INTEGER SEQUENCES GENERATED BY $x_{n+1}=\frac{x_{n}^{2}+A}{x_{n-1}}$

ROGER C. ALPERIN

Abstract

We describe certain elementary sequences which are integer valued and characterize the integral sequences for the special example $x_{n+1} x_{n-1}=x_{n}^{2}+1$; this is related to the alternate terms of the Fibonacci sequence.

1. Introduction

We consider the sequences generated by the non-linear equation for $n \geq 1$

$$
x_{n+2} x_{n}=x_{n+1}^{2}+A
$$

with constant $A \neq 0$ and initial values x_{1}, x_{2} specified. First, we want to know for a given A, which integer values of x_{1} and x_{2} will give a sequence consisting only of integers. We call the sequence integral if this happens. It is known that the sequences generated by this equation will have denominators of the form $x_{1}^{n-1} x_{2}^{n-2}$ in general, that is as a formal sequence (this is the Laurent phenomenon as discussed in [1]). However under special circumstances the sequence will be integral.

Secondly, we consider the uniqueness (up to sign and shift) of the integral sequences for a fixed value of A. Can one characterize the values of A for which these integral sequences are unique? In this regard we prove that when $A=1$ the sequence is essentially unique and is just a signed variation on the alternate terms of the Fibonacci sequence (Corollary 4.2). It would be interesting to know if there are infinitely many A for which integral sequences are essentially unique.

However, there are infinitely many cases when uniqueness fails; for example let $A=-k^{2}+$ $k^{3}-1, k$ an integer, then the sequences with $x_{1}=1, x_{2}=1$ or with $x_{1}=1, x_{2}=k$ are distinct (see 2.1).

2. A-SEQuence

We denote by $\Sigma=\Sigma_{A}\left(x_{1}, x_{2}\right)$ the sequence determined by $x_{n+1} x_{n-1}=x_{n}^{2}+A$; we refer to this as an A-sequence. We first show that the sequences are linearly recursive.
Proposition 2.1. Suppose that x_{n} is an A-sequence and let $\mu=\frac{x_{2}^{2}+x_{1}^{2}+A}{x_{1} x_{2}}$. Then the sequence satisfies $x_{n+1}=\mu x_{n}-x_{n-1}$.
Proof. We show that $\frac{x_{n+1}+x_{n-1}}{x_{n}}$ is constant and equal to μ by induction. Certainly this equality is valid for $n=2: \frac{x_{3}+x_{1}}{x_{2}}=\mu$. Now assume it is valid for n. Then we have

$$
\frac{x_{n+2}+x_{n}}{x_{n+1}}=\frac{x_{n+1}^{2}+x_{n}^{2}+A}{x_{n+1} x_{n}}
$$

because x_{n} is an A-sequence. Then,

$$
\begin{aligned}
\mu-\frac{x_{n+2}+x_{n}}{x_{n+1}} & =\frac{x_{n+1}+x_{n-1}}{x_{n}}-\frac{x_{n+1}^{2}+x_{n}^{2}+A}{x_{n+1} x_{n}} \\
& =\frac{x_{n+1}^{2}+x_{n-1} x_{n+1}-x_{n+1}^{2}-x_{n}^{2}-A}{x_{n+1} x_{n}} \\
& =\frac{x_{n-1} x_{n+1}-x_{n}^{2}-A}{x_{n+1} x_{n}} \\
& =0 .
\end{aligned}
$$

2.1. Integral Examples. Here is a method to generate integral sequences. Let x_{1}, x_{2} determine μ as before, say $x_{1}, x_{2} \in\{r, s\} \subset \mathbb{Z}$ with $\frac{s+1}{r} \in \mathbb{Z}$, and $A=s-r^{2}$ then $\mu=\frac{r^{2}+s^{2}+s-r^{2}}{r s}=$ $\frac{s+1}{r}$. Certainly r and s has no common factor and the sequence $\Sigma_{A}(r, s)$ consists of integers. For example with $x_{1}=r=1, x_{2}=s, \mu=s+1, A=s-1$, we obtain an integral sequence for any integer value of A.
2.2. Other Sequences. The sequences $x_{n+1} x_{n-1}=x_{n}^{2}+B x_{n}+A$, are linearly recursive of degree 3 with characteristic equation $X^{3}-\mu X^{2}+\mu X-1$ with $\mu=\frac{x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}+B\left(x_{1}+x_{2}\right)+A}{x_{1} x_{2}}$ when $B \neq 0$.

The sequences $x_{n+1} x_{n-2}=x_{n} x_{n+1}+A$ satisfy the linear recurrence $x_{n+1}=\mu x_{n-1}+x_{n-3}$ and $\mu=\frac{x_{1}\left(x_{0}^{2}+x_{2}^{2}\right)+A\left(x_{0}+x_{2}\right)}{x_{0} x_{1} x_{2}}$.

In a very similar way one can show that these sequences are linear. These also satisfy the Laurent conditions of [1]. We leave the details to the interested reader.

3. Pell's Equation and Integral A-Sequences

Suppose that $x_{1}=a, \mu \in \mathbb{Z}$, then using the formula for μ we have an integer equation

$$
x^{2}-a \mu x+A+a^{2}=0
$$

which will have an integer solution $x=x_{2} \in\left\{\frac{a \mu}{2} \pm \frac{\sqrt{(a \mu)^{2}-4 A-4 a^{2}}}{2}\right\}$ if and only if the discriminant is an integer square c^{2} and $a \mu \pm c$ is even.

Hence, we also have integer solutions $X=c, Y=a$ to Pell's equation

$$
\begin{equation*}
X^{2}-\left(\mu^{2}-4\right) Y^{2}=-4 A \tag{3.1}
\end{equation*}
$$

Proposition 3.1. The A-sequence is integral if and only if there are integer solutions when c is even to: $X^{2}-\frac{\mu^{2}-4}{4} Y^{2}=-A$ when μ is even or $X^{2}-\left(\mu^{2}-4\right) Y^{2}=-A$ when μ is odd; or when c is odd then μ is odd and $X^{2}-\left(\mu^{2}-4\right) Y^{2}=-4 A$ has a solution with X odd.

Proof. With the notation as above, suppose first that c is even. If $\mu^{2}-4$ is odd then a is even so the equation reduces to $X^{2}-\left(\mu^{2}-4\right) Y^{2}=-A$. If $\mu^{2}-4$ is even then μ is also even and then the equation reduces to $X^{2}-\left(\left(\frac{\mu}{2}\right)^{2}-1\right) Y^{2}=-A$.

If, however, c is odd then $\mu^{2}-4$ and a are both odd and the equation remains as $X^{2}-$ $\left(\mu^{2}-4\right) Y^{2}=-4 A$.

THE FIBONACCI QUARTERLY

Conversely if we have solutions to Pell's equation 3.1 above then we can make an A-sequence integral solution using the solution for $x_{1}=Y$ or $x_{1}=2 Y$ and then solve for x_{2} using the quadratic formula given $\mu^{2}-4$ with known x_{1}, A. The equation is simply

$$
\begin{equation*}
x_{2}^{2}+A+a^{2}-\mu a x_{2}=0, \tag{3.2}
\end{equation*}
$$

and thus we have proven the proposition.

4. Uniqueness Property for $A=1$

There may not be a unit of norm -1 or -4 in the associated ring for Pell's equation, $X^{2}-r Y^{2}=-1, X^{2}-r Y^{2}=-4$. The existence of the unit of norm -1 depends on whether or not the period of the continued fraction of \sqrt{r} is odd [2].

If $r=\mu$ is odd and $r>3$ then $\sqrt{r^{2}-4}$ has even period since

$$
\sqrt{r^{2}-4}=\left(r-1 ; \overline{1, \frac{r-3}{2}, 2, \frac{r-3}{2}, 1,2 r-2}\right) .
$$

If $s=\frac{\mu}{2}$ is an integer then for $s \geq 2, \sqrt{s^{2}-1}=(s-1 ; \overline{1,2 s-2})$ has even period.
Theorem 4.1. If $A=1$ then the integral A-sequences exist if and only if $\mu= \pm 3$. Any integer solution to $X^{2}-5 Y^{2}=-1$ gives an integral A-sequence with $x_{1}=Y$ and x_{2} a solution to the quadratic equation $x_{2}^{2}-\mu x_{1} x_{2}+1+x_{1}^{2}=0$.
Proof. We have shown above there are no solutions to Pell's equation $X^{2}-\left(\mu^{2}-4\right) Y^{2}=-1$, $\mu \neq \pm 3$. Also we have shown above there are no solutions to $X^{2}-\frac{\mu^{2}-4}{4} Y^{2}=-1$ for μ even and $\frac{\mu}{2} \geq 2$. For the last case we consider solutions to Pell's equation

$$
X^{2}-\left(\mu^{2}-4\right) Y^{2}=-4
$$

with $X=c$ odd; hence μ is odd and $Y=a$ is also odd. We may assume that $\mu^{2}-4$ is square-free since any square factor can be absorbed into the solution for Y. In this situation using the congruence $(\bmod 4)$ we see that the Pell's equation has no solution if $\mu^{2}-4 \equiv 3$ $(\bmod 4)$.

Suppose then that $D=\mu^{2}-4 \equiv 1(\bmod 4)$. The algebraic integers \mathbb{Z}_{D} in the field $\mathbb{Q}(\sqrt{D})$ properly contains the ring $\mathbb{Z}[\sqrt{D}]$. If the fundamental unit of \mathbb{Z}_{D} does not lie in $\mathbb{Z}[\sqrt{D}]$ then we get the desired solution to Pell's equation. Conversely, if we have the desired solution X, Y odd then we get a unit in \mathbb{Z}_{D} which does not lie in $\mathbb{Z}[\sqrt{D}]$. However the cube of this unit lies in the ring $\mathbb{Z}[\sqrt{D}]$ which means that there is a solution to Pell's equation $x^{2}-\left(\mu^{2}-4\right) y^{2}=-1$; but this is impossible since the period is even. (Note that $\mu^{2}-4 \equiv 1(\bmod 8)$ is impossible since there is no solution to $x^{2} \equiv 5(\bmod 8)$. Also $\mu^{2}-4 \equiv 5(\bmod 8)$ is used to show that the cube of a unit in the larger ring lies in the smaller ring.)

If we also reverse the sequence to include $x_{n}, n \leq 0$ then essentially there are just 4 sequences when $A=1$, ignoring the exact starting place.

The solutions for $r=\mu= \pm 3$ correspond to odd powers of the fundamental unit $\alpha=\frac{1+\sqrt{5}}{2}$ or its inverse $\alpha^{-1}=\frac{-1+\sqrt{5}}{2}$ and are related to the alternate terms of the Fibonacci sequence.

Corollary 4.2. The integral sequences for $A=1$ have starting values x_{1}, x_{2} which are consecutive terms in one of the four bi-infinite sequences listed here:

$$
\begin{aligned}
& \ldots,-89,34,-13,5,-2,1,-1,2,-5,13,-34,89, \ldots, \\
& \ldots, 89,-34,13,-5,2,-1,1,-2,5,-13,34,-89, \ldots,
\end{aligned}
$$

INTEGER SEQUENCES GENERATED BY $x_{n+1}=\frac{x_{n}^{2}+A}{x_{n-1}}$

$$
\begin{gathered}
\ldots,-89,-34,-13,-5,-2,-1,-1,-2,-5,-13,-34,-89, \ldots, \\
\ldots, 89,34,13,5,2,1,1,2,5,13,34,89, \ldots
\end{gathered}
$$

Proof. From the theorem we need to consider $\mu= \pm 3$ and the solutions to $X^{2}-5 Y^{2}=-4$. The solutions are the odd powers of $\pm \alpha, \pm \alpha^{-1}$ which give the sequences listed above.

References

[1] S. Fomin and A. Zelevinsky, The Laurent phenomenon, Advances in App. Math., 28 (2002), 119-144.
[2] W. Sierpinski, Elementary Theory of Numbers, Warsaw, 1964.
MSC2010: 11B39, 11D09
Department of Mathematics, San Jose State University, San Jose, CA 95192
E-mail address: alperin@math.sjsu.edu

