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Abstract. In this article we consider sequences arising from the expansions of certain simple
expressions involving the golden ratio. The nth terms of these sequences are given by Binet-
like formulas, and indeed Binet’s formula for the Fibonacci numbers appears as a special case.
We study here, via our general formulas, the extent to which three well-known mathematical
properties of the Fibonacci sequence are mirrored in our more general sequences.

1. Introduction

We consider here the expansion of the expression hn(p, q) = (pφ+ q)n where p, n ∈ N, q is
a non-negative integer and φ is the golden ratio given by

φ =
1 +

√
5

2
.

It follows on using the well-known result [5, 7]

φm = Fmφ+ Fm−1 (1.1)

along with the fact that φ is irrational, that there exists a unique pair of integers an(p, q) ∈ N

and bn(p, q) ≥ 0 such that

hn(p, q) = (pφ+ q)n

= an(p, q)φ+ bn(p, q).

In this paper we study some of the properties of the sequences (an(p, q)), (bn(p, q)) and
(

an(p, q)

bn(p, q)

)

(1.2)

in relation to three well-known properties of the Fibonacci sequence, noting that in the special
case hn(1, 0) = φn we have, on using (1.1), an(1, 0) = Fn and bn(1, 0) = Fn−1. It is worth
pointing out here that since b1(p, 0) = 0, it does need to be borne in mind in what follows that
some of the results associated with (1.2) are only generally applicable for n ≥ 2.

2. Some Initial Results

In order to avoid making the notation too cumbersome we will use simply an and bn for
an(p, q) and bn(p, q), respectively, when considering the expansion of the general expression
(pφ+ q)n. Let us start by obtaining formulas for an and bn. To this end,
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an+1φ+ bn+1 = (pφ+ q)n+1

= (pφ+ q) (anφ+ bn)

= panφ
2 + (pbn + qan)φ+ qbn

= pan (φ+ 1) + (pbn + qan)φ+ qbn

= ((p+ q)an + pbn)φ+ pan + qbn.

Comparing coefficients of φ gives the double recurrence relation

an+1 = (p + q)an + pbn (2.1)

and bn+1 = pan + qbn. (2.2)

Rearranging (2.1) to give

bn =
1

p
(an+1 − (p+ q)an) , (2.3)

and then substituting (2.3) into (2.2), leads to the following recurrence relation for the sequence
(an):

an+2 = (p + 2q)an+1 +
(

p2 − pq − q2
)

an. (2.4)

A standard method [2] for solving relations such as (2.4) is to try a solution of the form
an = αn to give

αn+2 = (p+ 2q)αn+1 +
(

p2 − pq − q2
)

αn.

We are interested in non-zero solutions, so we need to solve

α2 − (p+ 2q)α−
(

p2 − pq − q2
)

= 0.

The roots of this quadratic equation are

α1 =
p+ 2q + p

√
5

2
= pφ+ q and α2 =

p+ 2q − p
√
5

2
= pφ̂+ q,

where

φ̂ =
1−

√
5

2
= − 1

φ
.

We thus have a general solution of the form

an = c (pφ+ q)n + d
(

pφ̂+ q
)n

,

for some constants c and d. Using the initial conditions a0 = 0 and a1 = p gives

c =
1√
5

and d = − 1√
5
,

leading to the Binet-like formula

an =
1√
5

(

(pφ+ q)n −
(

pφ̂+ q
)n)

. (2.5)
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It then follows from (2.3) and (2.5) that

bn =
1

p
(an+1 − (p+ q)an)

=
1

p
√
5

(

(pφ+ q)n+1 −
(

pφ̂+ q
)n+1

− (p+ q) (pφ+ q)n + (p+ q)
(

pφ̂+ q
)n
)

=
1

p
√
5

(

(pφ+ q)n (pφ+ q − (p+ q))−
(

pφ̂+ q
)n (

pφ̂+ q − (p + q)
))

=
1√
5

(

(pφ+ q)n (φ− 1)−
(

pφ̂+ q
)n (

φ̂− 1
))

=
1√
5

(

1

φ
(pφ+ q)n + φ

(

pφ̂+ q
)n
)

. (2.6)

3. Binet’s Formula

The special case an(1, 0) = Fn has already been noted, and indeed it can be seen that (2.5)
specializes to Binet’s formula [1, 2, 7] for the nth Fibonacci number:

Fn =
1√
5

(

φn − φ̂n
)

. (3.1)

Similarly, bn(1, 0) = Fn−1, and (2.6) specializes to Binet’s formula for the (n− 1)th Fibonacci
number. Note that from (3.1) we are able to infer the following three well-known properties,
P1, P2, and P3, of the Fibonacci sequence [1, 7]:

(P1) The ratio of successive terms of the Fibonacci sequence tends to φ as n tends to infinity:

lim
n→∞

Fn

Fn−1

→ φ.

(P2) Fn is the nearest integer to
φn

√
5
.

(P3) The ratio of successive terms of the Fibonacci sequences tends to φ in an oscillating
manner:

F2

F1

<
F4

F3

<
F6

F5

< · · · < φ < · · · < F7

F6

<
F5

F4

<
F3

F2

.

Since the ratio Fn/Fn−1 arises from the expansion of hn(p, q) as a specialization of an/bn,
we consider here the potential for the sequence (an/bn) to exhibit behaviors similar to those
in P1 and P3, and also look at the circumstances under which each of an and bn possess a
property corresponding to P2.

4. Property 1

This is a very straightforward matter to deal with. From the fact that

pφ+ q >
∣

∣

∣
pφ̂+ q

∣

∣

∣
,

it follows from (2.5) and (2.6) that

an ∼ 1√
5
(pφ+ q)n and bn ∼ 1

φ
√
5
(pφ+ q)n ,
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respectively, from which we obtain the result

lim
n→∞

an
bn

= φ.

Thus P1 is a general property of the sequences we are considering.

5. Property 2

It is clear that in order for an and bn to have any possibility of equaling, for each n ∈ N,
the nearest integer to

1√
5
(pφ+ q)n and

1

φ
√
5
(pφ+ q)n ,

respectively, it must be the case that p ∈ N and q ≥ 0 satisfy
∣

∣

∣
pφ̂+ q

∣

∣

∣
< 1.

This inequality rearranges to
p

φ
− 1 < q <

p

φ
+ 1,

the two solutions of which are given by

q =

⌊

p

φ

⌋

and q =

⌊

p

φ

⌋

+ 1, (5.1)

where bxc is the floor of x, and is defined to be the largest integer not exceeding x.
Next, since

lim
n→∞

(

pφ̂+ q
)n

= 0

when either of the conditions on q given by (5.1) are satisfied, we know that in each of these
cases there exists some N ∈ N such that an satisfies P2 for all n ≥ N , and similarly for bn.
Let us investigate this further to see if a little more information is forthcoming in this regard.
Note that because an is an integer and

∣

∣

∣
pφ̂+ q

∣

∣

∣
>
∣

∣

∣
pφ̂+ q

∣

∣

∣

n

for any n ≥ 2 when one of the conditions in (5.1) holds, it is true that an satisfies P2 for all
n ∈ N if

∣

∣

∣

∣

1√
5

(

pφ̂+ q
)

∣

∣

∣

∣

<
1

2
.

This is certainly the case whenever q takes one of the values given in (5.1).
The situation for bn, however, is not quite so straightforward since, even when q complies

with one of the conditions in (5.1), it is not necessarily the case that
∣

∣

∣

∣

φ√
5

(

pφ̂+ q
)

∣

∣

∣

∣

<
1

2
. (5.2)

If q = bp/φc then

φ√
5

(

pφ̂+ q
)

=
φ√
5

(

− p

φ
+

⌊

p

φ

⌋)

= − φ√
5

[

p

φ

]

, (5.3)
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where [x] = x − bxc is the non-negative real number denoting the fractional part of x. It
follows from (5.2) and (5.3) that if bn is to satisfy P2 for all n ∈ N for this value of q then we
require

[

p

φ

]

<

√
5

2φ
. (5.4)

Similarly, when q = bp/φc+ 1 we would require
[

p

φ

]

>
1

2φ
. (5.5)

A result in [8] tells us that for any irrational number x the set {[nx] : n ∈ N} is uniformly
distributed in the interval [0, 1]. By this we mean that for any u, v ∈ R such that 0 ≤ u < v ≤ 1
it is true that

lim
k→∞

T (u, v, k)

k
= v − u,

where T (u, v, k) is the number of elements of the finite set {[nx] : n = 1, 2, 3, . . . , k} lying
between u and v. In the case being considered here this may be interpreted as saying, via
(5.4) and (5.5), that out of all the sequences (bn) eventually satisfying P2 for all n ≥ N for
some N ∈ N, the proportion of them possessing this property for all n ∈ N is

1

2

(√
5

2φ
+

(

1− 1

2φ

)

)

=
1

φ
.

It is actually possible to take this a little further by noting that since the set {[p/φ] : p ∈ N}
is uniformly distributed in the interval [0, 1], we may, for any given ε > 0, find some p ∈ N

such that 1 − ε < [p/φ] < 1. This implies that for any N1 ∈ N we may find a pair (p, q) such
that P2 is not satisfied by bn for each n ≤ N1 but for which P2 is satisfied by bn for each
n ≥ N2 for some N2 ∈ N with N2 > N1. To take an explicit example,

lim
k→∞

[

F2k

φ

]

= 1,

and therefore when q = bp/φc it is possible, by choosing k sufficiently large and then setting
p = F2k, to ensure both that

∣

∣

∣
pφ̂+ q

∣

∣

∣
< 1

and
∣

∣

∣
pφ̂+ q

∣

∣

∣

n

>

√
5

2φ

for all n ≤ N1.
As a brief aside, we show that the ability of (an) and (bn) to satisfy P2 is intimately connected

to a mathematical object called the golden string S = “101101011011010110101 . . . ”. This is
defined in [6] to be the infinite string of ones and zeros constructed recursively as follows. Let
S1 = “0” and S2 = “1”, and then, for k ≥ 3, Sk is defined to be the concatenation of the
strings Sk−1 and Sk−2. This gives us

S3 = S2S1 = “10”,

S4 = S3S2 = “101”,

S5 = S4S3 = “10110”,
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and so on. Note that some authors interchange the positions of the ones and zeros while others
use letters such as a’s and b’s [3, 4, 7]. From [4] we know that

⌊

m+ 1

φ

⌋

corresponds to the number of ones in the first m digits of S. It is thus the case that P2 is
eventually satisfied by the terms of (an) and (bn) either when q is equal to the number of
ones in the first p − 1 digits of S, or when q is equal to one more than this. For example, on
considering the first few digits of S above we see, on setting p = 12, that both (an(12, 7)) and
(an(12, 8)) satisfy P2. It may easily be checked that when p = 12 there are no further values
of q that allow P2 to be satisfied.

6. Property 3

It has already been shown that (an/bn) tends to φ as n tends to infinity, so let us next
consider the manner in which it approaches this limit. The following theorem tells us precisely
when (an/bn) satisfies the property corresponding to P3.

Theorem 6.1. The sequence (an/bn) is, for n ≥ 2, monotonic increasing if

q ≥
⌊

p

φ

⌋

+ 1,

and oscillating otherwise.

Proof. From (2.5) and (2.6) we have, after some simplification,

an
bn

=
(pφ+ q)n −

(

p̂φ+ q
)n

1

φ
(pφ+ q)n + φ

(

pφ̂+ q
)n

=
1− tn

φtn + φ− 1
,

where

t =
pφ̂+ q

pφ+ q
.

Then

an+1

bn+1

− an
bn

=
1− tn+1

φtn+1 + φ− 1
− 1− tn

φtn + φ− 1

=

(

1− tn+1
)

(φtn + φ− 1)− (1− tn)
(

φtn+1 + φ− 1
)

(φtn+1 + φ− 1) (φtn + φ− 1)

=
tn(1− t)(2φ− 1)

(φtn+1 + φ− 1) (φtn + φ− 1)
. (6.1)

Next, from the definition of t, it is the case that 0 < t < 1 if and only if,

q ≥
⌊

p

φ

⌋

+ 1. (6.2)

It then follows that both the numerator and the denominator of (6.1) are positive when (6.2)
holds, and hence that

an+1

bn+1

− an
bn

> 0

360 VOLUME 49, NUMBER 4



BINET-LIKE FORMULAS FROM A SIMPLE EXPANSION

in this case. On the other hand, remembering that p ∈ N and that q is a non-negative integer,
it follows that

− 1

φ2
≤ t < 0

when

q ≤
⌊

p

φ

⌋

.

In this case it is clear that the numerator of (6.1) is positive or negative according to whether
n is even or odd, respectively, and, as is straightforward to show, the denominator is always
positive for n ≥ 2. This completes the proof of the theorem. �

7. Summary

Let us now combine the results of the previous three sections to see when an and bn both
comply with P2 for all n ∈ N while (an/bn) simultaneously satisfies P1 and P3. First, for
any p ∈ N it is necessary, in order for there to exist the possibility that P2 may be satisfied,
that q = bp/φc or q = bp/φc + 1. However, only the former of these leads to the oscillating
convergence of (an/bn) to φ as required by P3. We also know that for any pair (p, bp/φc) it is
the case that an satisfies P2 for all n ∈ N, while bn will only do so for 100

φ
% of such pairs.

Finally, since P1 is always satisfied, we are able to say that 100

φ
% of the pairs (p, bp/φc),

with p ∈ N, give rise to sequences satisfying each of P1, P2, and P3 in the sense that

lim
k→∞

|A|
k

=
1

φ
,

where the set A is given by

{p : bn satisfies P2 for all n ∈ N for the pair (p, bp/φc) , p = 1, 2, . . . , k}.
Only in such cases can our sequences be fully said to mirror these three properties of the
Fibonacci sequence.
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