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Abstract. In this paper we study how to accelerate the convergence of the ratios (xn)
of generalized Fibonacci sequences. In particular, we provide recurrent formulas in order
to generate subsequences (xgn) for every linear recurrent sequence (gn) of order 2. Using
these formulas we prove that some approximation methods, as secant, Newton, Halley and
Householder methods, can generate subsequences of (xn). Moreover, interesting properties on
Fibonacci numbers arise as an application. Finally, we apply all the results to the convergents
of a particular continued fraction which represents quadratic irrationalities.

1. Introduction

The problem of finding sequences of approximations for a solution of a certain equation
f(t) = 0 is really intriguing. There are various and famous methods to generate such sequences
in literature, as Newton, secant, and Halley methods. But another interesting problem is how
to increase the rate of convergence for the different methods. One of the answers consists
in selecting some subsequences of the starting approximations sequences which accelerate the
convergence process. In the particular case when f(t) corresponds to a second degree polyno-
mial, we may think about it as a characteristic polynomial of a generalized Fibonacci sequence.
The ratio of its consecutive terms generates a new sequence which converges to the root of
larger modulus of f(t), when it exists and it is real. Many authors have given methods to
accelerate the rate of convergence of this sequence. McCabe and Phillips [5] have studied how
some methods of approximations, like Newton and secant methods, provide an acceleration of
such sequence for suitable initial values. Gill and Miller [2] have found similar results for the
Newton method, only for the ratios of consecutive Fibonacci numbers. Many other works have
been developed about this argument. In [4] and [6], e.g., the results of McCabe and Phillips
[5] have been generalized for ratios of non–consecutive elements of generalized Fibonacci se-
quences. In [7] these results have been extended to other approximation methods, like the
Halley method. The aim of this paper is to give new interesting points of view to prove in an
easier way some known results about accelerations of generalized Fibonacci sequences, provid-
ing recurrent formulas in order to generate these subsequences. The accelerations related to
approximation methods become particular cases of our work. In the first section we will ex-
pose our approach, showing in the second section the relationship with known approximation
methods as Newton, secant, Halley and Householder methods. Moreover our results, in ad-
dition to a straightforward proof of some identities about Fibonacci numbers, can be applied
to convergents of a particular continued fraction representing quadratic irrationalities. We
will prove in the last section that particular subsequences of these convergents correspond to
Newton, Halley, and secant approximations for the root of larger modulus of a second degree
polynomial, when it exists and it is real.
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2. Accelerations of Linear Recurrent Sequences of the Second Order

Definition 2.1. We define, over an integral domain with unit R, the set S(R) of sequences a =
(an)

+∞

n=0, and the set W(R) of linear recurrent sequences. Furthermore, we indicate with a =
(an)

+∞

n=0 = W(α, β, p, q) the linear recurrent sequence of order 2 with characteristic polynomial
t2 − pt+ q and initial conditions α and β, i.e.,











a0 = α

a1 = β for all n ≥ 2.

an = pan−1 − qan−2,

If we consider the sequence U = W(0, 1, p, q), it is well-known that the sequence x = (xn)
+∞

n=2
defined by

xn =
Un

Un−1
, for all n ≥ 2 (2.1)

converges to the root of larger modulus (when it is real and it exists) of the characteristic
polynomial of U . Thus, every subsequence (xgn)

+∞

n=0 (for some sequence (gn)
+∞

n=0) can be
considered as a convergence acceleration of the starting sequence x. Cerruti and Vaccarino [1]
have deeply studied the applications of the companion matrix of linear recurrent sequences.
Here we consider some of these results which are useful to find the explicit formulas for the
acceleration of the sequences U and x. We define

M =

(

0 1
−q p

)

,

as the companion matrix of a linear recurrent sequence with characteristic polynomial t2−pt+q.
We recall that some authors may use the transpose of M as the companion matrix.

Lemma 2.2. The sequences U = W(0, 1, p, q) and T = W(1, 0, p, q) satisfy the following
relations

{

Tn+1 = −qUn

Un+1 = Tn + pUn,
for all n ≥ 0. (2.2)

Mn =

(

Tn Un

Tn+1 Un+1

)

=

(

Tn Un

−qUn Tn + pUn

)

, (2.3)

where M is the companion matrix of U and T .

Proof. Using the Binet formula and initial conditions, we easily check that

Un =
αn − βn

α− β
, Tn =

αβn − βαn

α− β
, for all n ≥ 0,

where α and β are the zeros of the characteristic polynomial t2 − pt+ q. Thus, remembering
that αβ = q, we immediately obtain (2.2). In order to prove (2.3), we observe that the
characteristic polynomial of U and T annihilates M , i.e., we have

M0 =

(

1 0
0 1

)

, M =

(

0 1
−q p

)

, Mn = pMn−1 − qMn−2, for all n ≥ 2.

So, using (2.2), we clearly find that the entries of Mn in the first column are the terms Tn,
Tn+1 of T , and in the second column are the terms Un, Un+1 of U . �

Dealing with Definition (2.1) of x, the ratio of two consecutive terms of any sequence
a ∈ W(R) has a closed formula, as we show in the following theorem.
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Theorem 2.3. Let us consider any sequence a = W(a0, a1, p, q) and the sequence y = (yn)
+∞

n=2,

with yn =
an

an−1
, then

yn =
an

an−1
=

a1xn − a0q

a0xn + a1 − a0p
for all n ≥ 2, (2.4)

where xn is the nth term of the sequence x defined by (2.1).

Proof. By direct calculation we have

yn =
an

an−1
=

a1Un + a0Tn

a1Un−1 + a0Tn−1
=

a1Un + a0Tn

a1Un−1 + a0 (pUn−1 − qUn−2 − pUn−1)

=
a1Un − a0qUn−1

a1Un−1 + a0Un − a0pUn−1
=

a1
Un

Un−1
− a0q

a0
Un

Un−1
+ a1 − a0p

=

=
a1xn − a0q

a0xn + a1 − a0p
.

�

Now, as a very important consequence of the previous theorem, we can evaluate the terms
of the sequence x shifted by m positions.

Corollary 2.4. If x is the sequence defined by (2.1), then for all m ≥ 2− n

xn+m =
xm+1xn − q

xn + xm+1 − p
.

Proof. Let us consider a = W(Um, Um+1, p, q), that is an = Un+m for all n ≥ 0. So the
sequence y, introduced in the previous theorem, becomes y = (yn = xn+m)+∞

n=2, and, from
(2.4), we obtain

xn+m =
Um+1xn − Umq

Umxn + Um+1 − Ump
=

xm+1xn − q

xn + xm+1 − p
. (2.5)

�

The basis sequences U and T play a central role in the following results. The accelerations
for such sequences yield explicit formulas for the acceleration of the convergent sequence x =
(xn)

+∞

n=2. Moreover, some interesting properties on Fibonacci numbers arise as an application.
We recall without proof an important theorem about the generalized Fibonacci sequences.

Theorem 2.5 ([1], Theorem 3.1 and Corollary. 3.3). Denote by V = W(2, p, p, q) the Lucas
sequence with parameters p and q, then

Wmn(0, 1, p, q) = Wm(0, 1, p, q) ·Wn(0, 1, Vm, qm),

Wmn(1, 0, p, q) = Wn(1, 0, Vm, qm) +Wm(1, 0, p, q)Wn(0, 1, Vm, qm).

Theorem 2.6. Given the sequences U = W(0, 1, p, q), T = W(1, 0, p, q), and x as defined in
equation (2.1), if we choose a sequence g = W(i, j, s, t), for some i, j ≥ 2, then

Ugn = a2U
(s)
gn−1

T (−t)
gn−2

+ b2T
(s)
gn−1

U (−t)
gn−2

+ (a1b2 + a2b4)U
(s)
gn−1

U (−t)
gn−2

Tgn = T (s)
gn−1

T (−t)
gn−2

+ a1U
(s)
gn−1

T (−t)
gn−2

+ b1T
(s)
gn−1

U (−t)
gn−2

+ (a1b1 + a2b3)U
(s)
gn−1

U (−t)
gn−2

,

AUGUST 2011 257



THE FIBONACCI QUARTERLY

for every n ≥ 2, where U (s) = W(0, 1, Vs, q
s), T (s) = W(1, 0, Vs, q

s), and

M s =

(

a1 a2
a3 a4

)

, M−t =

(

b1 b2
b3 b4

)

.

Moreover, if we choose xi and xj, for some i, j ≥ 2, as the initial steps of the acceleration of
x, then

xgn =
q2a2x

(s)
gn−1

+ q2b2x
(−t)
gn−2

− q(a1b2 + a2b4)x
(s)
gn−1

x
(−t)
gn−2

q2 − qa1x
(s)
gn−1

− qb1x
(−t)
gn−2

+ (a1b1 + a2b3)x
(s)
gn−1

x
(−t)
gn−2

, for all n ≥ 2, (2.6)

where x(s) = −q
U (s)

T (s)
.

Proof. We know as a consequence of Theorem 2.5 that

M sgn−1 =

(

T
(s)
gn−1

+ a1U
(s)
gn−1

a2U
(s)
gn−1

a3U
(s)
gn−1

T
(s)
gn−1

+ a4U
(s)
gn−1

)

,

M−tgn−2 =

(

T
(−t)
gn−2

+ b1U
(−t)
gn−2

b2U
(−t)
gn−2

b3U
(−t)
gn−2

T
(−t)
gn−2

+ b4U
(−t)
gn−2

)

.

So from
(

Tgn Ugn

Tgn+1 Ugn+1

)

= Mgn = M sgn−1−tgn−2 = M sgn−1M−tgn−2 ,

we easily find the explicit expressions of Ugn and Tgn . Finally, to complete the proof, we only

need to divide both Ugn and Tgn by the product T
(s)
gn−1

T
(−t)
gn−2

and consider their resulting ratio
multiplied by −q

−q
Ugn

Tgn

= −q

a2
U

(s)
gn−1

T
(s)
gn−1

+ b2
U

(−t)
gn−2

T
(−t)
gn−2

+ (a1b2 + a2b4)
U

(s)
gn−1

T
(s)
gn−1

U
(−t)
gn−2

T
(−t)
gn−2

1 + a1
U

(s)
gn−1

T
(s)
gn−1

+ b1
U

(−t)
gn−2

T
(−t)
gn−2

+ (a1b1 + a2b3)
U

(s)
gn−1

T
(s)
gn−1

U
(−t)
gn−2

T
(−t)
gn−2

,

rearranging the terms we obtain the equality (2.6). �

Corollary 2.7. When g = W(2, 3, 1,−1), i.e., gn−3 = Fn, for all n ≥ 3, where F =
W(0, 1, 1,−1) is the Fibonacci sequence, then for all n ≥ 5

UFn
= UFn−1

TFn−2
+ TFn−1

UFn−2
+ pUFn−1

UFn−2

= −q
(

UFn−1
UFn−2−1 + UFn−1−1UFn−2

)

+ pUFn−1
UFn−2

,

xFn
=

qxFn−1
+ qxFn−2

− pxFn−1
xFn−2

q − xFn−1
xFn−2

.

Proof. The identities immediately follow from Theorem 2.6, observing that in this case we have
s = 1, t = −1, consequently M s = M = M−t, U (s) = U = U (−t), and T (s) = T = T (−t). �

Remark 2.8. When U is the Fibonacci sequence F , the previous Corollary provides a direct
proof of the interesting formula

FFn
= FFn−1

FFn−2−1 + FFn−1−1FFn−2
+ FFn−1

FFn−2
,
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for all n ≥ 5, avoiding many algebraic manipulations based on the basic properties of Fibonacci
numbers. This formula is also true for n = 3 and n = 4, as a little calculation can show.

The acceleration shown in the previous corollary is the same found by McCabe and Phillips
in [5] with the secant method applied to the sequence (xn)

+∞

n=2 shifted by one step. If we
consider

M2n = MnMn =

(

T 2
n − qU2

n 2TnUn + pU2
n

−q
(

2TnUn + pU2
n

)

T 2
n − qU2

n + p
(

2TnUn + pU2
n

)

)

,

we find U2n = 2TnUn + pU2
n, T2n = T 2

n − qU2
n, and

x2n = −q
U2n

T2n
=

2qxn − px2n
q − x2n

. (2.7)

If we start from x2, a repeated use of equation (2.7) yields to the subsequence x2, x4, x8,
. . . , x2n , . . ., corresponding to the subsequence obtained in [5], using the Newton method on
the sequence (xn)

+∞

n=2 shifted by one step.

Proposition 2.9. Using the notation of Theorem 2.6, for g = W(h, h + k, 2, 1), i.e., gn =
kn+ h for all n ≥ 0, then for all n ≥ 2

Ugn =
1

qgn−2

(

qU2
gn−1

Ugn−2
+ 2Tgn−1

Ugn−1
Tgn−2

+ pU2
gn−1

Tgn−2
− Ugn−2

T 2
gn−1

)

Tgn =
1

qgn−2

(

T 2
gn−1

Tgn−2
+ pT 2

gn−1
Ugn−2

− qTgn−2
U2
gn−1

+ 2qTgn−1
Ugn−1

Ugn−2

)

and

xgn =
x2gn−1

xgn−2
+ 2qxgn−1

− px2gn−1
− qxgn−2

q − pxgn−2
− x2gn−1

+ 2xgn−1
xgn−2

.

Proof. We need to evaluate
Mgn = M2gn−1M−gn−2 .

Considering that

M−n =
1

qn

(

p −1
q 0

)n

=
1

qn

(

Tn + pUn −Un

qUn Tn

)

,

we have

Mgn =
1

qgn−2

(

T 2
gn−1

− qU2
gn−1

2Tgn−1
Ugn−1

+ pU2
gn−1

· · · · · ·

)(

Tgn−2
+ pUgn−2

−Ugn−2

qUgn−2
Tgn−2

)

,

and

Ugn =
1

qgn−2

(

qU2
gn−1

Ugn−2
+ 2Tgn−1

Ugn−1
Tgn−2

+ pU2
gn−1

Tgn−2
− Ugn−2

T 2
gn−1

)

,

Tgn =
1

qgn−2

(

T 2
gn−1

Tgn−2
+ pT 2

gn−1
Ugn−2

− qTgn−2
U2
gn−1

+ 2qTgn−1
Ugn−1

Ugn−2

)

.

Finally, dividing both Ugn and Tgn by T 2
gn−1

Tgn−2
, their ratio becomes

Ugn

Tgn

=

q

(

Ugn−1

Tgn−1

)2
Ugn−2

Tgn−2

+ 2
Ugn−1

Tgn−1

+ p

(

Ugn−1

Tgn−1

)2

−
Ugn−2

Tgn−2

1 + p
Ugn−2

Tgn−2

− q

(

Ugn−1

Tgn−1

)2

+ 2q
Ugn−1

Tgn−1

Ugn−2

Tgn−2

AUGUST 2011 259



THE FIBONACCI QUARTERLY

from which, remembering that xgn = −q
Ugn

Tgn

, with simple calculations we obtain the thesis. �

Remark 2.10. Applying the last proposition to the Fibonacci numbers, we get another example
of a beautiful identity, easily proved without hard calculations. In fact, when we consider
gn = kn, we have for all n ≥ 2

Fkn = (−1)k(n−2)(−F 2
k(n−1)Fk(n−2) + 2Fk(n−1)Fk(n−1)−1Fk(n−2)−1

+ F 2
k(n−1)Fk(n−2)−1 − Fk(n−2)F

2
k(n−1)−1),

which in particular, for k = 1, becomes

Fn = (−1)n
(

−F 2
n−1Fn−2 + 2Fn−1Fn−2Fn−3 + F 2

n−1Fn−3 − F 3
n−2

)

.

3. Approximation Methods

In the previous section we have already seen how some accelerations are connected to some
approximation methods, like Newton and secant methods. In this section, as particular cases
of our work, we exactly retrieve the accelerations provided by these methods and studied in the
papers [2] and [5]. Furthermore, using our approach, we can show similar results for different
approximation methods, like the Halley method. Finally, we will examine the acceleration
provided by the Householder method, which is a generalization of Newton and Halley methods.
First of all, we recall that the secant method, applied to the equation f(t) = 0, provides rational
approximations of a root, starting from two approximations x0 and x1, through the recurrence
relation

xn = xn−1 −
f(xn−1)(xn−1 − xn−2)

f(xn−1)− f(xn−2)
, for all n ≥ 2,

which becomes, when f(t) = at2 − bt− c

xn =
axn−1xn−2 − c

axn−1 + axn−2 − b
.

Theorem 3.1. Let us consider the Fibonacci sequence F and the sequences U = W(0, 1, p, q),
T = W(1, 0, p, q), and x = (xn)

+∞

n=2, defined by equation (2.1). The subsequence (xFn+2+1)
+∞

n=0

corresponds to the approximations of the root of larger modulus of t2 − pt+ q provided by the
secant method.

Proof. We take the sequence g defined by gn = Fn+2+1 for every n ≥ 0. Since gn−1 = Fn+2,
we have the recurrent formula gn = gn−1 + gn−2 − 1. Let M be the companion matrix of the
sequence U . From the matrix product

Mgn = Mgn−1Mgn−2M−1

we immediately observe that

Ugn = Ugn−1
Ugn−2

−
1

q
Tgn−1

Tgn−2
, Tgn = Ugn−2

Tgn−1
+ Ugn−1

Tgn−2
+

p

q
Tgn−1

Tgn−2
.

Thus,

Ugn

Tgn

=

Ugn−1
Ugn−2

Tgn−1
Tgn−2

−
1

q

Ugn−2

Tgn−2

+
Ugn−1

Tgn−1

+
p

q

,
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and

xgn = −q
Ugn

Tgn

=
xgn−1

xgn−2
− q

xgn−2
+ xgn−1

− p
,

clearly proving the thesis. �

The Newton method provides rational approximations for a solution of the equation f(t) =
0. When f(t) = at2 − bt − c, given an initial approximation y0, we recall that the Newton
approximations sequence satisfies the recurrence relation

yn = yn−1 −
ay2n−1 − byn−1 − c

2ayn−1 − b
=

ay2n−1 + c

2ayn−1 − b
, for all n ≥ 1. (3.1)

On the other hand, the Halley method generates approximations for a solution of t2−pt+q = 0
through the following recurrence relation

yn = yn−1 +
(y2n−1 − pyn−1 + q)(p− 2yn−1)

3y2n−1 − 3pyn−1 + p2 − q
, for all n ≥ 1, (3.2)

for a given initial step y0. In the next theorem we will show how particular subsequences of
the sequence x, defined by equation (2.1), generate the Newton and Halley approximations to
the root of larger modulus of t2 − pt+ q.

Theorem 3.2. Given the sequences U = W(0, 1, p, q), T = W(1, 0, p, q), and x, defined by
equation (2.1), then the recurrence relations

x2n−1 =
x2n − q

2xn − p
, (3.3)

x3n−2 = xn−1 +
(x2n−1 − pxn−1 + q)(p − 2xn−1)

3x2n−1 − 3pxn−1 + p2 − q
, (3.4)

respectively generates the subsequences of x producing Newton and Halley approximations for
the root of larger modulus of t2 − pt+ q.

Proof. The proof of relation (3.3) is a direct consequence of Corollary 2.4

x2n−1 = xn+n−1 =
x2n − q

2xn − p
.

Starting from x2, a repeated use of this equation yields the subsequence

(x2, x3, x5, . . . , x2n+1, . . .) ,

which consists of the Newton approximations for the root of larger modulus of t2 − pt +
q. Relation (3.3) and Corollary 2.4 also provide the proof of recurrence (3.4) for Halley
approximations

x3n−2 = xn+2n−2 =
x2n−1xn − q

xn + x2n−1 − p

=

x2
n
− q

2xn − p
xn − q

xn +
x2
n
− q

2xn − p
− p

=
x3
n
− 3qxn + pq

3x2
n
− 3pxn + p2 − q

= xn−1 +
(x2

n−1 − pxn−1 + q)(p− 2xn−1)

3x2
n−1 − 3pxn−1 + p2 − q

.

�
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To complete our overview on approximation methods and generalize the results of the
previous theorems, we consider the Householder method [3], which provides approximations
for a solution of a nonlinear equation f(t) = 0. The Householder recurrence relation is

yn+1 = yn + d
(1/f)(d−1)(yn)

(1/f)(d)(yn)
, for all n ≥ 0 (3.5)

for a given initial approximation y0, where f (d) is the dth derivative of f . The Newton and
Halley method clearly are particular cases of this method, for d = 1 and d = 2, respectively.
Indeed, when f(t) = t2 − pt + q from (3.5), when d = 1 or d = 2, it is easy to retrieve the
formulas (3.1) and (3.2).

Theorem 3.3. With the same hypotheses of Theorem 3.2, if yn = xk for some k ≥ 2, then
yn+1 = x(d+1)k−d, where yn+1 is obtained from relation (3.5) when f(t) = t2 − pt+ q.

Proof. Let α1, α2 be the roots of t2 − pt+ q, we can write
(

1

t2 − pt+ q

)(d)

=

(

(t− α1)
−1 − (t− α2)

−1

α1 − α2

)(d)

=
(−1)dd!

(

(t− α2)
d+1 − (t− α1)

d+1
)

(α1 − α2)(t− α1)d+1(t− α2)d+1
.

Thus, relation (3.5) becomes

yn+1 = yn −
(yn − α1)(yn − α2)

(

(yn − α2)
d − (yn − α1)

d
)

(yn − α2)d+1 − (yn − α1)d+1
,

and with some algebraic manipulations we obtain

yn+1 =
α1(yn − α2)

d+1 − α2(yn − α1)
d+1

(yn − α2)d+1 − (yn − α1)d+1
.

If we set yn = xk =
Uk

Uk−1
=

αk
1 − αk

2

αk−1
1 − αk−1

2

, then

yn+1 =

α1

(

αk
1 − α2α

k−1
1

αk−1
1 − αk−1

2

)d+1

− α2

(

α1α
k−1
2 − αk

2

αk−1
1 − αk−1

2

)d+1

(

αk
1 − α2α

k−1
1

αk−1
1 − αk−1

2

)d+1

−

(

α1α
k−1
2 − αk

2

αk−1
1 − αk−1

2

)d+1

=
α
(d+1)k−d
1 (α1 − α2)

d+1 − α
(d+1)k−d
2 (α1 − α2)

d+1

α
(d+1)k−d−1
1 (α1 − α2)d+1 − α

(d+1)k−d−1
2 (α1 − α2)d+1

=
U(d+1)k−d

U(d+1)k−d−1
= x(d+1)k−d.

�

4. Applications to Continued Fractions

In order to show some interesting applications of the exposed results, we study the accel-
eration of a sequence of rationals which come from the sequence of convergents of a certain
continued fraction. The continued fraction, which we will introduce, provides a periodic rep-
resentation of period 2 for every quadratic irrationality (except for the square roots). Surely
its convergents do not generate the best approximations for these irrationalities (because we
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use rational partial quotients, instead of integers), but between them, using the acceleration
method of the previous section, we can find at the same time the approximations derived
from the secant method, the Newton method, and the Halley method. We remember that a
continued fraction is a representation of a real number α through a sequence of integers as
follows:

α = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

,

where the integers a0, a1, . . . can be evaluated with the recurrence relations







ak = [αk]

αk+1 =
1

αk − ak
if αk is not an integer

k = 0, 1, 2, . . . ,

for α0 = α (see, e.g., [8]). A continued fraction can be expressed in a compact way using the
notation [a0, a1, a2, a3, . . .]. The finite continued fraction

[a0, . . . , an] = Cn =
pn

qn
, n = 0, 1, 2, . . . ,

is a rational number and is called the nth convergent of [a0, a1, a2, a3, . . .] and the ai’s are called
partial quotients. Furthermore, the sequences (pn)

+∞

n=0 and (qn)
+∞

n=0 are recursively defined by
the equations

{

pn = anpn−1 + pn−2

qn = anqn−1 + qn−2,
for all n ≥ 2, (4.1)

and initial conditions p0 = a0, p1 = a0a1 + 1, q0 = 1, q1 = a1. In the following we will use
rational numbers as partial quotients, instead of the usual integers.

Remark 4.1. In general a continued fraction can have complex numbers as partial quotients.
In this case given a real number there are no algorithms which provide the partial quotients.
However, such a continued fraction can converge to a real number. In the following, we will
study continued fractions of period 2 with rational partial quotients which are convergents to
the root of larger modulus of a quadratic equation. For a deep study of the convergence of
continued fractions, i.e., for an analytic theory of these objects, see [9].

Remark 4.2. A continued fraction with rational partial quotients

[

a0

b0
,
a1

b1
, . . .

]

has an equiv-

alent form as

a0

b0
+

b1

a1 +
b1b2

a2 +
b2b3

a3 +
. . .

,
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but the representation

a0

b0
+

1

a1

b1
+

1

a2

b2
+

1

a3

b3
+

. . .

is more suitable for the study of the convergents, as we will see soon.

When we study the continued fraction

[

a0

b0
,
a1

b1
,
a2

b2
, . . .

]

, the equations in (4.1) become















pn =
an

bn
pn−1 + pn−2

qn =
an

bn
qn−1 + qn−2,

for all n ≥ 2, (4.2)

with initial conditions p0 =
a0

b0
, p1 =

a0

b0

a1

b1
+ 1, q0 = 1, q1 =

a1

b1
, providing two sequences of

rationals. In the next proposition we study how to determine the convergents through the
ratio of two recurrent sequences of integers.

Proposition 4.3. Given the continued fraction

[

a0

b0
,
a1

b1
,
a2

b2
, . . .

]

, let (pn)
+∞

n=0 and (qn)
+∞

n=0 be the

sequences which provide the sequence of convergents (Cn)
+∞

n=0 defined recursively by equations
(4.2). If we consider the sequences (sn)

+∞

n=0, (tn)
+∞

n=0, (un)
+∞

n=0 defined for all n ≥ 2











sn = ansn−1 + bnbn−1sn−2

tn = antn−1 + bnbn−1tn−2

un = bnun−1

and initial conditions











s0 = a0, s1 = a0a1 + b0b1

t0 = 1, t1 = a1

u0 = 1

then pn =
sn

b0un
and qn =

tn

un
, for every n ≥ 0, i.e.,

Cn =
sn

b0tn
, for all n ≥ 0.

Proof. We prove the thesis by induction. When n = 0, and n = 1 we have, respectively

p0 =
a0

b0
=

s0

b0u0
, q0 = 1 =

t0

u0

p1 =
a0a1 + b0b1

b0b1
=

s1

b0u1
, q1 =

a1

b1
=

t1

u1
.

Now considering that

pn =
an

bn
pn−1 + pn−2, n ≥ 2,
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by induction hypothesis we have

pn =
an

bn
·

sn−1

b0un−1
+

sn−2

b0un−2
=

ansn−1un−2 + bnun−1sn−2

b0bnun−1un−2

=
ansn−1un−2 + bnbn−1un−2sn−2

b0unun−2
=

sn

b0un
.

Similarly we obtain qn =
tn

un
. �

We finally focus our attention on a particular continued fraction of period 2. Precisely, we
consider the continued fraction

[

b

a
,
b

c

]

(4.3)

for a, b, c ∈ Z not zero. This continued fraction converges to the quadratic irrationality, of
larger modulus, root of ax2 − bx− c. Indeed, it is easy to check that

α =
b

a
+

1

b

c
+

1

α

=
b

a
+

cα

bα+ c
⇔ abα2 + acα = b2α+ bc+ acα ⇔ aα2 − bα− c = 0.

From the previous proposition we know that the convergents of (4.3) are determined by a
linear recurrent sequence. Indeed, in this case the sequences s = (sn)

+∞

n=0 and (tn)
+∞

n=0 of the
Proposition 4.3 correspond to

s = W(b, b2 + ac, b,−ac), t = W(1, b, b,−ac).

Thus, defining the sequence
σ = W(0, 1, b,−ac),

we obtain that the convergents (Cn) of our continued fraction are

Cn =
σn+2

aσn+1
, for all n ≥ 0.

Clearly, they are not the best approximations of the quadratic irrationality, but since the
convergents are determined by the ratio of the sequence σ, we can apply our method of
acceleration to such a sequence. In particular, we will see that properly accelerating the
convergents sequence, we can find the approximations derived by the Newton, Halley, and
secant methods, which compare at the same time between these approximations.

Theorem 4.4. Let us consider the continued fraction

[

b

a
,
b

c

]

, whose sequence of convergents

is (Cn)
+∞

n=0, and the sequence σ = W(0, 1, b,−ac). If α is the root of larger modulus of at2 −
bt− c, then

(1) (CFn+2−1)
+∞

n=0, are the approximations of α by the secant method;

(2) (C2n−1)
+∞

n=0, are the Newton approximations of α;
(3) (C3n−1)

+∞

n=0, are the Halley approximations of α.

Proof. We use the auxiliary sequence x = (xn)
+∞

n=0 defined by

xn =
σn

σn−1
, for all n ≥ 2.
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We can directly apply Theorem 3.1, obtaining that (xFn+2+1)
+∞

n=0 are the approximations

through the secant method of the root of larger modulus of t2 − bt − ac. Considering the
sequence x̄ defined by

x̄n =
xn

a
, for all n ≥ 2,

we have

x̄gn =
xgn
a

=
1

a
·
xgn−1

xgn−2
+ ac

xgn−2
+ xgn−1

− b
=

ax̄gn−1
x̄gn−2

+ c

ax̄gn−2
+ ax̄gn−1

− b
,

i.e. (x̄gn)
+∞

n=0 are the approximations through the secant method of α. Thus, remembering
that aCn = xn+2 for every n ≥ 0, we have that (CFn+2−1)

+∞

n=0 are the approximations through
the secant method of α. Applying Theorem 3.2 to the sequence x we obtain

x2n−1 =
x2n + ac

2xn − b
,

i.e., x2, x3, x5, x9, . . ., x2n+1, . . . are the Newton approximations for the root of larger modulus
of t2 − bt− ac. Now it is easy to see that x̄2, x̄3, x̄5, . . . , x̄2n+1 are the Newton approximations
of α for every n ≥ 2, i.e., (C2n−1)

+∞

n=0 are the Newton approximations of α. Finally, using
Theorem 3.2 again, with similar observations, it is possible to prove that (C3n−1)

+∞

n=0 are the
Halley approximations of α. �
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