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Abstract. We find and prove quadratic relations for polynomial analogues of Fibonacci
numbers introduced by K. Dilcher and K. Stolarsky.

1. Introduction

Many classical integer sequences have their natural polynomial analogues. For instance,
various analogues of the Fibonacci numbers were studied by L. Carlitz [1, 2] and J. Cigler [3, 4].
Recently, K. Dilcher and K. B. Stolarsky [5] introduced two new polynomial counterparts of the
Fibonacci sequence. Originally these sequences were defined in [5] via a polynomial extension
of the Stern sequence. However, they satisfy recurrence relations that may be used as an
alternative definition. To see this, let

αn =
2n − (−1)n

3
, n ≥ 0. (1.1)

The polynomials fn(q) (n ≥ 0) and f̄n(q) (n ≥ 2) satisfy (see [5]) the initial conditions

f0(q) = 0, f1(q) = f2(q) = f̄2(q) = 1 (1.2)

and the recurrence

fn+1(q) = qαn−1fn(q) + fn−1(q), n ≥ 1, (1.3)

f̄n+1(q) = fn(q) + qαnfn−1(q), n ≥ 1. (1.4)

Clearly, fn(1) = f̄n(1) = Fn, where Fn in the nth Fibonacci number. Dilcher and Stolarsky
showed [5] that both sequences fn and f̄n possess many properties analogous to the properties
of the usual Fibonacci numbers. For instance, they proved the following identities for k ≥ 1:

f2k+1(q)f2k−1(q
2)− qf2k(q)f2k(q

2) = 1, (1.5)

f2k+1(q)f2k+1(q
2)− qf2k+2(q)f2k(q

2) = 1, (1.6)

which generalize the well-known formula

Fn+1Fn−1 − F 2
n = (−1)n.

The aim of this paper is to extend (1.5)–(1.6) and derive more quadratic relations for fn
and f̄n. In particular, we prove the following result.
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(contracts no. P265 and 2010–1.1—111–128–033).
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Theorem 1.1. For any r ≥ 1, d ≥ 1, and k ≥ 0, we have

f2k+r(q)f2k+2d−1(q
2r )− qαrf2k+2d+r−1(q)f2k(q

2r) = fr(q)f2d−1(q
22k+r

), (1.7)

f2k+2d+r(q)f2k+1(q
2r )− qαrf2k+r+1(q)f2k+2d(q

2r) = fr(q)f2d−1(q
22k+r+1

), (1.8)

f2k+r(q)f2k+2d−2(q
2r )− f2k+2d+r−2(q)f2k(q

2r) = q2
rα2kfr(q)f2d−2(q

22k+r

), (1.9)

f2k+2d+r−1(q)f2k+1(q
2r )− f2k+r+1(q)f2k+2d−1(q

2r ) = qα2k+r+1fr(q)f2d−2(q
22k+r+1

), (1.10)

f2k+r(q)f̄2k+2d(q
2r)− qαr f̄2k+2d+r(q)f2k(q

2r) = fr(q)f̄2d(q
22k+r

), (1.11)

f̄2k+2d+r+1(q)f2k+1(q
2r )− qαrf2k+r+1(q)f̄2k+2d+1(q

2r) = fr(q)f̄2d(q
22k+r+1

), (1.12)

f2k+r(q)f̄2k+2d+1(q
2r )− f̄2k+2d+r+1(q)f2k(q

2r) = q2
rα2kfr(q)f̄2d+1(q

22k+r

), (1.13)

f̄2k+2d+r+2(q)f2k+1(q
2r )− f2k+r+1(q)f̄2k+2d+2(q

2r ) = qα2k+r+1fr(q)f̄2d+1(q
22k+r+1

), (1.14)

For d = 1, relations (1.7), (1.8), (1.11), and (1.12) take the simplest form, where the right-
hand side depends only on fr(q). For instance, substituting d = 1 into (1.7) and (1.8) we
obtain the following special case of Theorem 1.1: for any r ≥ 1 and any k ≥ 0,

f2k+r(q)f2k+1(q
2r)− qαrf2k+r+1(q)f2k(q

2r) = fr(q), (1.15)

f2k+r+2(q)f2k+1(q
2r)− qαrf2k+r+1(q)f2k+2(q

2r ) = fr(q). (1.16)

Identities listed in Theorem 1.1 may be viewed as polynomial analogues of the following
well-known formula for Fibonacci numbers:

Fa+bFa+c − Fa+b+cFa = (−1)aFbFc

for all non-negative a, b and c.
We mention another consequence of the above identities. Relation (1.3) with n replaced by

n + 1 and relation (1.4) show that the polynomials fn, f̄n+1 and fn+2 agree on terms up to
(but not including) qαn . Thus, the following limits are well defined:

F (q) = lim
n→∞

f2n(q) = lim
n→∞

f̄2n+1(q)

= 1 + q + q2 + q5 + q6 + q8 + q9 + q10 + q21 + q22 + q24 + · · · ,

G(q) = lim
n→∞

f2n+1(q) = lim
n→∞

f̄2n(q)

= 1 + q + q3 + q4 + q5 + q11 + q12 + q13 + q16 + q17 + q19 + · · · .

Some properties of these formal power series were studied in [5]. Let us write (1.15) for odd
and even r separately:

f2k+2m−1(q)f2k+1(q
22m−1

)− qα2m−1f2k+2m(q)f2k(q
22m−1

) = f2m−1(q), (1.17)

f2k+2m(q)f2k+1(q
22m)− qα2mf2k+2m+1(q)f2k(q

22m) = f2m(q). (1.18)

We fix m and let k go to infinity. Passing to a limit in (1.17) and (1.18) we obtain the following
corollary.

Corollary 1.2. For any r ≥ 1 we have

G(q)G(q2
2m−1

)− qα2m−1F (q)F (q2
2m−1

) = f2m−1(q), (1.19)

F (q)G(q2
2m

)− qα2mG(q)F (q2
2m

) = f2m(q). (1.20)
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The same corollary can be also deduced from any of the identities (1.7), (1.8), (1.11) or
(1.12). Identity (1.20) was obtained first in [5, Proposition 5.3] by a different method. Relation
(1.19) for r ≥ 2 seems to be new.

In addition to Theorem 1.1, there are other identities satisfied by fn and f̄n. Dilcher and
Stolarsky [5, Proposition 4.2] also found the following ones:

f2k+1(q)f̄2k−1(q
2)− f̄2k(q)f2k(q

2) = qβ2k−1, k ≥ 2, (1.21)

f̄2k+2(q)f2k(q
2)− f2k+1(q)f̄2k+1(q

2) = −qα2k+1−1, k ≥ 1, (1.22)

where the numbers αn are defined by (1.1) and

βn =
5 · 2n−2 + (−1)n

3
, n ≥ 2.

Both (1.21) and (1.22) fit into a general family of identities. However, in contrast to Theo-
rem 1.1 the equations become more complicated. We prove the following result.

Theorem 1.3. For r ≥ 1, d ≥ 1, and k ≥ 1, we have

f2k+2d+r−2(q)f̄2k+1(q
2r)− f̄2k+r+1(q)f2k+2d−2(q

2r ) (1.23)

= q2
rα2kfr(q) ·

(

f2d−1(q
22k+r−1

)− f2d−2(q
22k+r

)
)

.

Indeed, Theorem 1.3 extends (1.21) and (1.22). To see this, notice that 2α2k = α2k+1 − 1,

f1(q) = f1(q
22k) = 1 and f0(q

22k+1

) = 0. Hence, multiplying both sides of (1.23) by −1 and
setting r = 1, d = 1 we deduce (1.22).

Now take k ≥ 2 and write (1.23) for k − 1 instead of k. Substituting r = 1 and d = 2 we
obtain

f2k+1(q)f̄2k−1(q
2)− f̄2k(q)f2k(q

2) = q2α2k−2f1(q)
(

f3(q
22k−2

)− f2(q
22k−1

)
)

= q2α2k−2(1 + q2
2k−2

− 1) = q2α2k−2+22k−2

= qβ2k−1,

which gives (1.21).
Further relations of similar type are also discussed in Section 3.

2. Proofs of the Identities

Before proving Theorem 1.1 we state an easy property of the sequence αn.

Lemma 2.1. For any s ≥ 0 and m ≥ 0, we have

αm+s = 2sαm + (−1)mαs. (2.1)

Proof of Theorem 1.1. (i) First, we prove (1.7)–(1.10). The proof is by induction on d.
Let d = 1. The identities (1.9)–(1.10) become trivial since both their sides vanish identically.

Notice that for d = 1 equations (1.7)–(1.8) become (1.15)–(1.16), respectively. We prove the
two latter identities by induction on k.

Relation (1.15) for k = 0 follows trivially from (1.2), while (1.16) for k = 0 becomes
fr+2(q)−qαrfr+1(q) = fr(q), which is a consequence of (1.3). Suppose now that both identities
(1.15) and (1.16) hold up to k − 1. Using (1.3) and (2.1) with m = 2k − 1, s = r, we rewrite
the left hand side of (1.15) as

f2k+r(q)
(

q2
rα2k−1f2k(q

2r) + f2k−1(q
2r)

)

−qαr (qα2k+r−1f2k+r(q) + f2k+r−1(q)) f2k(q
2r)

= f2k+r(q)f2k−1(q
2r)− qαrf2k+r−1(q)f2k(q

2r) = fr(q).
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The last equality follows from (1.16) for k − 1 in place of k. In a similar way, using (1.3) and
(2.1) with m = 2k, s = r, we can rewrite the left hand side of (1.16) as

(qα2k+rf2k+r+1(q) + f2k+r(q)) f2k+1(q
2r)

−qαrf2k+r+1(q)
(

q2
rα2kf2k+1(q

2r) + f2k(q
2r )

)

= f2k+r(q)f2k+1(q
2r)− qαrf2k+r+1(q)f2k(q

2r) = fr(q)

by (1.15) for k, which has already been obtained above. Thus we proved (1.15)–(1.16). Hence,
(1.7)–(1.10) hold for d = 1.

Now let d ≥ 2 and assume that we proved (1.7)–(1.10) up to d− 1.
We start with (1.9) and (1.10). Using (1.3) and then (2.1) for m = 2k + 2d − 4, s = r, we

rewrite the left-hand side of (1.9):

f2k+r(q)
(

q2
rα2k+2d−4f2k+2d−3(q

2r) + f2k+2d−4(q
2r )

)

− (qα2k+2d+r−4f2k+2d+r−3(q) + f2k+2d+r−4(q)) f2k(q
2r)

= q2
rα2k+2d−4

(

f2k+r(q)f2k+2d−3(q
2r)− qαrf2k+2d+r−3(q)f2k(q

2r)
)

+f2k+r(q)f2k+2d−4(q
2r)− f2k+2d+r−4(q)f2k(q

2r).

Using the induction hypothesis for (1.7) and (1.9) and then applying (2.1) for m = 2d − 4,
s = 2k, we continue as follows:

= q2
rα2k+2d−4fr(q)f2d−3(q

22k+r

) + q2
rα2kfr(q)f2d−4(q

22k+r

)

= q2
rα2kf(r)

(

(

q2
2k+r)α2d−4f2d−3(q

22k+r

) + f2d−4(q
22k+r

)
)

= q2
rα2kf(r)f2d−2(q

22k+r

)

by (1.3). This proves (1.9) for d.
In a similar way, using (1.3) and then (2.1) with m = 2k + 2d − 3, s = r, we rewrite the

left-hand side of (1.10):

(

qα2k+2d+r−3f2k+2d+r−2(q) + f2k+2d+r−3(q)
)

f2k+1(q
2r )

−f2k+r+1(q)
(

q2
rα2k+2d−3f2k+2d−2(q

2r) + f2k+2d−3(q
2r)

)

= qα2k+2d+r−3
(

f2k+2(d−1)+r(q)f2k+1(q
2r)− qαrf2k+r+1(q)f2k+2(d−1)(q

2r)
)

+f2k+2(d−1)+r−1(q)f2k+1(q
2r)− f2k+r+1(q)f2k+2(d−1)−1(q

2r ).

Using the induction hypothesis for (1.8) and (1.10) and applying (2.1) with m = 2d − 4,
s = 2k + r + 1, we continue as follows:

= qα2k+2d+r−3fr(q)f2d−3(q
22k+r+1

) + qα2k+r+1fr(q)f2d−4(q
22k+r+1

)

= qα2k+r+1f(r)
(

(

q2
2k+r+1)α2d−4f2d−3(q

22k+r+1

) + f2d−4(q
22k+r+1

)
)

= qα2k+r+1f(r)f2d−2(q
22k+r+1

)

by (1.3). This proves (1.10) for d.
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Now we prove (1.7). Using (1.3) and then (2.1) for m = 2k + 2d− 3, s = r, we rewrite the
left-hand side of (1.7):

f2k+r(q)
(

q2
rα2k+2d−3f2k+2d−2(q

2r) + f2k+2d−3(q
2r )

)

−qαr

(

qα2k+2d+r−3f2k+2d+r−2(q) + f2k+2d+r−3(q)
)

f2k(q
2r)

= q2
rα2k+2d−3

(

f2k+r(q)f2k+2d−2(q
2r)− f2k+2d+r−2(q)f2k(q

2r)
)

+f2k+r(q)f2k+2d−3(q
2r)− qαrf2k+2d+r−3(q)f2k(q

2r).

Recall that we have already established (1.9) for d. Using it together with the induction hy-
pothesis for (1.7) and with (2.1) for m = 2d−3, s = 2k, we continue the above transformation:

= q2
rα2k+2d−3 · q2

rα2kfr(q)f2d−2(q
22k+r

) + fr(q)f2d−3(q
22k+r

)

= f(r)
(

(

q2
2k+r)α2d−3f2d−2(q

22k+r

) + f2d−3(q
22k+r

)
)

= f(r)f2d−1(q
22k+r

)

by (1.3). This proves (1.7) for d.
Finally, we prove (1.8). Using (1.3) and then (2.1) for m = 2k + 2d − 2, s = r, we rewrite

the left-hand side of (1.8):

(qα2k+2d+r−2f2k+2d+r−1(q) + f2k+2d+r−2(q)) f2k+1(q
2r)

−qαrf2k+r+1(q)
(

q2
rα2k+2d−2f2k+2d−1(q

2r ) + f2k+2d−2(q
2r )

)

= qα2k+2d+r−2
(

f2k+2d+r−1(q)f2k+1(q
2r)− f2k+r+1(q)f2k+2d−1(q

2r)
)

+f2k+2(d−1)+r(q)f2k+1(q
2r )− qαrf2k+r+1(q)f2k+2(d−1)(q

2r).

Recall that we have already established (1.10) for d. Using it together with the induction
hypothesis for (1.8) and with (2.1) for m = 2d − 3, s = 2k + r + 1, we continue the above
transformation:

= qα2k+2d+r−2 · qα2k+r+1fr(q)f2d−2(q
22k+r+1

) + fr(q)f2d−3(q
22k+r+1

)

=
(

(

q2
2k+r+1)α2d−3f2d−2(q

22k+r+1

) + f2d−3(q
22k+r+1

)
)

= f2d−1(q
22k+r+1

)

by (1.3). This proves (1.8) for d. Thus, we completed the proof of (1.7)–(1.10).
(ii) To prove (1.11) we multiply both sides of (1.9) by q2

rα2k+2d−1 and add to (1.7). Taking
into account (2.1) with m = 2k + 2d− 1 and s = r and (1.4), we transform the left-hand side
of that sum:

f2k+r(q)
(

f2k+2d−1(q
2r ) + (q2

r

)α2k+2d−1f2k+2d−2(q
2r )

)

−qαr (f2k+2d+r−1(q) + qα2k+2d+r−1f2k+2d+r−2(q)) f2k(q
2r)

= f2k+r(q)f̄2k+2d(q
2r )− qαr f̄2k+2d+r(q)f2k(q

2r).

The right-hand side of the above sum under consideration equals

fr(q)
(

f2d−1(q
22k+r

) + q2
rα2k+2d−1 · q2

rα2kf2d−2(q
22k+r

)
)

= fr(q)
(

f2d−1(q
22k+r

) +
(

q2
2k+r)α2d−1f2d−2(q

22k+r

)
)

= fr(q)f̄2d(q
22k+r

)

by (2.1) with m = 2d− 1, s = 2k and by (1.4). This proves (1.11).
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The remaining three identities can be proved in a similar way. For instance, to prove (1.12)
we add (1.10) multiplied by qα2k+2d+r to (1.8). To prove (1.13) we add (1.9) with d replaced by
d+ 1 to (1.7) multiplied by q2

rα2k+2d . Finally, to obtain (1.14) we add (1.10) with d replaced
by d+ 1 to (1.8) multiplied by qα2k+2d+r+1 . We leave the details to the reader. �

Proof of Theorem 1.3. Let k ≥ 1. First, substitute k − 1 in place of k in (1.8), multiply both
sides of the result by q2

rα2k and subtract (1.9). Taking into account (2.1) with m = 2k, s = r

and (1.4), we see that the left-hand side of the resulting relation equals

f2k+2d+r−2(q)
((

q2
r)α2kf2k−1(q

2r ) + f2k(q
2r)

)

− (qα2k+rf2k+r−1(q) + f2k+r(q)) f2k+2d−2(q
2r)

= f2k+2d+r−2(q)f̄2k+1(q
2r )− f̄2k+r+1(q)f2k+2d−2(q

2r),

while the right-hand side is

q2
rα2kfr(q)

(

f2d−1(q
22k+r−1

)− f2d−2(q
22k+r

)
)

.

This proves Theorem 1.3. �

3. Further Identities and Concluding Remarks

In this section we list a few related identities. Their proofs are similar to those given above
and the details are left to the reader. For instance, the following analogues of (1.23) can be
deduced from (1.7)–(1.10). For any d ≥ 1, r ≥ 1 and k ≥ 0, we have

f̄2k+r+2(q)f2k+2d−1(q
2r)− f2k+2d+r−1(q)f̄2k+2(q

2r)

= qα2k+r+1fr(q)
(

f2d−1(q
22k+r

)− f2d−2(q
22k+r+1

)
)

,

f̄2k+r+3(q)f2k+2d+1(q
2r)− qαrf2k+2d+r+1(q)f̄2k+3(q

2r)

= fr(q)
(

f2d−1(q
22k+r+2

)− q2
2k+r+1

f2d(q
22k+r+1

)
)

,

f2k+2d+r(q)f̄2k+2(q
2r)− qαr f̄2k+r+2(q)f2k+2d(q

2r )

= fr(q)
(

f2d−1(q
22k+r+1

)− q2
2k+r

f2d(q
22k+r

)
)

.

In a similar way, the following identities can be deduced from (1.11)–(1.14):

f̄2k+r+2(q)f̄2k+2d+2(q
2r)− f̄2k+2d+r+2(q)f̄2k+2(q

2r )

= qα2k+r+1fr(q)
(

f̄2d+2(q
22k+r

)− f̄2d+1(q
22k+r+1

)
)

,

f̄2k+r+3(q)f̄2k+2d+2(q
2r)− qαr f̄2k+2d+r+2(q)f̄2k+3(q

2r )

= fr(q)
(

f̄2d(q
22k+r+2

)− q2
2k+r+1

f̄2d+1(q
22k+r+1

)
)

,

f̄2k+2d+r+1(q)f̄2k+2(q
2r)− qαr f̄2k+r+2(q)f̄2k+2d+1(q

2r )

= fr(q)
(

f̄2d(q
22k+r+1

)− q2
2k+r

f̄2d+1(q
22k+r

)
)

,

f̄2k+2d+r+3(q)f̄2k+3(q
2r)− f̄2k+r+3(q)f̄2k+2d+3(q

2r )

= q2
rα2k+2fr(q)

(

f̄2d+2(q
22k+r+1

)− f̄2d+1(q
22k+r+2

)
)

.
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