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Abstract. In this article we study a combinatorial scenario which generalizes the well-
known problem of enumerating sequences of coin tosses containing no consecutive heads. It
is shown how to derive formulas enumerating, for a fixed value of k, the sequences of length
n containing exactly k distinct pairs of consecutive heads. We obtain both exact expressions
and asymptotic relations.

1. Introduction

Suppose that a coin is tossed 12 times and the resulting sequence of heads and tails is
recorded. Two possible outcomes are as follows:

(a) HTTTHTHTTTTH and (b) HTTHHTTHHHHT.

Notice that sequence (a) contains no consecutive heads whereas (b) does. It is in fact well-
known [3, 7] that of the 2n possible outcomes when a coin is tossed n times, the number
containing no consecutive heads is given by Fn+2. Looking at sequence (b) again, we can
actually be a little more specific and say that it contains exactly 4 distinct pairs of consecutive
heads. Counting from left to right, these pairs are positioned at (4, 5), (8, 9), (9, 10) and
(10, 11). Thus, on using U(n, k) to denote the number of sequences of length n containing
exactly k HH’s, we see that (a) contributes 1 to U(12, 0) while (b) contributes 1 to U(12, 4).

Our aim here is to derive formulas that allow us to enumerate, for a fixed value of k, the
sequences of length n containing exactly k distinct pairs of consecutive heads. In an interesting
though rather incomplete initial foray into this problem [2], the following recurrence relation
was obtained for U(n, k):

U(n, k) = U(n− 1, k) + U(n − 1, k − 1) + U(n− 2, k)− U(n− 2, k − 1), (1.1)

where n ≥ 2, k ≥ 0, U(m,−1) = 0 for all m ≥ 0, and U(0, 0) = 1 by definition. In order
to use (1.1) to calculate U(n, k) recursively, we need simply to note that U(1, 0) = 2 and
U(0,m) = U(1,m) = 0 for all m ≥ 1.

As is shown in [2], it is reasonably straightforward to derive the relation (1.1) by using the
intermediate results

UT (n, k) = UT (n− 1, k) + UH(n − 1, k) (1.2)

and
UH(n, k) = UT (n− 1, k) + UH(n− 1, k − 1), (1.3)

where UT (n, k) and UH(n, k) represent the number of sequences of n tosses containing exactly
k HH’s such that the last toss is a tail and a head, respectively. Result (1.2) is true since any
sequence A of length n− 1 containing exactly k HH’s either ends in a head or a tail, and the
sequence of length n that results when a tail is appended to the end of A still has exactly this
many pairs of HH’s. On the other hand, a sequence of length n with exactly k HH’s such that
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the last toss is a head either has its first n− 1 tosses containing exactly k HH’s and ending a
tail or containing exactly k − 1 HH’s and ending in a head.

In order to obtain explicit formulas for U(n, k) from (1.1), we illustrate a nice application
of exponential generating functions. It is shown that U(n, k) becomes an ever-more complex
expression in n involving the Fibonacci numbers as k increases. A general asymptotic relation
for U(n, k) is also obtained.

2. Some Results on Exponential Generating Functions

The exponential generating function G(x) for the sequence a0, a1, a2, . . . is defined as

G(x) =
a0
0!

+
a1
1!
x+

a2
2!
x2 +

a3
3!
x3 + · · ·

=

∞
∑

k=0

ak
k!

xk,

where the coefficient of xn/n! in this series is an [1, 4]. Since

G′(x) =
a1
0!

+
a2
1!
x+

a3
2!
x2 + · · ·

=
∞
∑

k=0

ak+1

k!
xk, (2.1)

an+1 is the coefficient of xn/n! in G′(x). Also,

xG(x) =
a0
0!
x+

a1
1!
x2 +

a2
2!
x3 +

a3
3!
x4 + · · ·

=
a0
1!
x+

2a1
2!

x2 +
3a2
3!

x3 +
4a3
4!

x4 + · · ·

=
∞
∑

k=1

kak−1

k!
xk, (2.2)

so the coefficient of xn/n! in xG(x) is nan−1. The above may be generalized to show that the
coefficient of xn/n! in xmG(x) is n(n− 1) · · · (n−m+ 1)an−m.

In particular, the exponential generating function for the Fibonacci numbers is given by

H(x) =
2√
5
exp

(x

2

)

sinh

(

x
√
5

2

)

(2.3)

(see [5] or sequence A000045 in [6], for example). This function will play a key role in our
quest for formulas enumerating the sequences of length n containing a certain fixed number
of pairs of consecutive heads.

3. Initial Calculations

The exponential generating function of U(n, k) for fixed k is given by

Gk(x) =
∞
∑

n=0

U(n, k)

n!
xn. (3.1)
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On using (1.1) and setting k = 1 we obtain

∞
∑

n=0

U(n+ 2, 1)

n!
xn =

∞
∑

n=0

U(n+ 1, 1)

n!
xn +

∞
∑

n=0

U(n+ 1, 0)

n!
xn +

∞
∑

n=0

U(n, 1)

n!
xn −

∞
∑

n=0

U(n, 0)

n!
xn,

from which it follows, by way of (2.1), that

G′′

1(x)−G′

1(x)−G1(x) = G′

0(x)−G0(x). (3.2)

However, since U(n, 0) = Fn+2, it is the case, utilizing (2.1) once more, that G0(x) = H ′′(x).
Thus (3.2) gives the linear second-order differential equation

G′′

1(x)−G′

1(x)−G1(x) = H ′′′(x)−H ′′(x)

=
1

5
exp

(x

2

)

{

5 cosh

(

x
√
5

2

)

+
√
5 sinh

(

x
√
5

2

)}

. (3.3)

This has the auxiliary equation λ2 − λ− 1 = 0 with solutions

λ1 =
1 +

√
5

2
and λ2 =

1−
√
5

2
.

The complementary function is therefore given by

A exp

(

1 +
√
5

2
x

)

+B exp

(

1−
√
5

2
x

)

= exp
(x

2

)

{

(A+B) cosh

(

x
√
5

2

)

+ (A−B) sinh

(

x
√
5

2

)}

,

where A,B ∈ R. Then, as

exp
(x

2

)

cosh

(

x
√
5

2

)

and exp
(x

2

)

sinh

(

x
√
5

2

)

are part of the complementary function, we try the particular integral

Cx exp
(x

2

)

cosh

(

x
√
5

2

)

+Dx exp
(x

2

)

sinh

(

x
√
5

2

)

for some C,D ∈ R.
On using the initial conditions G1(0) = G′

1(0) = 0, the solution to (3.3) is found to be

G1(x) =
1

25
exp

(x

2

)

{

5x cosh

(

x
√
5

2

)

+
√
5(5x− 2) sinh

(

x
√
5

2

)}

. (3.4)

In order to obtain a formula for U(n, 1) it is now a matter of extracting the coefficient of xn/n!
from the right-hand side of (3.4). First, from (2.3) we obtain

H ′(x) = exp
(x

2

)

{

cosh

(

x
√
5

2

)

+
1√
5
sinh

(

x
√
5

2

)}

. (3.5)
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Then, on using (3.5) and (2.3) in turn, we have

exp
(x

2

)

cosh

(

x
√
5

2

)

= H ′(x)− 1√
5
exp

(x

2

)

sinh

(

x
√
5

2

)

= H ′(x)− 1

2
H(x). (3.6)

Therefore, from (3.4), (3.6), and (2.3), it is the case that

G1(x) =
x

5

(

H ′(x)− 1

2
H(x)

)

+
5x− 2

10
H(x)

=
2x

5
H(x)− 1

5
H(x) +

x

5
H ′(x).

Using this result, along with (2.1), (2.2), and (3.1), we obtain U(n, 1), the coefficient of xn/n!
in G1(x):

U(n, 1) =
2n

5
Fn−1 −

1

5
Fn +

n

5
Fn

=
1

5
{n (Fn+1 + Fn−1)− Fn} , (3.7)

which is valid for any n ≥ 0.

4. Further Results

This process may now be continued indefinitely. Next, we have

G′′

2(x)−G′

2(x)−G2(x) = G′

1(x)−G1(x)

=
2

25
exp

(x

2

)

{

5x cosh

(

x
√
5

2

)

+ 3
√
5 sinh

(

x
√
5

2

)}

. (4.1)

The solution of (4.1) is

G2(x) =
1

125
exp

(x

2

)

{

20x cosh

(

x
√
5

2

)

+
√
5(5x2 − 8) sinh

(

x
√
5

2

)}

. (4.2)

Such differential equations are somewhat tedious to solve by hand, and we performed the
calculations with the assistance of Mathematica [8]. In conjunction with (3.1), (2.1), (2.2),
and the generalization of (2.2), (4.2) gives,

U(n, 2) =
1

50
{n(5n− 1)Fn−2 + 4(n − 2)Fn}

for n ≥ 0, where we adopt the convention that F−m = (−1)m+1Fm for any m ≥ 0.
Similarly we have

G′′

3(x)−G′

3(x)−G3(x)

= G′

2(x)−G2(x)

=
1

250
exp

(x

2

)

{

5x(5x− 4) cosh

(

x
√
5

2

)

+
√
5
(

−5x2 + 40x+ 8
)

sinh

(

x
√
5

2

)}

.
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This has the solution

1

750
exp

(x

2

)

{

5x(−x2 + 9x+ 6) cosh

(

x
√
5

2

)

+
√
5
(

5x3 − 3x2 − 18x− 12
)

sinh

(

x
√
5

2

)}

,

from which we obtain

U(n, 3) =
1

150
{n(n− 1)(n − 2) (Fn−3 + Fn−5) + 3n ((n − 1)Fn−1 + 2(n − 2)Fn−3)− 6Fn} ,

and so on.
Each member of the resulting family of linear second-order differential equations has the

form

G′′

k(x)−G′

k(x)−Gk(x) = G′

k−1(x)−Gk−1(x)

= a exp
(x

2

)

{

fk(x) cosh

(

x
√
5

2

)

+ gk(x)
√
5 sinh

(

x
√
5

2

)}

, (4.3)

for some a ∈ Q and polynomials fk(x) and gk(x) having integer coefficients and, for k ≥ 3,
degree k − 1. The solution to (4.3) is of the form

Gk(x) = b exp
(x

2

)

{

rk(x) cosh

(

x
√
5

2

)

+ sk(x)
√
5 sinh

(

x
√
5

2

)}

, (4.4)

where b ∈ Q and rk(x) and sk(x) are polynomials having integer coefficients and, for k ≥ 3,
degree k.

From this it is possible to deduce that, for any particular value of k, U(n, k) can be expressed
as

m
∑

i=0

hi(n)Fn−i,

for some integer m ≥ 0 and family {hi(n) : i = 0, 1, . . . ,m} of polynomials in n (some of
which could be the zero polynomial). It needs to be born in mind of course that a particular
representation of U(n, k) is certainly not unique; indeed, the Fibonacci recurrence relation
allows us to express these representations in different ways.

5. Asymptotic Results

First, on using the result

Fn ∼ φn

√
5
,

which can be found in [4], for example, (3.7) gives

U(n, 1) =
1

5
{n (Fn+1 + Fn−1)− Fn}

∼ n

5
(Fn+1 + Fn−1)

∼ n

5

(

φn+1

√
5

+
φn−1

√
5

)

=
nφn−1

5
√
5

(2 + φ).
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Then similar, if somewhat more involved, calculations yield

U(n, 2) ∼ n2φn−2

10
√
5

and U(n, 3) ∼ n3φn−3

150
√
5
(3− φ).

In general, it is a question of picking out the dominant terms in the expression (4.4) for
Gk(x) (and hence for U(n, k)), which, for k ≥ 3, arise as the coefficients of xk in both rk(x)
and sk(x). It may be shown from this that

U(n, k) ∼ nkφn−k

k!5
k+1

2

(Fk−1 − φFk−2) and U(n, k) ∼ nkφn−k

k!5
k+2

2

(Lk−1 − φLk−2)

for k even and k odd, respectively, and thus that

U(n, k) ∼ nkφn−k

k!5
k+1

2

(−1)k (Fk−1 − φFk−2) .

Then, since

(−1)k

(

Fk−1 − φFk−2

φ25
k

2

)

=
1

(2 + φ)k
,

we have the result

U(n, k) ∼ nkφn−k+2

k!
√
5(2 + φ)k

(5.1)

for any fixed k ≥ 0. The asymptotic formula (5.1) does, however, give rather poor approxi-
mations for small values of n. For example, we have to wait until n = 186 before it provides
us with an approximation for U(n, 2) having a relative error of less than 1%.

6. Acknowledgement

The author would like to thank the referee for suggestions that have helped improve the
clarity of this article.

References

[1] P. J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, 1994.
[2] M. N. Deshpande and J. P. Shiwalkar, The number of HH’s in a coin-tossing experiment and the Fibonacci

sequence, Mathematical Gazette, 92 (2008), 147–150.
[3] M. Griffiths, No consecutive heads, Mathematical Gazette, 88 (2004), 561–567.
[4] D. E. Knuth, The Art of Computer Programming, Volume 1, Addison-Wesley, 1968.
[5] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, 2001.
[6] N. J. A. Sloane (Ed.), The On-Line Encyclopedia of Integer Sequences, 2011,

http://www.research.att.com/∼njas/sequences/.

[7] E. W. Weisstein, “Coin Tossing.” From MathWorld–A Wolfram Web Resource,
http://mathworld.wolfram.com/CoinTossing.html

[8] Wolfram Research Team, Mathematica, Version 6, Wolfram Research, Champaign, Illinois, 2007.

MSC2010: 05A15, 05A16, 11B37, 11B39, 34A05.

School of Education, University of Manchester, Oxford Road, Manchester, M13 9PL, United

Kingdom

E-mail address: martin.griffiths@manchester.ac.uk

254 VOLUME 49, NUMBER 3


