GOLDEN PROPORTIONS IN HIGHER DIMENSIONS

BASSEM GHALAYINI AND JOSEPH MALKOUN

Abstract

The golden ratio $\phi=(1+\sqrt{5}) / 2$ appears in numerous contexts in the literature. A study is made to generalize ϕ to dimension n. Novel results are obtained by generalizing three different characterizations of ϕ to higher dimension.

1. Introduction

In this article we generalize to dimension n three equivalent definitions of the golden ratio $\phi=(1+\sqrt{5}) / 2$, which is the positive root of the quadratic equation

$$
\phi^{2}=\phi+1 .
$$

Moreover, the sequence $1,1,2,3,5,8,13, \ldots$ in which each term is the sum of the preceding two terms is the familiar Fibonacci sequence. It is known that the nth term a_{n} is

$$
a_{n}=\frac{\phi^{n}-(1-\phi)^{n}}{\sqrt{5}}=\frac{\phi^{n}-(-\phi)^{-n}}{\sqrt{5}} .
$$

The following three characterizations of ϕ are known in the literature, and will be generalized in the following three sections, respectively.
(1) Golden rectangle: A rectangle is said to be golden if the ratio of length to width is ϕ (see figure 1). Starting with a golden rectangle R_{1} of dimensions $(1, \phi)$, cut off a square of side 1 , there remains a golden rectangle R_{2} of dimensions $(1, \phi-1)=\left(1, \frac{1}{\phi}\right)$. We emphasize that R_{2} is similar to R_{1}. Repeating this process generates a nested sequence of golden rectangles $R_{1} \supset R_{2} \supset \cdots \supset R_{n} \supset \cdots$

Figure 1. A golden rectangle.
(2) Golden segment subdivision: Given a line segment $A C$, there is a unique point B between A and C such that

$$
\frac{A C}{A B}=\frac{A B}{B C}
$$

It turns out that this ratio is the golden ratio ϕ.

THE FIBONACCI QUARTERLY

Figure 2. A golden segment subdivision: $\frac{A C}{A B}=\frac{A B}{B C}=\phi$.
(3) An alternative characterization of ϕ : It is shown in [2] that ϕ is the unique number $r>1$ satisfying the equation

$$
\int_{0}^{\infty} \frac{d x}{\left(1+x^{r}\right)^{r}}=1
$$

Remark. Other definitions of ϕ exist in the literature, e.g., continued fraction, series representation, etc.

2. n-Dimensional Golden Boxes

An n-dimensional rectangular box R (or simply an n-box) is defined to be

$$
R=I_{1} \times \cdots \times I_{n},
$$

where I_{k} is a closed interval in \mathbb{R} of the form

$$
I_{k}=\left[a_{k}, b_{k}\right] .
$$

The dimensions of R are defined to be

$$
\operatorname{dim}(R)=\left(l_{1}, \ldots, l_{n}\right),
$$

where l_{k} is the length of the interval I_{k}. We assume that

$$
l_{1} \leq \cdots \leq l_{n} .
$$

In order to generalize the golden rectangle, we consider an n-box R and apply $n-1$ cuts with hyperplanes parallel to the faces (see figure 3). This subdivides R into 2^{n-1} smaller boxes. We assume that we make such cuts in a way that one of the boxes is a cube with side length l_{1}. We call the cutting a regular cutting, and refer to the cube of side length l_{1} as the residue of the regular cutting. The n-box opposing the residue of the regular cutting is called the result of the regular cutting (see Figure 3).

Definition 2.1. An n-box R is said to satisfy the golden cutting property if upon applying a regular cutting to $i t$, the result of such a cutting is an n-box similar to R.

Figure 3. A regular cutting of a 3 -box.

Definition 2.2. A rectangular n-box is said to be golden if the following proportionality holds

$$
\left(\begin{array}{c}
l_{2}-l_{1} \\
l_{3}-l_{1} \\
\vdots \\
l_{n}-l_{1} \\
l_{1}
\end{array}\right)=\lambda\left(\begin{array}{c}
l_{1} \\
l_{2} \\
l_{3} \\
\vdots \\
l_{n}
\end{array}\right)
$$

for some $\lambda>0$.
Remark. A golden n-box clearly satisfies the golden cutting property. For the remainder of the article, we shall only focus on golden n-boxes. We also note that a golden 2-box is a golden rectangle.

This is equivalent to the following eigenvalue problem

$$
\left(\begin{array}{cccccc}
-1 & 1 & 0 & \cdots & 0 & 0 \tag{2.1}\\
-1 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
-1 & 0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0
\end{array}\right)\left(\begin{array}{c}
l_{1} \\
l_{2} \\
\vdots \\
l_{n-1} \\
l_{n}
\end{array}\right)=\lambda\left(\begin{array}{c}
l_{1} \\
l_{2} \\
\vdots \\
l_{n-1} \\
l_{n}
\end{array}\right)
$$

The characteristic equation of this problem is

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda^{i}=1 \tag{2.2}
\end{equation*}
$$

Consider the function

$$
p(x)=\sum_{i=1}^{n} x^{i}-1,
$$

defined on the interval $[0, \infty)$. Since $p^{\prime}(x)>0$ on this interval, $p(x)$ is strictly increasing there. Since $p(0)=-1, p(1)=n-1$, then by the intermediate value theorem, the equation $p(x)=0$ has a unique solution in $[0, \infty)$ that lies in the interval $(0,1)$. Denote this solution by λ.

Solving the eigenvalue problem (2.1) for this λ using backward substitution (starting from the bottom equation upwards), we obtain

$$
\left(\begin{array}{c}
l_{1} \tag{2.3}\\
l_{2} \\
\vdots \\
l_{n-1} \\
l_{n}
\end{array}\right)=l_{1}\left(\begin{array}{c}
1 \\
1+\lambda \\
\vdots \\
1+\lambda+\lambda^{2}+\cdots+\lambda^{n-2} \\
1+\lambda+\lambda^{2}+\cdots+\lambda^{n-2}+\lambda^{n-1}
\end{array}\right)
$$

We define the golden n-proportions to be the vector

$$
\begin{equation*}
\left(1,1+\lambda, \ldots, 1+\lambda+\cdots+\lambda^{n-1}\right) \tag{2.4}
\end{equation*}
$$

up to a positive factor.
Remark. For $n=2$ we obtain $\lambda=\frac{1}{\phi} \approx 0.6180$, and we recover the golden 2-proportions $(1,1.6180)$ of the golden rectangle. Also, for $n=3$ we obtain $\lambda \approx 0.5437$ using Cardano's formula, and we obtain the golden 3 -proportions ($1,1.5437,1.8393$).

THE FIBONACCI QUARTERLY

Setting

$$
r=\frac{1}{\lambda},
$$

the characteristic equation becomes

$$
\begin{equation*}
r^{n}=r^{n-1}+r^{n-2}+\cdots+r+1 . \tag{2.5}
\end{equation*}
$$

This is the n-step Fibonacci equation, related to the n-step Fibonacci recurrence relation

$$
\begin{equation*}
a_{m+n}=a_{m}+a_{m+1}+\cdots+a_{m+n-1} . \tag{2.6}
\end{equation*}
$$

For $n=2$, we recover the usual Fibonacci recurrence relation.

3. An Equation with a Generalized Golden Solution

The following theorem is a generalization of the result in [2].
Theorem 3.1. There is a unique $r>1$ such that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d x}{\left(1+x^{\left.\frac{r^{n-1}}{1+r+\cdots+r^{n-2}}\right)^{r}}\right.}=1 . \tag{3.1}
\end{equation*}
$$

Moreover, such an r satisfies

$$
\begin{equation*}
r^{n}=1+r+\cdots+r^{n-1} \tag{3.2}
\end{equation*}
$$

Proof. For the proof we need the following.
Lemma 3.2. The equation
for all $r>1$.
Proof. Denote the integral on the left-hand side of (3.3) by $I(r)$. In order to evaluate $I(r)$, we make use of the substitution

$$
u=\left(1+x^{\frac{r^{n-1}}{1+r+\cdots+r^{n-2}}}\right)^{-1} .
$$

After making this substitution, we obtain:

$$
\begin{aligned}
I(r) & =\left(\frac{1}{r}+\cdots+\frac{1}{r^{n-1}}\right) \int_{0}^{1}\left(\frac{1}{u}-1\right)^{\frac{1}{r}+\cdots+\frac{1}{r^{n-1}-1}} u^{\frac{1}{r}+\cdots+\frac{1}{r^{n-1}-1} d u} \\
& =\left(\frac{1}{r}+\cdots+\frac{1}{r^{n-1}}\right) \int_{0}^{1}(1-u)^{\frac{1}{r}+\cdots+\frac{1}{r^{n-1}-1}} d u \\
& =-\left.(1-u)^{\frac{1}{r}+\cdots+\frac{1}{r^{n-1}}}\right|_{0} ^{1} \\
& =1 .
\end{aligned}
$$

GOLDEN PROPORTIONS IN HIGHER DIMENSIONS

Hence, if r satisfies the n-step Fibonacci equation, it follows that r satisfies equation (3.1). This proves the existence part of the theorem. It remains to prove uniqueness. Using a similar argument as in [2], we consider numbers α, β with $1<\alpha<r<\beta$. It then follows that

$$
1+\frac{1}{\alpha}+\cdots+\frac{1}{\alpha^{n-1}}>1+\frac{1}{r}+\cdots+\frac{1}{r^{n-1}}=r>1+\frac{1}{\beta}+\cdots+\frac{1}{\beta^{n-1}} .
$$

It thus follows that

$$
\begin{aligned}
& 1+\frac{1}{\alpha}+\cdots+\frac{1}{\alpha^{n-1}}>\alpha \\
& 1+\frac{1}{\beta}+\cdots+\frac{1}{\beta^{n-1}}<\beta .
\end{aligned}
$$

Therefore,

$$
\int_{0}^{\infty} \frac{d x}{\left(1+x^{\frac{\beta^{n-1}}{1+\beta+\cdots+\beta^{n-2}}}\right)^{\beta}}<\int_{0}^{\infty} \frac{d x}{\left(1+x^{\frac{\beta^{n-1}}{1+\beta+\cdots+\beta^{n-2}}}\right)^{1+\frac{1}{\beta}+\cdots+\frac{1}{\beta^{n-1}}}}=1
$$

Likewise, we prove that

$$
\int_{0}^{\infty} \frac{d x}{\left(1+x^{\frac{\alpha^{n-1}}{1+\alpha+\cdots+\alpha^{n-2}}}\right)^{\alpha}}>1
$$

This shows uniqueness, and the theorem is proved.
Remark. We note that the particular value of r in Theorem 3.1 is equal to $1 / \lambda$, where λ is the particular eigenvalue found in Section 2 that produces the golden n-proportions. Also, for $n=2$, we recover the alternative definition of the usual golden ratio ϕ in [2].

4. Golden n-Subdivision of a Line Segment

Consider a line segment A. We will abuse the notation slightly and denote its length also by A. We subdivide A into n consecutive subsegments, a_{1}, \ldots, a_{n} (of lengths also denoted by a_{1}, \ldots, a_{n}, respectively). We assume that

$$
a_{1}>\cdots>a_{n} .
$$

We call such a subdivision an n-subdivision of A (see figure 4).

Figure 4. An example of a 4 -subdivision of a line segment with $a_{1}>a_{2}>a_{3}>a_{4}$.

Definition 4.1. An n-subdivision is said to be golden if the following ratios are equal

$$
\begin{equation*}
\frac{a_{1}}{a_{2}}=\frac{a_{1}+a_{2}}{a_{2}+a_{3}}=\cdots=\frac{\sum_{i=1}^{k} a_{i}}{\sum_{i=2}^{k+1} a_{i}}=\cdots=\frac{\sum_{i=1}^{n-1} a_{i}}{\sum_{i=2}^{n} a_{i}}=\frac{\sum_{i=1}^{n} a_{i}}{a_{1}} . \tag{4.1}
\end{equation*}
$$

THE FIBONACCI QUARTERLY

If we now let

$$
\begin{aligned}
& l_{1}=a_{1} \\
& l_{2}=a_{1}+a_{2} \\
& \vdots \\
& l_{n}=a_{1}+a_{2}+\cdots+a_{n},
\end{aligned}
$$

it is then easy to show that the equality of the ratios defining a golden n-subdivision is equivalent to the n-box of dimensions $\left(l_{1}, \ldots, l_{n}\right)$ being golden. It is worth noting that a 2 -subdivision is golden if and only if

$$
\frac{a_{1}}{a_{2}}=\frac{a_{1}+a_{2}}{a_{1}}
$$

This ratio is of course the golden ratio ϕ.

References

[1] M. Bicknell and V.E. Hoggatt, Jr., Golden triangles, rectangles, and cuboids, The Fibonacci Quarterly, 7.1 (1969), 73-91.
[2] D. Bradley, N. Shanmugalinga, J. Tyson, and O. P. Lossers, Problem 10485: Another equation with a golden solution, Amer. Math. Monthly, 105.7 (1998), 675.
[3] M. Walker, Golden cuboid sequences, The Fibonacci Quarterly, 23.2 (1985), 153-154.
MSC2010: 11B39, 51M15
Department of Mathematics and Statistics, Notre Dame University-Louaize, Fnas, P.O. Box 72 Zouk Mikael, Lebanon

E-mail address: bghalayini@ndu.edu.lb
Department of Mathematics, Stony Brook University, Stony Brook NY, 11794-3651
E-mail address: malkoun@math.sunysb.edu

