GOLDEN PROPORTIONS IN HIGHER DIMENSIONS
BASSEM GHALAYINI AND JOSEPH MALKOUN

ABSTRACT. The golden ratio ¢ = (1++/5)/2 appears in numerous contexts in the literature.
A study is made to generalize ¢ to dimension n. Novel results are obtained by generalizing
three different characterizations of ¢ to higher dimension.

1. INTRODUCTION

In this article we generalize to dimension n three equivalent definitions of the golden ratio
® = (1 ++/5)/2, which is the positive root of the quadratic equation

¢*=o¢+1.
Moreover, the sequence 1,1,2,3,5,8,13,... in which each term is the sum of the preceding
two terms is the familiar Fibonacci sequence. It is known that the nth term a,, is
o= (=) _ "= (=)
Vb vE o
The following three characterizations of ¢ are known in the literature, and will be generalized
in the following three sections, respectively.
(1) Golden rectangle: A rectangle is said to be golden if the ratio of length to width is
¢ (see figure 1). Starting with a golden rectangle R; of dimensions (1, ¢), cut off a
square of side 1, there remains a golden rectangle Ry of dimensions (1,¢ —1) = (1, %)
We emphasize that Ry is similar to R;. Repeating this process generates a nested
sequence of golden rectangles R{ D Ry D --- D R, D -+~

Ap —

o=

S

FIGURE 1. A golden rectangle.

(2) Golden segment subdivision: Given a line segment AC, there is a unique point B
between A and C' such that
AC  AB

AB ~ BC
It turns out that this ratio is the golden ratio ¢.
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A B C

FIGURE 2. A golden segment subdivision: % = g—g = ¢.

(3) An alternative characterization of ¢: It is shown in [2] that ¢ is the unique number
r > 1 satisfying the equation

/°° dz _q
o (I+am)yr

Remark. Other definitions of ¢ exist in the literature, e.g., continued fraction, series repre-
sentation, etc.

2. n-DIMENSIONAL GOLDEN BOXES
An n-dimensional rectangular box R (or simply an n-box) is defined to be
R=I1 x---x1,,
where I}, is a closed interval in R of the form
Iy = [ag, be).
The dimensions of R are defined to be

dim(R) = (l1,...,ln),
where [, is the length of the interval I. We assume that

In order to generalize the golden rectangle, we consider an n-box R and apply n — 1 cuts
with hyperplanes parallel to the faces (see figure 3). This subdivides R into 2"~! smaller
boxes. We assume that we make such cuts in a way that one of the boxes is a cube with side
length [;. We call the cutting a reqular cutting, and refer to the cube of side length I as the

residue of the regular cutting. The n-box opposing the residue of the regular cutting is called
the result of the regular cutting (see Figure 3).

Definition 2.1. An n-box R is said to satisfy the golden cutting property if upon applying a
reqular cutting to it, the result of such a cutting is an n-box similar to R.

—result  of
the cut-

I la—1

residue
cube

FIGURE 3. A regular cutting of a 3-box.
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Definition 2.2. A rectangular n-box is said to be golden if the following proportionality holds

lo — 1y I
I3 — 1y lo
: =\ I3
In — U1 :
I In

for some A > 0.

Remark. A golden n-box clearly satisfies the golden cutting property. For the remainder of
the article, we shall only focus on golden n-boxes. We also note that a golden 2-box is a golden
rectangle.

This is equivalent to the following eigenvalue problem

-1 10 - 00 h l
-1 01 - 00 Iy I
S : =A : (2.1)
-1 00 - 01 ln1 ln1
1 00 - 00 L L

The characteristic equation of this problem is

o=l (2.2)
Consider the function

=1

defined on the interval [0, 00). Since p/(x) > 0 on this interval, p(x) is strictly increasing there.
Since p(0) = —1, p(1) = n— 1, then by the intermediate value theorem, the equation p(xz) =0
has a unique solution in [0, 00) that lies in the interval (0,1). Denote this solution by .

Solving the eigenvalue problem (2.1) for this A using backward substitution (starting from
the bottom equation upwards), we obtain

L 1
2 1+
Lo =h : (2.3)
ln—1 THA+ A2 4 A2
In LA A+ A2+ g Anm2 4\l
We define the golden n-proportions to be the vector
(LI XA .., 1+ X4--F A" (2.4)

up to a positive factor.
Remark. For n = 2 we obtain A\ = % =~ 0.6180, and we recover the golden 2-proportions

(1,1.6180) of the golden rectangle. Also, for n = 3 we obtain A\ &~ 0.5437 using Cardano’s
formula, and we obtain the golden 3-proportions (1, 1.5437,1.8393).
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Setting

the characteristic equation becomes

R Y (25)

This is the n-step Fibonacci equation, related to the n-step Fibonacci recurrence relation

Gm+4n = Gm + Q41+ + CGmyn—1- (26)

For n = 2, we recover the usual Fibonacci recurrence relation.

3. AN EQUATION WITH A GENERALIZED GOLDEN SOLUTION

The following theorem is a generalization of the result in [2].

Theorem 3.1. There is a unique r > 1 such that

/OOO ( v =1 (3.1)

1 +x 14rt-trn—2 )7”

Moreover, such an r satisfies
=14r+---+r"L (3.2)

Proof. For the proof we need the following.

Lemma 3.2. The equation

/000 ( _ =1 (3.3)

- 1oy 1
1 —|—x1+r+---+rn*2)1+F+ +

rn—1

for allr > 1.

Proof. Denote the integral on the left-hand side of (3.3) by I(r). In order to evaluate I(r), we
make use of the substitution
n—1

- 1
u= (14T m2) 1

After making this substitution, we obtain:

1 1
1 1 171 CRRET S S S
1=t [ (5-1) ubHrT g,
T T 0o \u
1 1 ! 1, .41 9
:(;++Tn_1)/0(1_u)r n—1 du

O
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Hence, if r satisfies the n-step Fibonacci equation, it follows that r satisfies equation (3.1).
This proves the existence part of the theorem. It remains to prove uniqueness. Using a similar
argument as in [2], we consider numbers «, 5 with 1 < a < r < 3. It then follows that

RIS NS NI S S LA
— — —_— =7 — .
o r Tn—l B ,8"_1

an—l

It thus follows that

1
1+ —+- + >a
(%

an—l

1 1
l+—+ -+ ——<B.
/8 Bn—l

Therefore,

14 g1+ 42

© dx © dx
3 < T — = 1.
0 < gn—1 ) 0 ( gn—1 >1+[3+m+[37l1
1+ gi+B+-+8772

Likewise, we prove that

1 + T 1+a+t-+an—2

& dx
This shows uniqueness, and the theorem is proved. O

Remark. We note that the particular value of r in Theorem 3.1 is equal to 1/, where A is
the particular eigenvalue found in Section 2 that produces the golden n-proportions. Also, for
n = 2, we recover the alternative definition of the usual golden ratio ¢ in [2].

4. GOLDEN n-SUBDIVISION OF A LINE SEGMENT

Consider a line segment A. We will abuse the notation slightly and denote its length also
by A. We subdivide A into n consecutive subsegments, ay, ...,a, (of lengths also denoted by
ai,. .. ,an, respectively). We assume that

ap > - > Qap.

We call such a subdivision an n-subdivision of A (see figure 4).

ai a2 as ay

FIGURE 4. An example of a 4-subdivision of a line segment with a; > as > a3 > aq4.

Definition 4.1. An n-subdivision is said to be golden if the following ratios are equal

w_atae __Yiia o YiSa Y i1
. — ol L B , (4.1)
2 az+tas Yoo a; D io i ay
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If we now let
ll = ai

lo = a1+ as

lp=a1+ax+ -+ ap,

it is then easy to show that the equality of the ratios defining a golden m-subdivision is
equivalent to the n-box of dimensions (ly,...,1,) being golden. It is worth noting that a
2-subdivision is golden if and only if

ap a1+ a
az ap
This ratio is of course the golden ratio ¢.
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