BEATTY SEQUENCES AND WYTHOFF SEQUENCES, GENERALIZED

CLARK KIMBERLING

Abstract

Joint rankings of certain sets yield sequences called lower and upper s-Wythoff sequences. These generalizations of the classical Wythoff sequences include pairs of complementary Beatty sequences, both nonhomogeneous and homogeneous. There is a unique sequence Ψ such that the Ψ-Wythoff sequence of Ψ is Ψ. Finally, the Beatty discrepancy of a certain form of complementary equation is determined.

1. Introduction

Two well-known sequences associated with the golden ratio $\tau=(1+\sqrt{5}) / 2$ are the lower and upper Wythoff sequences:

$$
\begin{aligned}
(\lfloor n \tau\rfloor) & =(1,3,4,6,8,9,11,12,14,16,17,19,21,22,24,25,27, \ldots), \\
\left(\left\lfloor n \tau^{2}\right\rfloor\right) & =(\lfloor n \tau\rfloor+n)=(2,5,7,10,13,15,18,20,23,26,28, \ldots) .
\end{aligned}
$$

These Beatty sequences are indexed as A000201 and A001950 in [14], where many properties and references are given.

In many settings, Beatty sequence means a sequence of the form ($\lfloor n u\rfloor)$. Such sequences occur in complementary pairs, $(\lfloor n u\rfloor)$ and $(\lfloor n v\rfloor)$, where u is an irrational number greater than 1 and $v=u /(u-1)$. Here, however, we apply Beatty sequence more generally: a sequence of the form $(\lfloor n u+h\rfloor)$, where $u>1$ and $1 \leq u+h$; elsewhere $([2,3,5,12])$, if $h \neq 0$, the sequence $(\lfloor n u+h\rfloor)$ is called a nonhomogeneous Beatty sequence.

Consider the following procedure for generating the classical Wythoff sequences. Write N in a row, write 1 at the beginning of a second row, and 2 at the beginning of a third row. Then generate row 2 , labeled a, and row 3 , labeled b, by taking $a(n)$ to be the least number missing from the set

$$
\begin{equation*}
\{a(1), a(2), \ldots, a(n-1), b(1), b(2), \ldots, b(n-1)\} \tag{1.1}
\end{equation*}
$$

and $b(n)=n+a(n)$. The rows appear as follows:

$n:$	1	2	3	4	5	6	7	8	\ldots
$a:$	1	3	4	6	8	9	11	12	\ldots
$b:$	2	5	7	10	13	15	18	20	\ldots.

The generalization indicated by the title stems from replacing N by an arbitrary nondecreasing sequence s of positive integers and putting $b(n)=s(n)+a(n)$, where $a(n)$ is given by (1.1). We call the resulting complementary sequences a and b the lower and upper s-Wythoff sequences.

In Section 2, formulas for various Beatty sequences are derived. In Section 3, we formulate s-Wythoff sequences for certain arithmetic sequences s. In Section 4, the procedure used to define s-Wythoff sequences is iterated, resulting in unique lower and upper limiting sequences. In Section 5, the notion of Beatty discrepancy is applied to certain s-Wythoff sequences.

THE FIBONACCI QUARTERLY

Historical notes are of interest. The term Beatty sequence stems from a 1926 problem proposal, but Beatty's theorem - that the pairs of sequences are complementary - was known as early as 1894 by John William Strutt (Lord Rayleigh) [13]. The term Wythoff sequence stems from the winning pairs $(a(n), b(n))$ for the Wythoff game [17]. Aviezri Fraenkel and others $[2,4,6,7,8,10]$ have studied Beatty sequences and generalizations of the Wythoff game, some of which have winning pairs $(a(n), b(n))$ in which a and b are s-Wythoff sequences for various choices of s.

2. Joint Ranking of Two Sets

Suppose that u is a real number greater than 1 , not necessarily irrational, and let $v=$ $u /(u-1)$. Note that $u<v$ if and only if $u<2$, and $u=v$ if and only if $u=2$. We assume that $1<u<v$, and if c is a real number for which the sets

$$
\begin{equation*}
S_{1}=\left\{\frac{i}{u}+c: i \geq 1\right\} \quad \text { and } \quad S_{2}=\left\{\frac{j}{v}: j \geq 1\right\} \tag{2.1}
\end{equation*}
$$

are disjoint, we call (u, c) a regular pair. Suppose that the numbers in $S_{1} \cup S_{2}$ are jointly ranked. Let $a(n)$ be the rank of $n / u+c$ and $b(n)$ the rank of n / v. Obviously, every positive integer is in exactly one of the sequences $a=(a(n))$ and $b=(b(n))$. In Theorem 1, we formulate $a(n)$ and $b(n)$ in terms of n, u, v, and c.

Theorem 1. Suppose that (u, c) is a regular pair. Then the complementary joint-rank sequences $a(n)$ and $b(n)$ are given by

$$
\begin{aligned}
& a(n)= \begin{cases}n & \text { if } n \leq(1+c u) /(u-1) \\
\lfloor n u-c u\rfloor & \text { if } n>(1+c u) /(u-1)\end{cases} \\
& b(n)=\lfloor n v+c v\rfloor,
\end{aligned}
$$

for $n \geq 1$.
Proof. Clearly the number of numbers j for which $j / v \leq n / v$ is n. To find the number of numbers i satisfying $i / u+c \leq n / v$, first note that the inequality must be strict since $S_{1} \cap S_{2}$ is empty, so that we seek the number of i such that

$$
i<n u / v-c u,
$$

or equivalently, $i<-n+u n-c u$, since $u / v=u-1$. If $-n+u n-c u \leq 1$, the number of such i is zero; otherwise, the number is $\lfloor-n+n u-c u\rfloor$. Thus, the rank of n / v is the number $a(n)$ as stated. The same argument, together with the hypothesis that $u<v$, shows that the rank of $n / u+c$ is $b(n)$.

The condition that $n>(1+c u) /(u-1)$ in Theorem 1 ensures that the sequences a and b are Beatty sequences if the condition holds for $n=1$. This observation leads directly to the following corollary.

Corollary 1. If (u, c) is a regular pair and $1-2 / u<c \leq 1-1 / u$, then the sequences a and b in Theorem 1 are complementary Beatty sequences: $a(n)=\lfloor n u-c u\rfloor$ and $b(n)=\lfloor n v+c v\rfloor$.

Next, suppose that $a(n)=\lfloor n u+h\rfloor$ is a Beatty sequence. We wish to formulate its complement using Theorem 1. Specifically, we wish to find conditions on u and h under which there is a number h^{\prime} such that the sequence given by $b(n)=\left\lfloor n v+h^{\prime}\right\rfloor$ is the complement of a. In order to match $\lfloor n u+h\rfloor$ and $\left\lfloor n v+h^{\prime}\right\rfloor$ to $\lfloor n u-c u\rfloor$ and $\lfloor n v+c v\rfloor$, respectively, we take $c=-h / u$ and $h^{\prime}=-h v / u=h-h v$. The result is stated here as a second corollary.

BEATTY SEQUENCES AND WYTHOFF SEQUENCES, GENERALIZED

Corollary 2. Suppose that $u>1$, and let $v=u /(u-1)$. Suppose that h is a number such that $1-u \leq h<2-u$ and the sets $\{i / u-h: i \geq 1\}$ and $\{j / v: j \geq 1\}$ are disjoint. Let a be the sequence given by $a(n)=\lfloor n u+h\rfloor$ and let b be the complement of a. Then

$$
b(n)=\lfloor n v+h-h v\rfloor
$$

for $n \geq 1$.

3. Generalized Wythoff Sequences

Suppose that $s=(s(n))$ is a nondecreasing sequence of positive integers. Define $a(1)=1$, $b(1)=1$, and for $n \geq 2$, define

$$
\begin{aligned}
a(n) & =\operatorname{mex}\{a(1), a(2), \ldots, a(n-1), b(1), b(2), \ldots, b(n-1)\} \\
b(n) & =s(n)+a(n)
\end{aligned}
$$

(The notation mex S, for minimal excludant (of a set S), means the least positive integer not in S; see the preprint of Fraenkel and Peled, Harnessing the Unwieldy MEX Function, downloadable from [9].) In the special case that $s(n)=n$ for all $n \geq 1$, the sequences a and b are the lower and upper Wythoff sequences, as in Section 1. In general, we call a the lower s-Wythoff sequence and b the upper s-Wythoff sequence. In this section, we shall prove that these are Beatty sequences when s is an arithmetic sequence of the form $s(n)=k n-w$, where k is a nonnegative integer and $w \in\{-1,0,1,2,3, \ldots, n-1\}$.
Example 1. If s is the constant sequence given by $s(n)=1$ for $n \geq 1$, then $a(n)=2 n-1$ and $b(n)=2 n$ for every $n \geq 1$.
Example 2. If $s(n)=2 n$, then $a(n)=\lfloor\sqrt{2} n\rfloor$ and $b(n)=2 n+a(n)$ for every $n \geq 1$, a pair of homogeneous Beatty sequences.
Example 3. If $s(n)=n+1$, then $a(n)=\lfloor\tau(n+2-\sqrt{5})\rfloor$ and $b(n)=\left\lfloor\tau^{2}(n+2-\sqrt{5})\right\rfloor$, a pair of Beatty sequences (A026273 and A026274 in [14]), as in the next lemma.

Lemma 1. Suppose that $s(n)=k n-w$, where $k \geq 1$ and $-1 \leq w \leq k-1$. Let $d=\sqrt{k^{2}+4}$. The sequences

$$
\begin{align*}
& A(n)=\left\lfloor\frac{d+2-k}{2}\left(n+\frac{w}{d+2}\right)\right\rfloor \tag{3.1}\\
& B(n)=\left\lfloor\frac{d+2+k}{2}\left(n-\frac{w}{d+2}\right)\right\rfloor \tag{3.2}
\end{align*}
$$

are complementary.
Proof. In order to apply Corollary 1 to (3.1) and (3.2), let $u=(d+2-k) / 2$ and $c=-w /(d+2)$, and let S_{1} and S_{2} be as in (2.1) with $v=u /(u-1)$. To see that S_{1} and S_{2} are disjoint, suppose for some i and j that $i / u+c=j / v$. In order to express j in a certain manner, note that

$$
\begin{aligned}
c & =-\frac{w}{2+\sqrt{4+k^{2}}} \\
v & =\frac{\left(2+k+\sqrt{4+k^{2}}\right)}{2} \\
c v & =\frac{\left(2-k-\sqrt{4+k^{2}}\right)}{2 k} w,
\end{aligned}
$$

THE FIBONACCI QUARTERLY

so that

$$
\begin{equation*}
j=\frac{i v}{u}+c v=\frac{w}{k}+\frac{(i k-w)\left(k+\sqrt{4+k^{2}}\right)}{2 k} . \tag{3.3}
\end{equation*}
$$

However, $\sqrt{4+k^{2}}$ is irrational for all $k \geq 1$, so that the right-hand side of (3.3) is not an integer, proving that S_{1} and S_{2} are disjoint. By Corollary 1, the sequences (3.1) and (3.2) are a pair of complementary Beatty sequences.

Theorem 2. Suppose that $s(n)=k n-w$, where $k \geq 1$ and $-1 \leq w \leq k-1$. Let $d=\sqrt{k^{2}+4}$, and let a and b be the lower and upper s-Wythoff sequences. Then $a=A$ and $b=B$, where A and B are given by (3.1) and (3.2).

Proof. Clearly, $A(1)=a(1)$, and it is easy to check that $B(n)=k n-w+A(n)$ for all n, so that B and b arise from $B=s+A$ and $b=s+a$. Therefore, all we need to do is prove that if $n \geq 2$ and

$$
m=\operatorname{mex}\{A(1), A(2), \ldots, A(n-1), B(1), B(2), \ldots, B(n-1)\},
$$

then $m=A(n)$, but this is a direct consequence of Lemma 1 .

4. Limiting Sequences

Let Ψ denote the sequence

$$
A 003159=(1,3,4,5,7,9,11,12,13,15,16, \ldots)
$$

in the Encyclopedia of Integer Sequences [14]; $\Psi(n)$ is then the nth positive integer whose binary representation ends in an even number of 0 's. The complement of Ψ is the sequence $\Lambda=A 036554=2 * A 003159$ of numbers whose binary representation ends in an odd number of 0 's. We shall prove that these two sequences are left fixed by the algorithm used to form s-Wythoff sequences. Then we shall prove that they are the unique limiting sequences when the procedure is iterated. (To say that $\lim _{m \rightarrow \infty} a_{m}=\Psi$ means that for every $H>0$ there exists M such that if $m>M$, then $a_{m}(h)=\Psi(h)$ for all $h \leq H$.)

Theorem 3. There exists a unique sequence Ψ such that the lower Ψ-Wythoff sequence of Ψ is Ψ.

Proof. Suppose that $f=(f(n))$ is a sequence such that the lower f-Wythoff sequence of f is f. Let g be the upper f-Wythoff sequence. Clearly $g=2 f$. Since $f(1)=1$, we have $g(1)=2$, so that

$$
f(2)=\operatorname{mex}\{f(1), g(1)\}=3 \quad \text { and } \quad f(2)=6 .
$$

As an inductive step, suppose for arbitrary $n \geq 2$ that $f(i)$ is uniquely determined for $i \leq n-1$. Let

$$
T_{n-1}=\{1,3, \ldots, f(n-1), 2,6, \ldots, 2 f(n-1)\} .
$$

Then $\operatorname{mex}\left(T_{n-1}\right)$ is given by one of two cases: $f(n)=f(n-1)+1$ if this number is not in T_{n-1} or else $f(n)=f(n-1)+2$ since neighboring terms of the set $\{2,6, \ldots, 2 f(n-1)\}$ necessarily differ by at least 2 . In both cases, $f(n)$ and hence $g(n)$ are uniquely determined.

Henceforth we shall refer to Ψ and Λ as the lower and upper invariant Wythoff sequences. The next result indicates the special role played by these two sequences under iterations.

BEATTY SEQUENCES AND WYTHOFF SEQUENCES, GENERALIZED

Theorem 4. Suppose that s is a nondecreasing sequence in N. Let a_{1} and b_{1} be the lower and upper s-Wythoff sequences, respectively. Let $s_{1}=a_{1}$, and let a_{2} and b_{2} be the lower and upper s_{1}-Wythoff sequences. Inductively, for $m \geq 2$, let $s_{m-1}=a_{m-1}$, and let a_{m} and b_{m} be the lower and upper s_{m-1}-Wythoff sequences. Then $\lim _{m \rightarrow \infty} a_{m}$ exists and is the lower invariant Wythoff sequence Ψ.

Proof. As a first induction step, note that $s_{1}(1)=1=\Psi(1)$ even if $s(1)>1$. As an induction hypothesis, suppose for $m \geq 1$ and $n \geq$ that $s_{m}(h)=a_{m}(h)=\Psi(h)$ for $h=1,2, \ldots, n$. Then

$$
\begin{aligned}
a(n+1) & =\operatorname{mex}\{a(1), a(2), \ldots, a(n-1), b(1), b(2), \ldots, b(n-1)\} \\
& =\operatorname{mex}\{\Psi(1), \Psi(2), \ldots, \Psi(n-1), \Lambda(1), \Lambda(2), \ldots, \Lambda(n-1)\}
\end{aligned}
$$

by the induction hypothesis, so that $a(n+1)=\Psi(n+1)$ by Theorem 3 . Consequently, by induction, $\lim _{m \rightarrow \infty} a_{m}=\lim _{m \rightarrow \infty} s_{m}=\Psi$.

5. Beatty Discrepancy

The notion of the Beatty discrepancy of a complementary equation is introduced in [14] at A138253. In this section we shall determine the Beatty discrepancy of certain equations of the form $b(n)=s(n)+a(n)$. We begin with definitions. Quoting from [11]: "Under the assumption that sequences a and b partition the sequence $N=(1,2,3, \ldots)$ of positive integers, the designation complementary equations applies to equations such as $b(n)=a(a(n))+1$ in much the same way that the designations functional equations, differential equations, and Diophantine equations apply elsewhere. Indeed, complementary equations can be regarded as a class of Diophantine equations."

Now suppose that a and b are solutions of a complementary equation $f(a, b)=0$ and that the numbers $r=\lim _{n \rightarrow \infty} a(n)$ and $s=\lim _{n \rightarrow \infty} b(n)$ exist. Let $\alpha(n)=\lfloor r n\rfloor$ and $\beta(n)=\lfloor s n\rfloor$ for $n \geq 1$, so that α and β are a pair of complementary Beatty sequences. The Beatty discrepancy of the equation $f(a, b)=0$ is the sequence $D=(D(n))$ defined by $D(n)=f(\alpha, \beta)$.

Theorem 5. Suppose that $s(n)=k n-w$, where $k \geq 1$ and $w \in\{-1,0,1,2,3, \ldots, n-1\}$. Let $d=\sqrt{k^{2}+4}$, and let a and b be the lower and upper s-Wythoff sequences. Then the Beatty discrepancy of the equation $b=s+a$ is the constant sequence given by $D(n)=w$.

Proof. Using A and B as in (3.1) and (3.2), we have

$$
\begin{aligned}
D(n) & =\left\lfloor\frac{d+2+k}{2} n\right\rfloor-(k n-w)-\left\lfloor\frac{d+2-k}{2} n\right\rfloor \\
& =\left\lfloor\frac{d+2-k}{2} n\right\rfloor+\lfloor k n\rfloor-k n+w-\left\lfloor\frac{d+2-k}{2} n\right\rfloor,
\end{aligned}
$$

so that $D(n)=w$ for all n.

6. Concluding Comments

The Online Encyclopedia of Integer Sequences [14] includes several s-Wythoff sequences. For a guide to these and a Mathematica program for generating them, see A184117. In Theorems 1 and 5 , the seed sequence s is an arithmetic sequence. It seems likely that these theorems can be generalized to cover a much wider class of nearly linear sequences.

THE FIBONACCI QUARTERLY

References

[1] S. Beatty, Problem 3173, Amer. Math. Monthly, 33 (1926), 159; 34 (1927), 159.
[2] A. S. Fraenkel, The bracket function and complementary sets of integers, Canad. J. Math., 21 (1969), 6-27.
[3] A. S. Fraenkel, Complementing and exactly covering sequences, Journal of Combinatorial Theory, (A) 14 (1973), 8-20.
[4] A. S. Fraenkel, Complementary systems of integers, Amer. Math. Monthly, 84 (1977), 114-115.
[5] A. S. Fraenkel, Nonhomogeneous spectra of numbers, Discrete Mathematics, 34 (1981), 325-327.
[6] A. S. Fraenkel, How to beat your Wythoff games' opponents on three fronts, Amer. Math. Monthly, 89 (1982), 353-361.
[7] A. S. Fraenkel, Wythoff games, continued fractions, cedar trees and Fibonacci searches, Theoret. Comput. Sci., 29 (1984), 49-73.
[8] A. S. Fraenkel, Heap games, numeration systems and sequences, Ann. Combinatorics, 2 (1998), 197-210.
[9] A. S. Fraenkel, Homepage: http://www.wisdom.weizmann.ac.il/~fraenkel/.
[10] A. S. Fraenkel and C. Kimberling, Generalized Wythoff arrays, shuffles and interspersions, Discrete Math., 126 (1994), 137-149.
[11] C. Kimberling, Complementary Equations, Journal of Integer Sequences, 10 (2007), Article 07.1.4.
[12] K. O'Bryant, A generating function technique for Beatty sequences and other step sequences, Journal of Number Theory, 94 (2002), 299-319.
[13] J. W. S. Rayleigh, The Theory of Sound 1 (second edition), Macmillan, 1894, 123. (http://books.google.com/books?id=EGQSAAAAIAAJ\&pg=PA123.)
[14] N. J. A. Sloane (Ed.), The On-Line Encyclopedia of Integer Sequences, 2010, http://www.research.att.com/~njas/sequences/A000201.
[15] K. B. Stolarsky, Beatty sequences, continued fractions, and certain shift operators, Canadian Math. Bull., 19 (1976), 473-482.
[16] S. Tadee and V. Laohakosol, Complementary sets and Beatty functions, Thai Journal of Mathematics, 3 (2005), 27-33.
[17] W. A. Wythoff, A modification of the game of nim, Nieuw Archief voor Wiskunde, 2 (1905-07), 199-202.
MSC2010: 11B85
University of Evansville, Department of Mathematics, 1800 Lincoln Avenue, Evansville, IN 47722

E-mail address: ck6@evansville.edu

