BINET-LIKE FORMULAS FROM A SIMPLE EXPANSION

MARTIN GRIFFITHS

Abstract

In this article we consider sequences arising from the expansions of certain simple expressions involving the golden ratio. The nth terms of these sequences are given by Binetlike formulas, and indeed Binet's formula for the Fibonacci numbers appears as a special case. We study here, via our general formulas, the extent to which three well-known mathematical properties of the Fibonacci sequence are mirrored in our more general sequences.

1. Introduction

We consider here the expansion of the expression $h_{n}(p, q)=(p \phi+q)^{n}$ where $p, n \in \mathbb{N}, q$ is a non-negative integer and ϕ is the golden ratio given by

$$
\phi=\frac{1+\sqrt{5}}{2} .
$$

It follows on using the well-known result $[5,7]$

$$
\begin{equation*}
\phi^{m}=F_{m} \phi+F_{m-1} \tag{1.1}
\end{equation*}
$$

along with the fact that ϕ is irrational, that there exists a unique pair of integers $a_{n}(p, q) \in \mathbb{N}$ and $b_{n}(p, q) \geq 0$ such that

$$
\begin{aligned}
h_{n}(p, q) & =(p \phi+q)^{n} \\
& =a_{n}(p, q) \phi+b_{n}(p, q)
\end{aligned}
$$

In this paper we study some of the properties of the sequences $\left(a_{n}(p, q)\right),\left(b_{n}(p, q)\right)$ and

$$
\begin{equation*}
\left(\frac{a_{n}(p, q)}{b_{n}(p, q)}\right) \tag{1.2}
\end{equation*}
$$

in relation to three well-known properties of the Fibonacci sequence, noting that in the special case $h_{n}(1,0)=\phi^{n}$ we have, on using (1.1), $a_{n}(1,0)=F_{n}$ and $b_{n}(1,0)=F_{n-1}$. It is worth pointing out here that since $b_{1}(p, 0)=0$, it does need to be borne in mind in what follows that some of the results associated with (1.2) are only generally applicable for $n \geq 2$.

2. Some Initial Results

In order to avoid making the notation too cumbersome we will use simply a_{n} and b_{n} for $a_{n}(p, q)$ and $b_{n}(p, q)$, respectively, when considering the expansion of the general expression $(p \phi+q)^{n}$. Let us start by obtaining formulas for a_{n} and b_{n}. To this end,

THE FIBONACCI QUARTERLY

$$
\begin{aligned}
a_{n+1} \phi+b_{n+1} & =(p \phi+q)^{n+1} \\
& =(p \phi+q)\left(a_{n} \phi+b_{n}\right) \\
& =p a_{n} \phi^{2}+\left(p b_{n}+q a_{n}\right) \phi+q b_{n} \\
& =p a_{n}(\phi+1)+\left(p b_{n}+q a_{n}\right) \phi+q b_{n} \\
& =\left((p+q) a_{n}+p b_{n}\right) \phi+p a_{n}+q b_{n} .
\end{aligned}
$$

Comparing coefficients of ϕ gives the double recurrence relation

$$
\begin{align*}
& a_{n+1}=(p+q) a_{n}+p b_{n} \tag{2.1}\\
& \text { and } \quad b_{n+1}=p a_{n}+q b_{n} \text {. } \tag{2.2}
\end{align*}
$$

Rearranging (2.1) to give

$$
\begin{equation*}
b_{n}=\frac{1}{p}\left(a_{n+1}-(p+q) a_{n}\right), \tag{2.3}
\end{equation*}
$$

and then substituting (2.3) into (2.2), leads to the following recurrence relation for the sequence $\left(a_{n}\right)$:

$$
\begin{equation*}
a_{n+2}=(p+2 q) a_{n+1}+\left(p^{2}-p q-q^{2}\right) a_{n} . \tag{2.4}
\end{equation*}
$$

A standard method [2] for solving relations such as (2.4) is to try a solution of the form $a_{n}=\alpha^{n}$ to give

$$
\alpha^{n+2}=(p+2 q) \alpha^{n+1}+\left(p^{2}-p q-q^{2}\right) \alpha^{n} .
$$

We are interested in non-zero solutions, so we need to solve

$$
\alpha^{2}-(p+2 q) \alpha-\left(p^{2}-p q-q^{2}\right)=0 .
$$

The roots of this quadratic equation are

$$
\alpha_{1}=\frac{p+2 q+p \sqrt{5}}{2}=p \phi+q \quad \text { and } \quad \alpha_{2}=\frac{p+2 q-p \sqrt{5}}{2}=p \hat{\phi}+q,
$$

where

$$
\hat{\phi}=\frac{1-\sqrt{5}}{2}=-\frac{1}{\phi} .
$$

We thus have a general solution of the form

$$
a_{n}=c(p \phi+q)^{n}+d(p \hat{\phi}+q)^{n},
$$

for some constants c and d. Using the initial conditions $a_{0}=0$ and $a_{1}=p$ gives

$$
c=\frac{1}{\sqrt{5}} \quad \text { and } \quad d=-\frac{1}{\sqrt{5}},
$$

leading to the Binet-like formula

$$
\begin{equation*}
a_{n}=\frac{1}{\sqrt{5}}\left((p \phi+q)^{n}-(p \hat{\phi}+q)^{n}\right) . \tag{2.5}
\end{equation*}
$$

It then follows from (2.3) and (2.5) that

$$
\begin{align*}
b_{n} & =\frac{1}{p}\left(a_{n+1}-(p+q) a_{n}\right) \\
& =\frac{1}{p \sqrt{5}}\left((p \phi+q)^{n+1}-(p \hat{\phi}+q)^{n+1}-(p+q)(p \phi+q)^{n}+(p+q)(p \hat{\phi}+q)^{n}\right) \\
& =\frac{1}{p \sqrt{5}}\left((p \phi+q)^{n}(p \phi+q-(p+q))-(p \hat{\phi}+q)^{n}(p \hat{\phi}+q-(p+q))\right) \\
& =\frac{1}{\sqrt{5}}\left((p \phi+q)^{n}(\phi-1)-(p \hat{\phi}+q)^{n}(\hat{\phi}-1)\right) \\
& =\frac{1}{\sqrt{5}}\left(\frac{1}{\phi}(p \phi+q)^{n}+\phi(p \hat{\phi}+q)^{n}\right) . \tag{2.6}
\end{align*}
$$

3. Binet's Formula

The special case $a_{n}(1,0)=F_{n}$ has already been noted, and indeed it can be seen that (2.5) specializes to Binet's formula $[1,2,7]$ for the nth Fibonacci number:

$$
\begin{equation*}
F_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\hat{\phi}^{n}\right) . \tag{3.1}
\end{equation*}
$$

Similarly, $b_{n}(1,0)=F_{n-1}$, and (2.6) specializes to Binet's formula for the ($n-1$)th Fibonacci number. Note that from (3.1) we are able to infer the following three well-known properties, P1, P2, and P3, of the Fibonacci sequence [1, 7]:
(P1) The ratio of successive terms of the Fibonacci sequence tends to ϕ as n tends to infinity:

$$
\lim _{n \rightarrow \infty} \frac{F_{n}}{F_{n-1}} \rightarrow \phi .
$$

(P2) F_{n} is the nearest integer to

$$
\frac{\phi^{n}}{\sqrt{5}} .
$$

(P3) The ratio of successive terms of the Fibonacci sequences tends to ϕ in an oscillating manner:

$$
\frac{F_{2}}{F_{1}}<\frac{F_{4}}{F_{3}}<\frac{F_{6}}{F_{5}}<\cdots<\phi<\cdots<\frac{F_{7}}{F_{6}}<\frac{F_{5}}{F_{4}}<\frac{F_{3}}{F_{2}} .
$$

Since the ratio F_{n} / F_{n-1} arises from the expansion of $h_{n}(p, q)$ as a specialization of a_{n} / b_{n}, we consider here the potential for the sequence $\left(a_{n} / b_{n}\right)$ to exhibit behaviors similar to those in P1 and P3, and also look at the circumstances under which each of a_{n} and b_{n} possess a property corresponding to P2.

4. Property 1

This is a very straightforward matter to deal with. From the fact that

$$
p \phi+q>|p \hat{\phi}+q|,
$$

it follows from (2.5) and (2.6) that

$$
a_{n} \sim \frac{1}{\sqrt{5}}(p \phi+q)^{n} \quad \text { and } \quad b_{n} \sim \frac{1}{\phi \sqrt{5}}(p \phi+q)^{n},
$$

THE FIBONACCI QUARTERLY

respectively, from which we obtain the result

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\phi .
$$

Thus P1 is a general property of the sequences we are considering.

5. Property 2

It is clear that in order for a_{n} and b_{n} to have any possibility of equaling, for each $n \in \mathbb{N}$, the nearest integer to

$$
\frac{1}{\sqrt{5}}(p \phi+q)^{n} \quad \text { and } \quad \frac{1}{\phi \sqrt{5}}(p \phi+q)^{n}
$$

respectively, it must be the case that $p \in \mathbb{N}$ and $q \geq 0$ satisfy

$$
|p \hat{\phi}+q|<1 .
$$

This inequality rearranges to

$$
\frac{p}{\phi}-1<q<\frac{p}{\phi}+1,
$$

the two solutions of which are given by

$$
\begin{equation*}
q=\left\lfloor\frac{p}{\phi}\right\rfloor \quad \text { and } \quad q=\left\lfloor\frac{p}{\phi}\right\rfloor+1, \tag{5.1}
\end{equation*}
$$

where $\lfloor x\rfloor$ is the floor of x, and is defined to be the largest integer not exceeding x.
Next, since

$$
\lim _{n \rightarrow \infty}(p \hat{\phi}+q)^{n}=0
$$

when either of the conditions on q given by (5.1) are satisfied, we know that in each of these cases there exists some $N \in \mathbb{N}$ such that a_{n} satisfies P2 for all $n \geq N$, and similarly for b_{n}. Let us investigate this further to see if a little more information is forthcoming in this regard. Note that because a_{n} is an integer and

$$
|p \hat{\phi}+q|>|p \hat{\phi}+q|^{n}
$$

for any $n \geq 2$ when one of the conditions in (5.1) holds, it is true that a_{n} satisfies P2 for all $n \in \mathbb{N}$ if

$$
\left|\frac{1}{\sqrt{5}}(p \hat{\phi}+q)\right|<\frac{1}{2} .
$$

This is certainly the case whenever q takes one of the values given in (5.1).
The situation for b_{n}, however, is not quite so straightforward since, even when q complies with one of the conditions in (5.1), it is not necessarily the case that

$$
\begin{equation*}
\left|\frac{\phi}{\sqrt{5}}(p \hat{\phi}+q)\right|<\frac{1}{2} . \tag{5.2}
\end{equation*}
$$

If $q=\lfloor p / \phi\rfloor$ then

$$
\begin{align*}
\frac{\phi}{\sqrt{5}}(p \hat{\phi}+q) & =\frac{\phi}{\sqrt{5}}\left(-\frac{p}{\phi}+\left\lfloor\frac{p}{\phi}\right\rfloor\right) \\
& =-\frac{\phi}{\sqrt{5}}\left[\frac{p}{\phi}\right], \tag{5.3}
\end{align*}
$$

where $[x]=x-\lfloor x\rfloor$ is the non-negative real number denoting the fractional part of x. It follows from (5.2) and (5.3) that if b_{n} is to satisfy P2 for all $n \in \mathbb{N}$ for this value of q then we require

$$
\begin{equation*}
\left[\frac{p}{\phi}\right]<\frac{\sqrt{5}}{2 \phi} . \tag{5.4}
\end{equation*}
$$

Similarly, when $q=\lfloor p / \phi\rfloor+1$ we would require

$$
\begin{equation*}
\left[\frac{p}{\phi}\right]>\frac{1}{2 \phi} . \tag{5.5}
\end{equation*}
$$

A result in [8] tells us that for any irrational number x the set $\{[n x]: n \in \mathbb{N}\}$ is uniformly distributed in the interval $[0,1]$. By this we mean that for any $u, v \in \mathbb{R}$ such that $0 \leq u<v \leq 1$ it is true that

$$
\lim _{k \rightarrow \infty} \frac{T(u, v, k)}{k}=v-u
$$

where $T(u, v, k)$ is the number of elements of the finite set $\{[n x]: n=1,2,3, \ldots, k\}$ lying between u and v. In the case being considered here this may be interpreted as saying, via (5.4) and (5.5), that out of all the sequences (b_{n}) eventually satisfying P2 for all $n \geq N$ for some $N \in \mathbb{N}$, the proportion of them possessing this property for all $n \in \mathbb{N}$ is

$$
\frac{1}{2}\left(\frac{\sqrt{5}}{2 \phi}+\left(1-\frac{1}{2 \phi}\right)\right)=\frac{1}{\phi} .
$$

It is actually possible to take this a little further by noting that since the set $\{[p / \phi]: p \in \mathbb{N}\}$ is uniformly distributed in the interval $[0,1]$, we may, for any given $\epsilon>0$, find some $p \in \mathbb{N}$ such that $1-\epsilon<[p / \phi]<1$. This implies that for any $N_{1} \in \mathbb{N}$ we may find a pair (p, q) such that P2 is not satisfied by b_{n} for each $n \leq N_{1}$ but for which P2 is satisfied by b_{n} for each $n \geq N_{2}$ for some $N_{2} \in \mathbb{N}$ with $N_{2}>N_{1}$. To take an explicit example,

$$
\lim _{k \rightarrow \infty}\left[\frac{F_{2 k}}{\phi}\right]=1
$$

and therefore when $q=\lfloor p / \phi\rfloor$ it is possible, by choosing k sufficiently large and then setting $p=F_{2 k}$, to ensure both that

$$
|p \hat{\phi}+q|<1
$$

and

$$
|p \hat{\phi}+q|^{n}>\frac{\sqrt{5}}{2 \phi}
$$

for all $n \leq N_{1}$.
As a brief aside, we show that the ability of $\left(a_{n}\right)$ and $\left(b_{n}\right)$ to satisfy P2 is intimately connected to a mathematical object called the golden string $S=$ "101101011011010110101...". This is defined in [6] to be the infinite string of ones and zeros constructed recursively as follows. Let $S_{1}=$ " 0 " and $S_{2}=$ " 1 ", and then, for $k \geq 3, S_{k}$ is defined to be the concatenation of the strings S_{k-1} and S_{k-2}. This gives us

$$
\begin{aligned}
& S_{3}=S_{2} S_{1}=" 10 ", \\
& S_{4}=S_{3} S_{2}=" 101 ", \\
& S_{5}=S_{4} S_{3}=" 10110 ",
\end{aligned}
$$

THE FIBONACCI QUARTERLY

and so on. Note that some authors interchange the positions of the ones and zeros while others use letters such as a 's and b 's [3, 4, 7]. From [4] we know that

$$
\left\lfloor\frac{m+1}{\phi}\right\rfloor
$$

corresponds to the number of ones in the first m digits of S. It is thus the case that P2 is eventually satisfied by the terms of $\left(a_{n}\right)$ and $\left(b_{n}\right)$ either when q is equal to the number of ones in the first $p-1$ digits of S, or when q is equal to one more than this. For example, on considering the first few digits of S above we see, on setting $p=12$, that both $\left(a_{n}(12,7)\right)$ and $\left(a_{n}(12,8)\right)$ satisfy P2. It may easily be checked that when $p=12$ there are no further values of q that allow P2 to be satisfied.

6. Property 3

It has already been shown that $\left(a_{n} / b_{n}\right)$ tends to ϕ as n tends to infinity, so let us next consider the manner in which it approaches this limit. The following theorem tells us precisely when $\left(a_{n} / b_{n}\right)$ satisfies the property corresponding to P3.

Theorem 6.1. The sequence $\left(a_{n} / b_{n}\right)$ is, for $n \geq 2$, monotonic increasing if

$$
q \geq\left\lfloor\frac{p}{\phi}\right\rfloor+1,
$$

and oscillating otherwise.
Proof. From (2.5) and (2.6) we have, after some simplification,

$$
\begin{aligned}
\frac{a_{n}}{b_{n}} & =\frac{(p \phi+q)^{n}-(\hat{p \phi}+q)^{n}}{\frac{1}{\phi}(p \phi+q)^{n}+\phi(p \hat{\phi}+q)^{n}} \\
& =\frac{1-t^{n}}{\phi t^{n}+\phi-1},
\end{aligned}
$$

where

$$
t=\frac{p \hat{\phi}+q}{p \phi+q} .
$$

Then

$$
\begin{align*}
\frac{a_{n+1}}{b_{n+1}}-\frac{a_{n}}{b_{n}} & =\frac{1-t^{n+1}}{\phi t^{n+1}+\phi-1}-\frac{1-t^{n}}{\phi t^{n}+\phi-1} \\
& =\frac{\left(1-t^{n+1}\right)\left(\phi t^{n}+\phi-1\right)-\left(1-t^{n}\right)\left(\phi t^{n+1}+\phi-1\right)}{\left(\phi t^{n+1}+\phi-1\right)\left(\phi t^{n}+\phi-1\right)} \\
& =\frac{t^{n}(1-t)(2 \phi-1)}{\left(\phi t^{n+1}+\phi-1\right)\left(\phi t^{n}+\phi-1\right)} . \tag{6.1}
\end{align*}
$$

Next, from the definition of t, it is the case that $0<t<1$ if and only if,

$$
\begin{equation*}
q \geq\left\lfloor\frac{p}{\phi}\right\rfloor+1 . \tag{6.2}
\end{equation*}
$$

It then follows that both the numerator and the denominator of (6.1) are positive when (6.2) holds, and hence that

$$
\frac{a_{n+1}}{b_{n+1}}-\frac{a_{n}}{b_{n}}>0
$$

in this case. On the other hand, remembering that $p \in \mathbb{N}$ and that q is a non-negative integer, it follows that

$$
-\frac{1}{\phi^{2}} \leq t<0
$$

when

$$
q \leq\left\lfloor\frac{p}{\phi}\right\rfloor .
$$

In this case it is clear that the numerator of (6.1) is positive or negative according to whether n is even or odd, respectively, and, as is straightforward to show, the denominator is always positive for $n \geq 2$. This completes the proof of the theorem.

7. Summary

Let us now combine the results of the previous three sections to see when a_{n} and b_{n} both comply with P2 for all $n \in \mathbb{N}$ while $\left(a_{n} / b_{n}\right)$ simultaneously satisfies P1 and P3. First, for any $p \in \mathbb{N}$ it is necessary, in order for there to exist the possibility that P2 may be satisfied, that $q=\lfloor p / \phi\rfloor$ or $q=\lfloor p / \phi\rfloor+1$. However, only the former of these leads to the oscillating convergence of $\left(a_{n} / b_{n}\right)$ to ϕ as required by P3. We also know that for any pair $(p,\lfloor p / \phi\rfloor)$ it is the case that a_{n} satisfies P2 for all $n \in \mathbb{N}$, while b_{n} will only do so for $\frac{100}{\phi} \%$ of such pairs.

Finally, since P1 is always satisfied, we are able to say that $\frac{100}{\phi} \%$ of the pairs $(p,\lfloor p / \phi\rfloor)$, with $p \in \mathbb{N}$, give rise to sequences satisfying each of $\mathrm{P} 1, \mathrm{P} 2$, and P 3 in the sense that

$$
\lim _{k \rightarrow \infty} \frac{|A|}{k}=\frac{1}{\phi},
$$

where the set A is given by

$$
\left\{p: b_{n} \text { satisfies P2 for all } n \in \mathbb{N} \text { for the pair }(p,\lfloor p / \phi\rfloor), p=1,2, \ldots, k\right\}
$$

Only in such cases can our sequences be fully said to mirror these three properties of the Fibonacci sequence.

References

[1] D. Burton, Elementary Number Theory, McGraw-Hill, 1998.
[2] P. J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, 1994.
[3] M. Griffiths, Digit proportions in Zeckendorf representations, The Fibonacci Quarterly, 48.2 (2010), 168174.
[4] M. Griffiths, The golden string, Zeckendorf representation, and the sum of a series, American Mathematical Monthly, 118.6 (2011), 497-507.
[5] R. Knott, Fibonacci and Golden Ratio Formulas, 2011.
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibFormulae.html.
[6] R. Knott, The Golden String of Os and 1s, 2011.
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibrab.html.
[7] D. E. Knuth, The Art of Computer Programming, Volume 1, Addison-Wesley, 1968.
[8] H. E. Rose, A Course in Number Theory, Oxford University Press, 1994.
MSC2010: 11B37, 11B39.
Department of Mathematical Sciences, University of Essex, Colchester, Essex, CO4 3SQ, United Kingdom

E-mail address: griffm@essex.ac.uk

