FIBONACCI EXPRESSIONS ARISING FROM A COIN-TOSSING SCENARIO INVOLVING PAIRS OF CONSECUTIVE HEADS

MARTIN GRIFFITHS

Abstract

In this article we study a combinatorial scenario which generalizes the wellknown problem of enumerating sequences of coin tosses containing no consecutive heads. It is shown how to derive formulas enumerating, for a fixed value of k, the sequences of length n containing exactly k distinct pairs of consecutive heads. We obtain both exact expressions and asymptotic relations.

1. Introduction

Suppose that a coin is tossed 12 times and the resulting sequence of heads and tails is recorded. Two possible outcomes are as follows:
(a) HTTTHTHTTTTH and (b) HTTHHTTHHHHT.

Notice that sequence (a) contains no consecutive heads whereas (b) does. It is in fact wellknown [3, 7] that of the 2^{n} possible outcomes when a coin is tossed n times, the number containing no consecutive heads is given by F_{n+2}. Looking at sequence (b) again, we can actually be a little more specific and say that it contains exactly 4 distinct pairs of consecutive heads. Counting from left to right, these pairs are positioned at $(4,5),(8,9),(9,10)$ and $(10,11)$. Thus, on using $U(n, k)$ to denote the number of sequences of length n containing exactly k HH's, we see that (a) contributes 1 to $U(12,0)$ while (b) contributes 1 to $U(12,4)$.

Our aim here is to derive formulas that allow us to enumerate, for a fixed value of k, the sequences of length n containing exactly k distinct pairs of consecutive heads. In an interesting though rather incomplete initial foray into this problem [2], the following recurrence relation was obtained for $U(n, k)$:

$$
\begin{equation*}
U(n, k)=U(n-1, k)+U(n-1, k-1)+U(n-2, k)-U(n-2, k-1), \tag{1.1}
\end{equation*}
$$

where $n \geq 2, k \geq 0, U(m,-1)=0$ for all $m \geq 0$, and $U(0,0)=1$ by definition. In order to use (1.1) to calculate $U(n, k)$ recursively, we need simply to note that $U(1,0)=2$ and $U(0, m)=U(1, m)=0$ for all $m \geq 1$.

As is shown in [2], it is reasonably straightforward to derive the relation (1.1) by using the intermediate results

$$
\begin{equation*}
U T(n, k)=U T(n-1, k)+U H(n-1, k) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
U H(n, k)=U T(n-1, k)+U H(n-1, k-1), \tag{1.3}
\end{equation*}
$$

where $U T(n, k)$ and $U H(n, k)$ represent the number of sequences of n tosses containing exactly k HH's such that the last toss is a tail and a head, respectively. Result (1.2) is true since any sequence A of length $n-1$ containing exactly k HH's either ends in a head or a tail, and the sequence of length n that results when a tail is appended to the end of A still has exactly this many pairs of HH's. On the other hand, a sequence of length n with exactly k HH's such that

THE FIBONACCI QUARTERLY

the last toss is a head either has its first $n-1$ tosses containing exactly k HH's and ending a tail or containing exactly $k-1$ HH's and ending in a head.

In order to obtain explicit formulas for $U(n, k)$ from (1.1), we illustrate a nice application of exponential generating functions. It is shown that $U(n, k)$ becomes an ever-more complex expression in n involving the Fibonacci numbers as k increases. A general asymptotic relation for $U(n, k)$ is also obtained.

2. Some Results on Exponential Generating Functions

The exponential generating function $G(x)$ for the sequence $a_{0}, a_{1}, a_{2}, \ldots$ is defined as

$$
\begin{aligned}
G(x) & =\frac{a_{0}}{0!}+\frac{a_{1}}{1!} x+\frac{a_{2}}{2!} x^{2}+\frac{a_{3}}{3!} x^{3}+\cdots \\
& =\sum_{k=0}^{\infty} \frac{a_{k}}{k!} x^{k},
\end{aligned}
$$

where the coefficient of $x^{n} / n!$ in this series is $a_{n}[1,4]$. Since

$$
\begin{align*}
G^{\prime}(x) & =\frac{a_{1}}{0!}+\frac{a_{2}}{1!} x+\frac{a_{3}}{2!} x^{2}+\cdots \\
& =\sum_{k=0}^{\infty} \frac{a_{k+1}}{k!} x^{k}, \tag{2.1}
\end{align*}
$$

a_{n+1} is the coefficient of $x^{n} / n!$ in $G^{\prime}(x)$. Also,

$$
\begin{align*}
x G(x) & =\frac{a_{0}}{0!} x+\frac{a_{1}}{1!} x^{2}+\frac{a_{2}}{2!} x^{3}+\frac{a_{3}}{3!} x^{4}+\cdots \\
& =\frac{a_{0}}{1!} x+\frac{2 a_{1}}{2!} x^{2}+\frac{3 a_{2}}{3!} x^{3}+\frac{4 a_{3}}{4!} x^{4}+\cdots \\
& =\sum_{k=1}^{\infty} \frac{k a_{k-1}}{k!} x^{k}, \tag{2.2}
\end{align*}
$$

so the coefficient of $x^{n} / n!$ in $x G(x)$ is $n a_{n-1}$. The above may be generalized to show that the coefficient of $x^{n} / n!$ in $x^{m} G(x)$ is $n(n-1) \cdots(n-m+1) a_{n-m}$.

In particular, the exponential generating function for the Fibonacci numbers is given by

$$
\begin{equation*}
H(x)=\frac{2}{\sqrt{5}} \exp \left(\frac{x}{2}\right) \sinh \left(\frac{x \sqrt{5}}{2}\right) \tag{2.3}
\end{equation*}
$$

(see [5] or sequence A000045 in [6], for example). This function will play a key role in our quest for formulas enumerating the sequences of length n containing a certain fixed number of pairs of consecutive heads.

3. Initial Calculations

The exponential generating function of $U(n, k)$ for fixed k is given by

$$
\begin{equation*}
G_{k}(x)=\sum_{n=0}^{\infty} \frac{U(n, k)}{n!} x^{n} . \tag{3.1}
\end{equation*}
$$

On using (1.1) and setting $k=1$ we obtain

$$
\sum_{n=0}^{\infty} \frac{U(n+2,1)}{n!} x^{n}=\sum_{n=0}^{\infty} \frac{U(n+1,1)}{n!} x^{n}+\sum_{n=0}^{\infty} \frac{U(n+1,0)}{n!} x^{n}+\sum_{n=0}^{\infty} \frac{U(n, 1)}{n!} x^{n}-\sum_{n=0}^{\infty} \frac{U(n, 0)}{n!} x^{n},
$$

from which it follows, by way of (2.1), that

$$
\begin{equation*}
G_{1}^{\prime \prime}(x)-G_{1}^{\prime}(x)-G_{1}(x)=G_{0}^{\prime}(x)-G_{0}(x) . \tag{3.2}
\end{equation*}
$$

However, since $U(n, 0)=F_{n+2}$, it is the case, utilizing (2.1) once more, that $G_{0}(x)=H^{\prime \prime}(x)$. Thus (3.2) gives the linear second-order differential equation

$$
\begin{align*}
G_{1}^{\prime \prime}(x)-G_{1}^{\prime}(x)-G_{1}(x) & =H^{\prime \prime \prime}(x)-H^{\prime \prime}(x) \\
& =\frac{1}{5} \exp \left(\frac{x}{2}\right)\left\{5 \cosh \left(\frac{x \sqrt{5}}{2}\right)+\sqrt{5} \sinh \left(\frac{x \sqrt{5}}{2}\right)\right\} . \tag{3.3}
\end{align*}
$$

This has the auxiliary equation $\lambda^{2}-\lambda-1=0$ with solutions

$$
\lambda_{1}=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad \lambda_{2}=\frac{1-\sqrt{5}}{2} .
$$

The complementary function is therefore given by

$$
\begin{aligned}
A \exp \left(\frac{1+\sqrt{5}}{2} x\right)+B & \exp \left(\frac{1-\sqrt{5}}{2} x\right) \\
& =\exp \left(\frac{x}{2}\right)\left\{(A+B) \cosh \left(\frac{x \sqrt{5}}{2}\right)+(A-B) \sinh \left(\frac{x \sqrt{5}}{2}\right)\right\}
\end{aligned}
$$

where $A, B \in \mathbb{R}$. Then, as

$$
\exp \left(\frac{x}{2}\right) \cosh \left(\frac{x \sqrt{5}}{2}\right) \quad \text { and } \quad \exp \left(\frac{x}{2}\right) \sinh \left(\frac{x \sqrt{5}}{2}\right)
$$

are part of the complementary function, we try the particular integral

$$
C x \exp \left(\frac{x}{2}\right) \cosh \left(\frac{x \sqrt{5}}{2}\right)+D x \exp \left(\frac{x}{2}\right) \sinh \left(\frac{x \sqrt{5}}{2}\right)
$$

for some $C, D \in \mathbb{R}$.
On using the initial conditions $G_{1}(0)=G_{1}^{\prime}(0)=0$, the solution to (3.3) is found to be

$$
\begin{equation*}
G_{1}(x)=\frac{1}{25} \exp \left(\frac{x}{2}\right)\left\{5 x \cosh \left(\frac{x \sqrt{5}}{2}\right)+\sqrt{5}(5 x-2) \sinh \left(\frac{x \sqrt{5}}{2}\right)\right\} . \tag{3.4}
\end{equation*}
$$

In order to obtain a formula for $U(n, 1)$ it is now a matter of extracting the coefficient of x^{n} / n ! from the right-hand side of (3.4). First, from (2.3) we obtain

$$
\begin{equation*}
H^{\prime}(x)=\exp \left(\frac{x}{2}\right)\left\{\cosh \left(\frac{x \sqrt{5}}{2}\right)+\frac{1}{\sqrt{5}} \sinh \left(\frac{x \sqrt{5}}{2}\right)\right\} . \tag{3.5}
\end{equation*}
$$

THE FIBONACCI QUARTERLY

Then, on using (3.5) and (2.3) in turn, we have

$$
\begin{align*}
\exp \left(\frac{x}{2}\right) \cosh \left(\frac{x \sqrt{5}}{2}\right) & =H^{\prime}(x)-\frac{1}{\sqrt{5}} \exp \left(\frac{x}{2}\right) \sinh \left(\frac{x \sqrt{5}}{2}\right) \\
& =H^{\prime}(x)-\frac{1}{2} H(x) . \tag{3.6}
\end{align*}
$$

Therefore, from (3.4), (3.6), and (2.3), it is the case that

$$
\begin{aligned}
G_{1}(x) & =\frac{x}{5}\left(H^{\prime}(x)-\frac{1}{2} H(x)\right)+\frac{5 x-2}{10} H(x) \\
& =\frac{2 x}{5} H(x)-\frac{1}{5} H(x)+\frac{x}{5} H^{\prime}(x) .
\end{aligned}
$$

Using this result, along with (2.1), (2.2), and (3.1), we obtain $U(n, 1)$, the coefficient of x^{n} / n ! in $G_{1}(x)$:

$$
\begin{align*}
U(n, 1) & =\frac{2 n}{5} F_{n-1}-\frac{1}{5} F_{n}+\frac{n}{5} F_{n} \\
& =\frac{1}{5}\left\{n\left(F_{n+1}+F_{n-1}\right)-F_{n}\right\}, \tag{3.7}
\end{align*}
$$

which is valid for any $n \geq 0$.

4. Further Results

This process may now be continued indefinitely. Next, we have

$$
\begin{align*}
G_{2}^{\prime \prime}(x)-G_{2}^{\prime}(x)-G_{2}(x) & =G_{1}^{\prime}(x)-G_{1}(x) \\
& =\frac{2}{25} \exp \left(\frac{x}{2}\right)\left\{5 x \cosh \left(\frac{x \sqrt{5}}{2}\right)+3 \sqrt{5} \sinh \left(\frac{x \sqrt{5}}{2}\right)\right\} . \tag{4.1}
\end{align*}
$$

The solution of (4.1) is

$$
\begin{equation*}
G_{2}(x)=\frac{1}{125} \exp \left(\frac{x}{2}\right)\left\{20 x \cosh \left(\frac{x \sqrt{5}}{2}\right)+\sqrt{5}\left(5 x^{2}-8\right) \sinh \left(\frac{x \sqrt{5}}{2}\right)\right\} . \tag{4.2}
\end{equation*}
$$

Such differential equations are somewhat tedious to solve by hand, and we performed the calculations with the assistance of Mathematica [8]. In conjunction with (3.1), (2.1), (2.2), and the generalization of (2.2), (4.2) gives,

$$
U(n, 2)=\frac{1}{50}\left\{n(5 n-1) F_{n-2}+4(n-2) F_{n}\right\}
$$

for $n \geq 0$, where we adopt the convention that $F_{-m}=(-1)^{m+1} F_{m}$ for any $m \geq 0$.
Similarly we have

$$
\begin{aligned}
& G_{3}^{\prime \prime}(x)-G_{3}^{\prime}(x)-G_{3}(x) \\
& \quad=G_{2}^{\prime}(x)-G_{2}(x) \\
& \quad=\frac{1}{250} \exp \left(\frac{x}{2}\right)\left\{5 x(5 x-4) \cosh \left(\frac{x \sqrt{5}}{2}\right)+\sqrt{5}\left(-5 x^{2}+40 x+8\right) \sinh \left(\frac{x \sqrt{5}}{2}\right)\right\} .
\end{aligned}
$$

This has the solution

$$
\frac{1}{750} \exp \left(\frac{x}{2}\right)\left\{5 x\left(-x^{2}+9 x+6\right) \cosh \left(\frac{x \sqrt{5}}{2}\right)+\sqrt{5}\left(5 x^{3}-3 x^{2}-18 x-12\right) \sinh \left(\frac{x \sqrt{5}}{2}\right)\right\}
$$

from which we obtain

$$
U(n, 3)=\frac{1}{150}\left\{n(n-1)(n-2)\left(F_{n-3}+F_{n-5}\right)+3 n\left((n-1) F_{n-1}+2(n-2) F_{n-3}\right)-6 F_{n}\right\}
$$

and so on.
Each member of the resulting family of linear second-order differential equations has the form

$$
\begin{align*}
G_{k}^{\prime \prime}(x)-G_{k}^{\prime}(x)-G_{k}(x) & =G_{k-1}^{\prime}(x)-G_{k-1}(x) \\
& =a \exp \left(\frac{x}{2}\right)\left\{f_{k}(x) \cosh \left(\frac{x \sqrt{5}}{2}\right)+g_{k}(x) \sqrt{5} \sinh \left(\frac{x \sqrt{5}}{2}\right)\right\}, \tag{4.3}
\end{align*}
$$

for some $a \in \mathbb{Q}$ and polynomials $f_{k}(x)$ and $g_{k}(x)$ having integer coefficients and, for $k \geq 3$, degree $k-1$. The solution to (4.3) is of the form

$$
\begin{equation*}
G_{k}(x)=b \exp \left(\frac{x}{2}\right)\left\{r_{k}(x) \cosh \left(\frac{x \sqrt{5}}{2}\right)+s_{k}(x) \sqrt{5} \sinh \left(\frac{x \sqrt{5}}{2}\right)\right\} \tag{4.4}
\end{equation*}
$$

where $b \in \mathbb{Q}$ and $r_{k}(x)$ and $s_{k}(x)$ are polynomials having integer coefficients and, for $k \geq 3$, degree k.

From this it is possible to deduce that, for any particular value of $k, U(n, k)$ can be expressed as

$$
\sum_{i=0}^{m} h_{i}(n) F_{n-i}
$$

for some integer $m \geq 0$ and family $\left\{h_{i}(n): i=0,1, \ldots, m\right\}$ of polynomials in n (some of which could be the zero polynomial). It needs to be born in mind of course that a particular representation of $U(n, k)$ is certainly not unique; indeed, the Fibonacci recurrence relation allows us to express these representations in different ways.

5. Asymptotic Results

First, on using the result

$$
F_{n} \sim \frac{\phi^{n}}{\sqrt{5}},
$$

which can be found in [4], for example, (3.7) gives

$$
\begin{aligned}
U(n, 1) & =\frac{1}{5}\left\{n\left(F_{n+1}+F_{n-1}\right)-F_{n}\right\} \\
& \sim \frac{n}{5}\left(F_{n+1}+F_{n-1}\right) \\
& \sim \frac{n}{5}\left(\frac{\phi^{n+1}}{\sqrt{5}}+\frac{\phi^{n-1}}{\sqrt{5}}\right) \\
& =\frac{n \phi^{n-1}}{5 \sqrt{5}}(2+\phi) .
\end{aligned}
$$

THE FIBONACCI QUARTERLY

Then similar, if somewhat more involved, calculations yield

$$
U(n, 2) \sim \frac{n^{2} \phi^{n-2}}{10 \sqrt{5}} \quad \text { and } \quad U(n, 3) \sim \frac{n^{3} \phi^{n-3}}{150 \sqrt{5}}(3-\phi) .
$$

In general, it is a question of picking out the dominant terms in the expression (4.4) for $G_{k}(x)$ (and hence for $U(n, k)$), which, for $k \geq 3$, arise as the coefficients of x^{k} in both $r_{k}(x)$ and $s_{k}(x)$. It may be shown from this that

$$
U(n, k) \sim \frac{n^{k} \phi^{n-k}}{k!5^{\frac{k+1}{2}}}\left(F_{k-1}-\phi F_{k-2}\right) \quad \text { and } \quad U(n, k) \sim \frac{n^{k} \phi^{n-k}}{k!5^{\frac{k+2}{2}}}\left(L_{k-1}-\phi L_{k-2}\right)
$$

for k even and k odd, respectively, and thus that

$$
U(n, k) \sim \frac{n^{k} \phi^{n-k}}{k!5^{\frac{k+1}{2}}}(-1)^{k}\left(F_{k-1}-\phi F_{k-2}\right) .
$$

Then, since

$$
(-1)^{k}\left(\frac{F_{k-1}-\phi F_{k-2}}{\phi^{2} 5^{\frac{k}{2}}}\right)=\frac{1}{(2+\phi)^{k}},
$$

we have the result

$$
\begin{equation*}
U(n, k) \sim \frac{n^{k} \phi^{n-k+2}}{k!\sqrt{5}(2+\phi)^{k}} \tag{5.1}
\end{equation*}
$$

for any fixed $k \geq 0$. The asymptotic formula (5.1) does, however, give rather poor approximations for small values of n. For example, we have to wait until $n=186$ before it provides us with an approximation for $U(n, 2)$ having a relative error of less than 1%.

6. Acknowledgement

The author would like to thank the referee for suggestions that have helped improve the clarity of this article.

References

[1] P. J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, 1994.
[2] M. N. Deshpande and J. P. Shiwalkar, The number of HH's in a coin-tossing experiment and the Fibonacci sequence, Mathematical Gazette, 92 (2008), 147-150.
[3] M. Griffiths, No consecutive heads, Mathematical Gazette, 88 (2004), 561-567.
[4] D. E. Knuth, The Art of Computer Programming, Volume 1, Addison-Wesley, 1968.
[5] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, 2001.
[6] N. J. A. Sloane (Ed.), The On-Line Encyclopedia of Integer Sequences, 2011, http://www.research.att.com/~njas/sequences/.
[7] E. W. Weisstein, "Coin Tossing." From MathWorld-A Wolfram Web Resource, http://mathworld.wolfram.com/CoinTossing.html
[8] Wolfram Research Team, Mathematica, Version 6, Wolfram Research, Champaign, Illinois, 2007.
MSC2010: 05A15, 05A16, 11B37, 11B39, 34A05.
School of Education, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom

E-mail address: martin.griffiths@manchester.ac.uk

