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Abstract. A large class of deterministic sequences are known to obey Benford’s law. Re-
call that a sequence {xn} obeys Benford’s law if and only if log10 |xn| (mod 1) is uniformly
distributed. It is proved herein that a particular class of sequences defined by multiplicative
recursions obey Benford’s law. This includes the three-term multiplicative Fibonacci sequence
defined by xn = xn−1 · xn−2.

1. Introduction

The frequency of occurrence of significant digits in numbers occurring in empirical data and
deterministic sequences is a well-established topic. While there is no general agreement on the
definition of Benford’s law, it is most often associated with the distribution of the significant
digits of elements in a set of data. If a set has the property that the mantissae of its elements
are nearly uniformly distributed on the unit interval, then the set is said to obey Benford’s law.
As a direct result of this, the probability that a randomly selected number from a set of data
obeying Benford’s law has first significant digit n is log10

n+1
n

. For example, the probability
that the first significant digit is 1 is 0.301, the probability that the first significant digit is 2 is
0.176, etc. Benford-like laws take the form Pk(n) > Pk(n + 1) where Pk(n) is the probability
that the kth digit is n.

2. Benford’s Law in Sequences

The distribution of significant digits given by Benford’s law occurs not only in empirical
data, but in many deterministic sequences as well. The sequences n!, an, and the Fibonacci
numbers all obey Benford’s law. A sequence of numbers {an} that is bounded above and
below is said to be uniformly distributed if the probability of finding an in any subinterval of
its range is proportional to the length of the subinterval. This can be formalized by a limit.
Let the counting function C[a,b)(N) be defined as the number of terms of {an}, 1 ≤ n ≤ N ,
for which an ∈ [a, b). Thus, {an} is uniformly distributed if for each subinterval [a, b)

lim
N→∞

C[a,b)(N)

N
= b− a (2.1)

where it is assumed that [a, b) is a subinterval of a fixed interval of unity length. It is known
that a sequence {an}∞n=1 obeys Benford’s law if and only if the sequence log10 |an| is uniformly
distributed mod 1. As a result of this, the study of Benford’s law is intimately related with
the theory of uniform distribution modulo 1.
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Let {an} be an infinite sequence of real numbers. Let bn = log10 |an| (mod 1). The sequence
{an} is called a strong Benford sequence if for each subinterval [a, b) ⊂ [0, 1),

lim
k→∞

1

k

k
∑

n=1

β(n) = b− a, (2.2)

where

β(n) =

{

1 if bn ∈ [a, b)

0 if bn 6∈ [a, b).
(2.3)

Fibonacci numbers are a good example of a strong Benford sequence. It is clear that if {an}
is a strong Benford sequence, then {bn} is uniformly distributed on the unit interval.

3. Multiplicative Recursions

Fibonacci numbers represent a special type of sequence in that they are defined recursively.
Many authors have found that almost all sequences defined by linear recursions obey Benford’s
law. We are inclined to ask ourselves whether linear recursions are the only type of recur-
sive sequence that obeys Benford’s law. It is not difficult to confirm empirically that many
multiplicative recursions obey Benford’s law as well. In light of this, we present the following
theorem.

Theorem 3.1. The recursive sequence xn =
∏k

i=1 xn−i for n > k is a strong Benford sequence

for all k > 1 and for almost all choices of x1, . . . , xk where xi > 0.

Proof. We seek to show that the sequence {log10 xn}, n = 1, 2, . . ., is uniformly distributed
mod 1. Note that each term of xn can be written as a product of powers of x1 through xk.

xn = (x1)
F

(1)
n (x2)

F
(2)
n · · · (xk)F

(k)
n =

k
∏

i=1

(xi)
F

(i)
n (3.1)

where each sequence F
(i)
n is a Fibonacci k-step number which satisfies

F (i)
n = F

(i)
n−1 + F

(i)
n−2 + · · ·+ F

(i)
n−k

=
k
∑

j=1

F
(i)
n−j . (3.2)

For each i, the initial values of F
(i)
1 , . . . , F

(i)
k will be different. With equation (3.2), we can

now write the logarithm of xn as

log10 xn = log10

k
∏

i=1

(xi)
F

(i)
n =

k
∑

i=1

F (i)
n log10 xi. (3.3)

It is well-known that the Fibonacci numbers can be written as a continuous function. This is
also true of the Fibonacci k-step numbers. Flores has shown [1] that an exact formula for the
Fibonacci k-step numbers can be given in terms of the k roots of the characteristic polynomial
Pk(x) = xk − xk−1 − · · · − 1 = 0.

F (i)
n = α

(i)
1 rn1 + α

(i)
2 rn2 + · · · + α

(i)
k
rnk =

k
∑

j=1

α
(i)
j rnj (3.4)
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where r1, . . . , rk are the roots of Pk(x). We will order the roots such that |r1| > |r2| > · · · >
|rk| > 0. Hence, it follows that

log10 xn =

k
∑

i=1





k
∑

j=1

α
(i)
j rnj



 log10 xi

=

k
∑

j=1

(

k
∑

i=1

α
(i)
j log10 xi

)

rnj

=

k
∑

j=1

βjr
n
j .

(3.5)

It can be demonstrated that the characteristic polynomial Pk(x) has only one root for which
|rj| > 1 and all other roots lie inside the unit circle in the complex plane [4].

Theorem 1.2 in Kuipers and Niederreiter [3] states that if the sequence {xn}, n = 1, 2, . . ., is
uniformly distributed mod 1, and if {yn} is a sequence with the property limn→∞(xn−yn) = c,
a real constant, then {yn} is uniformly distributed mod 1 as well. Therefore, it suffices to show
that {β1rn1 } is uniformly distributed mod 1 in order to establish {log10 xn} as being uniformly
distributed mod 1 since

lim
n→∞

βjr
n
j = 0 for rj 6= r1. (3.6)

Now, let λ ∈ R
+ and θ > 1. Koksma [2] showed that the sequence {λθn} for n = 1, 2, . . . is

uniformly distributed mod 1 unless θ belongs to a λ-dependent exceptional set S of measure
zero. Thus, {β1rn1 } is uniformly distributed mod 1 for nearly all values of βj . Since βj is
determined by the initial values of the sequence xn, it immediately follows that log10 xn is
uniformly distributed mod 1 for nearly all values of x1, . . . , xk. �

With the theorem proved, it is worthwhile to make some remarks regarding the exceptional
values of θ. The λ-dependent exceptional values of θ are known as Pisot-Vijayaraghavan
numbers. It has been proven that for λ = 1, all quadratic irrationals whose conjugates lie
within the unit circle belong to the exceptional set S. By the rational zeros theorem, one
can show that all the roots of the characteristic polynomial Pk(x) are irrational. Since all
the conjugates of r1 lie inside the unit circle, this implies that r1 is a Pisot-Vijarayaghavan
number. Therefore, if we have β1 = 1, the sequence xn will not obey Benford’s law. However,
it is easy to demonstrate empirically that nearly any choice of β1 and hence nearly any choice
of x1, . . . , xk will yield a sequence that obeys Benford’s law.

It is instructive to look at a particular example of a multiplicative sequence that does obey
Benford’s law. Let us look at the sequence xn = xn−1 · xn−2 with initial values x1 = 2 and
x2 = 3. Notice that each term of xn can be written as a product of powers of x1 and x2 as
follows:

x3 = x2x1

x4 = x3x2 = (x2x1)x2 = x1(x2)
2

x5 = x4x3 = (x1(x2)
2)(x2x1) = (x1)

2(x2)
3

x6 = x5x4 = ((x1)
2(x2)

3)(x1(x2)
2) = (x1)

3(x2)
5

x7 = x6x5 = ((x1)
3(x2)

5)((x1)
2(x2)

3) = (x1)
5(x2)

8

(3.7)
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or, in general
xn = (x1)

Fn−2(x2)
Fn−1

where Fn is the nth Fibonacci number. Since Fn = (φn − Φn)/
√
5 where

φ =
1 +

√
5

2
and Φ =

1−
√
5

2
(3.8)

it follows that

log10 xn = log10(x1)
Fn−2(x2)

Fn−1

=

(

φn−2 − Φn−2

√
5

)

log10 x1 +

(

φn−1 − Φn−1

√
5

)

log10 x2

=

(

log10 x1

φ2
√
5

+
log10 x2

φ
√
5

)

φn −
(

log10 x1

Φ2
√
5

+
log10 x2

Φ
√
5

)

Φn

= β1φ
n − β2Φ

n.

(3.9)

For x1 = 2 and x2 = 3, we have that β1 u 0.1833, and thus we expect xn to obey Benford’s
law. Figure 1 shows the frequency of first digits for the first million terms of xn.
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Figure 1. Frequency of first digits for the first million terms of xn = xn−1·xn−2

with x1 = 2 and x2 = 3.

We can also determine a pair of exceptional values for x1 and x2 such that β1 = 1. One such

example would be the choices x1 = 1 and x2 = 10φ
√
5 ≈ 4149.87. The sequence xn with this

pair of initial values will not obey Benford’s law. One can observe that the sequence log10 |xn|
(mod 1) has zero and unity as its only limit points.

Lastly, we note that there is nothing intrinsic to this derivation that relies on using base 10.

Without loss of generality, we can conclude that the sequence xn =
∏k

i=1 xn−i for n > k is a
strong b-Benford sequence for all k > 1 and for nearly all choices of x1, . . . , xk where b is the
base.

References

[1] I. Flores, Direct calculation of k-generalized Fibonacci numbers, The Fibonacci Quarterly, 5 (1967), 259–
266.

[2] J. F. Koksma, Ein mengentheoretischer Satz über die Gleichverteilung modulo Eins, Compositio Mathe-
matica, 2 (1935), 250–258.

MAY 2011 137



THE FIBONACCI QUARTERLY

[3] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley-Interscience Publications, New
York, 1974.

[4] E. P. Miles Jr., Generalized Fibonacci numbers and associated matrices, The American Mathematical
Monthly, 67 (1960), 745–752.

MSC2010: 11K31, 11B37

Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77

Massachusetts Avenue, Building 24-607, Cambridge, MA 02139

E-mail address: paul.romano@alum.mit.edu

Department of Mathematical Sciences, Rensselaer Polytechnic Institute, 110 Eighth Street,

Troy, NY 12180

E-mail address: mclauh@rpi.edu

138 VOLUME 49, NUMBER 2


