon_{1}$. With estimate (4.3), we then get that

$$
\frac{\phi\left(F_{n_{j}}^{(j)}\right)}{F_{n_{j}}^{(j)}} \in\left(\gamma_{1}-\varepsilon_{1}, \gamma_{1}+\varepsilon_{1}\right) \subseteq\left(\frac{\varepsilon}{2 C_{j}}, \frac{\varepsilon}{C_{j}}\right),
$$

which is exactly the containment (4.2) for j.
Now having done the hardest part, the proof is not that far off. Namely, it is clear that with a large n satisfying the containments (4.2) for $j=1, \ldots, k$, we have

$$
f_{n+j}-f_{n+j-1}=\frac{\phi\left(F_{n+j}\right)}{F_{n+j}}=c_{j} \frac{\phi\left(F_{n_{j}}^{(j)}\right)}{F_{n_{j}}^{(j)}} \in(0, \varepsilon),
$$

while the sum of the above numbers for $j=1, \ldots, k$ is

$$
f_{n+k}-f_{n}=\sum_{j=1}^{k} \frac{\phi\left(F_{n+j}\right)}{F_{n+j}}>\frac{k \varepsilon}{2}=\frac{k}{2(\log k)^{2}}>1,
$$

for k sufficiently large, from where one deduces easily that $\left(f_{n}\right)_{n \geq 1}$ is indeed dense modulo 1 .

5. Concluding Remarks

The method of proofs of both results extends easily to other sequences. For example, it extends to the function $\nu\left(F_{n}\right)$, where ν is a multiplicative function, not necessarily strongly multiplicative, with values in $(0,1]$ such that for some positive constant c we have

$$
\nu\left(p^{a}\right)=1-\frac{c}{p}+O\left(\frac{1}{p^{2}}\right) \quad \text { for all primes } \quad p \geq 2 \text { and integers } a \geq 1 .
$$

For example, we can replace $\phi\left(F_{m}\right) / F_{m}$ with $F_{m} / \sigma\left(F_{m}\right)$, where $\sigma(m)$ is the sum of the divisors of m, and keep the conclusions about the monotonicity of the distribution function and the density modulo 1 of the summatory function. It also applies when the sequence of Fibonacci numbers $\left(F_{m}\right)_{m \geq 1}$ is replaced with the sequence of Mersenne numbers $\left(2^{m}-1\right)_{m \geq 1}$, or some other Lucas sequences satisfying some mild technical conditions.

References

[1] K. A. Broughan, M. González, R. Lewis, F. Luca, V. J. Mejía Huguet, and A. Togbé, There are no multiple-perfect Fibonacci numbers, Integers, to appear.
[2] J.-M. Deshouillers, Sur la croissance de certaines fonctions de rèpartition, Comp. Math., 31 (1975), 259284.
[3] J.-M. Deshouillers and F. Luca, On the distribution of some means concerning the Euler function, Funct. et Approx., 39 (2008), 335-344.
[4] J.-M. Deshouillers and H. Iwaniec, On the distribution modulo 1 of the mean values of some arithmetical functions, Uniform Distribution Theory, 3 (2008), 111-124.
[5] J.-M. Deshouillers and M. Hassani, Distribution modulo 1 of a linear sequence associated to a multiplicative function evaluated at polynomial arguments, Science China Mathematics, 53 (2010), 2203-2206.
[6] F. Luca, Some Mean Values Related to Average Multiplicative Orders of Elements in Finite Fields, The Ramanujan Journal, 9 (2005), 33-44.
[7] F. Luca, V. J. Mejía Huguet, and F. Nicolae, On the Euler function of Fibonacci numbers, J. Integer Sequences, 12 (2009), Article 09.6.6.
[8] F. Luca and I. E. Shparlinski, Arithmetic functions with linear recurrences, J. Number Theory, 125 (2007), 459-472.
[9] I. J. Schoenberg, Über die asymptotische Verteilung reeller Zahlen mod 1, Math. Z., 28 (1928), 171-200.

ON THE DISTRIBUTION OF THE EULER FUNCTION WITH FIBONACCI NUMBERS

MSC2010: 11A25, 11B39, 11N37
IMB, Université de Bordeaux et CNRS, 33405 Talence cedex, France
E-mail address: jean-marc.deshouillers@math.u-bordeaux.fr
Instituto de Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089, Morelia, Michoacán, México

E-mail address: fluca@matmor.unam.mx

[^0]: This work was done while the first named author visited the Mathematical Institute in Morelia in October 2010 as part of the joint project France-Mexico 121469 Linear recurrences, arithmetic functions and additive combinatorics.

