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Abstract. We define a Tribonacci family as the set T of all cubic polynomials f(x) =
x3 + ax2 + bx + c ∈ Z[x] having the same discriminant as the Tribonacci polynomial t(x) =
x3

− x2
− x− 1. Using integral solutions of Mordell’s equation Y 2 = X3 + 297, we establish

explicit forms of all polynomials in T . As the main result we prove that all polynomials in T

have the same type of factorization over any Galois field Fp where p is a prime.

1. Introduction

Mordell’s equation

Y 2 = X3 + k, 0 6= k ∈ Z, (1.1)

has had a long and interesting history. A synopsis of the first discoveries concerning (1.1) is
given in Dickson [1, pp. 533–539]. See also [6, pp. 1–5]. In 1909, A. Thue [9] showed that
(1.1) has only a finite number of solutions in integers X,Y . Various methods for finding the
integral solutions of (1.1) are known [3, 6, 7]. Extensive lists of further references related to
(1.1) can be found in [3] and [6].

In this paper we show an interesting application of integral solutions of (1.1) with k = 297
to the theory of factorizations of the cubic polynomials f(x) = x3 + ax2 + bx+ c ∈ Z[x] with
a discriminant Df = −44 over a Galois field Fp where p is a prime. In particular, we prove
that the set

T = {f(x) = x3 + ax2 + bx+ c ∈ Z[x];Df = −44}
contains infinitely many polynomials, which can be partitioned into eight pairwise disjoint
classes such that the polynomials of each class are given by a simple formula that depends on
some integral solution of Y 2 = X3+297. Since the Tribonacci polynomial t(x) = x3−x2−x−1
belongs to T , we call T the Tribonacci family. As the main result we prove that, over any
Galois field Fp where p is a prime, all polynomials in T have the same type of factorization and,
consequently, the same number of roots in Fp. We do this by combining the Stickelberger Parity
Theorem [8] for the case of a cubic polynomial [10], a modification of the results presented
in [5, pp. 229–230], and the relations between the cubic characters of certain elements of the
field Fp2 corresponding to integral solutions of Y 2 = X3 + 297. In general, we show that, for
any D ∈ Z, the set

C = {f(x) = x3 + ax2 + bx+ c ∈ Z[x];Df = D}
can be obtained by means of integral solutions of Mordell’s equation Y 2=X3−432D. This fact
opens an interesting question, namely, for which D∈Z can our main result be generalized.
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2. Connection Between Mordel’s Equation Y 2 = X3 − 432D and Cubic

Polynomials with Discriminant D

Let f(x) = x3 + ax2 + bx+ c ∈ Q[x] and let Df = a2b2 − 4b3 − 4a3c− 27c2 + 18abc be the
discriminant of f(x). Let g

f
(x) = f(x− a/3). Then Dg

f
= Df and gf (x) = x3 + rx+ s ∈ Q[x]

where

r = b− a2

3
and s =

2a3

27
− ab

3
+ c. (2.1)

Next, let

df =
r3

27
+

s2

4
. (2.2)

Then Df = −108df and df = dgf . If f(x) ∈ Z[x], then (2.1) implies

r, s ∈ Z ⇐⇒ 3|a. (2.3)

On the other hand, for f(x) ∈ Z[x],

3 - a ⇐⇒ there exists u, v ∈ Z : r =
u

3
, s =

v

27
, 3 - uv. (2.4)

Moreover, by (2.1), we obtain

u = 3b− a2 and v = 2a3 − 9ab+ 27c. (2.5)

For e ∈ {0, 1, 2}, let De denote the set of all d ∈ Q for which there exists f(x) = x3 +
ax2 + bx+ c ∈ Z[x] such that a ≡ e (mod 3) and df = d. Some basic properties of De will be
established in the following lemma.

Lemma 2.1. For D0, D1 and D2 we have

D0 =

{

d ∈ Q; d =
4u3 + 27v2

108
, u, v ∈ Z

}

(2.6)

and

D1 = D2 =

{

d ∈ Q; d =
4u3 + v2

2916
, u, v ∈ Z, u ≡ 2 (mod 3), 3u + v + 1 ≡ 0 (mod 27)

}

. (2.7)

Proof. (i) Let d ∈ D0. Then there exists f(x) = x3 + ax2 + bx + c ∈ Z[x] such that 3|a and
df = d. By (2.3), gf (x) = x3 + rx+ s ∈ Z[x]. Let u = r, v = s. Then u, v ∈ Z and, by (2.2),
d = df = (4u3 + 27v2)/108. Conversely, assume that d = (4u3 + 27v2)/108 where u, v ∈ Z.
For any w ∈ Z, let

a = 3w, b = 3w2 + u, c = w3 + uw + v. (2.8)

Then f(x) = x3+ax2+bx+c ∈ Z[x], 3|a, and gf (x) = x3+rx+s ∈ Z[x]. Substituting (2.8) into
(2.1), we obtain r = u and s = v, which together with (2.2) yields d = df = (4u3 +27v2)/108.
This proves (2.6).

(ii) Let e ∈ {1, 2}. First show

De=

{

d∈Q; d =
4u3+v2

2916
, u, v∈Z, u≡2 (mod 3), e3+3eu+v ≡ 0 (mod 27)

}

. (2.9)

Let d ∈ De. Then there exists f(x) = x3 + ax2 + bx + c ∈ Z[x] such that a ≡ e (mod 3) and
df = d. By (2.4), gf (x) = x3+ux/3+v/27 ∈ Q[x] where u, v ∈ Z, and 3 - uv. Hence, by (2.2),
d = df = (4u3+v2)/2916. Moreover, from (2.5) it follows that u = 3b−a2 ≡ −e2 ≡ 2 (mod 3).
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Since a = 3w + e for some w ∈ Z, the first identity of (2.1) yields b = (a2 + u)/3 = 3w2 +
2ew + (u + e2)/3. Hence, by (2.5), v ≡ 2(3w + e)3 − 9(3w + e)(3w2 + 2ew + (u + e2)/3) ≡
−3eu − e3 (mod 27), and e3 + 3eu + v ≡ 0 (mod 27) follows. Conversely, assume that
d = (4u3 + v2)/2916 where u, v ∈ Z such that u ≡ 2 (mod 3) and e3 + 3eu + v ≡ 0 (mod 27).
For any w ∈ Z, let a = 3w+ e, b = (a2 + u)/3, c = (−2a3 +9ab+ v)/27. Since u ≡ 2 (mod 3),
we have a2 + u ≡ e2 + 2 ≡ 0 (mod 3). Hence, b ∈ Z. Next, after some calculation, we obtain
−2a3 + 9ab+ v ≡ −2(3w + e)3 + 9(3w + e)(3w2 + 2ew + (u+ e2)/3)− e3 − 3eu ≡ 0 (mod 27).
Hence, c ∈ Z. Let f(x) = x3 + ax2 + bx+ c. Using (2.1), we get gf (x)=x3 + ux/3+ v/27 and
(2.2) yields df = (4u3 + v2)/(4 · 272) = d as required. This proves (2.9).

It remains to prove D1 = D2. Let u be an integer, u ≡ 2 (mod 3). Then 9u+9 ≡ 0 (mod 27),
which implies

v + 3u+ 1 ≡ 0 (mod 27) ⇐⇒ −v + 6u+ 8 ≡ 0 (mod 27) (2.10)

for any v ∈ Z. Clearly, if d = d(u, v) = (4u3 + v2)/2916, then d(u, v) = d(u,−v). This,
together with (2.9) and (2.10), yields (2.7). The proof is complete. �

Remark 2.2. Let D = D1 = D2. Then D0 ∩ D, D0 − D, and D− D0 are nonempty sets. For
example, 23/108 ∈ D0 ∩ D, −13/108 ∈ D0 − D, and 11/27 ∈ D− D0.

For any d ∈ Q let

C(d) = {f(x) = x3 + ax2 + bx+ c ∈ Z[x]; df = d}.
Then, C(d)={f(x)=x3+ax2+bx+c∈Z[x];Df = −108d}. Furthermore, C(d) = ∅ if and only
if d ∈ Q− (D0 ∪ D). For d ∈ D0 ∪ D, the following theorem can be stated.

Theorem 2.3. Assume that f(x) = x3 + ax2 + bx+ c ∈ Z[x].
(i) Let d ∈ D0. Then f(x) ∈ C(d) if and only if there exists u, v, w ∈ Z such that

a = 3w, b = 3w2 + u, c = w3 + uw + v and 4u3 + 27v2 = 108d. (2.11)

(ii) Let d ∈ De and e ∈ {1, 2}. Then f(x) ∈ C(d) if and only if there exist u, v, w ∈ Z such

that

a=3w+e, b=3w2+2ew+
e2+u

3
, c=w3+ew2+

e2+u

3
w+

e3+3eu+v

27
(2.12)

and

4u3 + v2 = 2916d where u ≡ 2 (mod 3), e3 + 3eu+ v ≡ 0 (mod 27). (2.13)

Moreover, in (i) we have gf (x) = x3 + ux+ v and, in (ii), gf (x) = x3 + ux/3 + v/27.

Proof. (i) Let d ∈ D0 and f(x) ∈ C(d). Then there exist w ∈ Z such that a = 3w and, by
(2.3), gf (x) = x3 + rx+ s ∈ Z[x]. Let u = r and v = s. By (2.2), d = df = (4u3 + 27v2)/108
and 4u3 + 27v2 = 108d follows. Since a = 3w, the first equation of (2.1) implies b = 3w2 + u.
Similarly, the second equation of (2.1) together with a = 3w and b = 3w2 + u yields c =
w2+uw+ v. Hence, (2.11) follows. Conversely, assume that a, b, c satisfy (2.11). Substituting
a = 3w, b = 3w2 +u and c = w3 +uw+ v into (2.1), after short calculation, we get, r = u and
s = v. Hence, by (2.2), df = (4u3 + 27v2)/108 = d and f(x) ∈ C(d) follows. This proves (i).

(ii) Let d ∈ De, e ∈ {1, 2}, and f(x) ∈ C(d). Then there exists w ∈ Z such that a = 3w + e
and, by (2.4), gf (x) = x3 + ux/3 + v/27 ∈ Q[x] where u, v ∈ Z and 3 - uv. By (2.2),
d = df = (4u3 + v2)/2916 and 4u3 + v2 = 2916d follows. Substituting a = 3w + e into the
first equality of (2.1), we obtain, b = 3w2 + 2ew + (u + e2)/3. This together with the second
equality of (2.1) yields c = w3 + ew2 + (u + e2)w/3 + (3eu + v + e3)/27 and (2.13) follows.
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Conversely, assume that a, b, c satisfy (2.12) and (2.13). Substituting (2.12) into (2.1), we get
r = u/3 and s = v/27. Hence, gf (x) = x3 + ux/3 + v/27 and, by (2.2), we conclude that
df = (4u3 + v2)/2916 = d. �

The following corollary states that both Diophantine equations 4u3 + 27v2 = 108d and
4u3 + v2 = 2919d can be reduced to the same Mordell equation Y 2 = X3 − 432D with
D = −108d. Consequently, the coefficients a, b, c from (2.12) and (2.13) can be given by the
integral solutions of Y 2 = X3 − 432D.

Corollary 2.4. (i) Let d ∈ D0 and D = −108d. Then f(x) = x3 + ax2 + bx+ c ∈ C(d) if and
only if there exist w,X, Y ∈ Z such that

a = 3w, b = 3w2 − X

12
, c = w3 − X

12
w +

Y

108
(2.14)

and

Y 2 = X3 − 432D where 12|X, 108|Y.
(ii) Let d ∈ De, e ∈ {1, 2} and D = −108d. Then f(x) = x3 + ax2 + bx+ c ∈ C(d) if and only

if there exist w,X, Y ∈ Z such that

a=3w+e, b=3w2+2ew+
4e2−X

12
, c=w3+ew2+

4e2−X

12
w+

4e3−3eX+Y

108
(2.15)

and

Y 2=X3−432D where 4|X, 4|Y,X≡1 (mod 3), 4e3−3eX+Y ≡ 0 (mod 27).

Corollary 2.4 can be easily obtained from Theorem 2.3 by the substitutions X = −12u,
Y = 108v in case (i) and X = −4u, Y = 4v in case (ii).

Remark 2.5. The coefficients a, b, c given by (2.11), (2.12), (2.14) and (2.15) can be written
using derivatives as follows: if c = c(w), then b = c′(w) and a = c′′(w)/2.

Remark 2.6. A straightforward application of Corollary 2.4 with d = 11/27 leads to Mordell’s
equation (1.1) with k = 19008. In the following section, we show that the set C(11/27) can
also be obtained by means of integral solutions of (1.1) with k = 297.

3. The Tribonacci Family

Let t(x) = x3 − x2 − x− 1 be the Tribonacci polynomial. First, observe that

Dt = −44, dt =
11

27
and gt(x) = x3 − 4

3
x− 38

27
.

Since

t(x) ∈ T = {f(x) = x3 + ax2 + bx+ c ∈ Z[x];Df = −44} = C(11/27),

the set T can be called the Tribonacci family. In this section, explicit forms of all polynomials
in T will be given.

Lemma 3.1. Assume that f(x) = x3 + ax2 + bx+ c ∈ Z[x].
(i) We have 11/27 /∈ D0.

(ii) f(x) ∈ T if and only if there exists e ∈ {1, 2} and w,X, Y ∈ Z such that

a=3w+e, b=3w2+2ew+
e2−X

3
, c=w3+ew2+

e2−X

3
w+

e3−3eX+2Y

27
(3.1)
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and

Y 2 = X3 + 297 where X ≡ 1 (mod 3) and e3 − 3eX + 2Y ≡ 0 (mod 27) (3.2)

Moreover, gf (x) = x3 + rx+ s where r = −X/3, s = 2Y/27 with X,Y satisfying (3.2).

Proof. (i) Suppose 11/27 ∈ D0. Then, by (2.12), there exist u, v ∈ Z such that 4u3+27v2 = 44.
Hence, 2|v and u3 + 27k2 = 11 for some k ∈ Z. Since u3 ≡ 11 (mod 27) has no solution, we
get a contradiction. Consequently, 11/27 /∈ D0 and 3 - a. Part (ii) can be obtained easily from
Theorem 2.3 by substituting u = −X, v = 2Y . �

Theorem 3.2. Mordell’s equation Y 2 = X3 + 297 has exactly eighteen integral solutions

(X,Y ): (−6,±9), (−2,±17), (3,±18), (4,±19), (12,±45), (34,±199), (48,±333),
(1362,±50265), and (93844,±28748141).

See Table 3 in [2, p. 96] or consult [6, p. 127].

Corollary 3.3. There exist exactly eight integral solutions (X,Y ) of Y 2=X3+297 satisfying

X ≡ 1 (mod 3) and e3−3eX+2Y ≡ 0 (mod 27) where e = 1 or e = 2: (−2,±17), (4,±19),
(34,±199), and (93844,±28748141).

Combining Lemma 3.1 and Corollary 3.3, we see that there exist exactly eight polynomials
gj(x) = x3 + rjx+ sj ∈ Q[x], j ∈ {1, . . . , 8} with Dgj = −44:

g1(x) = x3+ 2
3x− 34

27 , g2(x) = x3+ 2
3x+ 34

27 ,

g3(x) = x3− 4
3x− 38

27 , g4(x) = x3− 4
3x+ 38

27 ,

g5(x) = x3− 34
3 x− 398

27 , g6(x) = x3− 34
3 x+ 398

27 ,

g7(x) = x3− 93844
3 x− 57496282

27 , g8(x) = x3− 93844
3 x+ 57496282

27 .

(3.3)

Next, letting k = w in (3.1) and using Corollary 3.3, we find that f(x) ∈ T if and only if
f(x) = tj(x, k) for some j ∈ {1, . . . , 8} and k ∈ Z where

t1(x, k)=x3+(3k+1)x2+(3k2+2k+1)x+k3+k2+k−1,
t2(x, k)=x3+(3k+2)x2+(3k2+4k+2)x+k3+2k2+2k+2,
t3(x, k)=x3+(3k+2)x2+(3k2+4k)x+k3+2k2−2,
t4(x, k)=x3+(3k+1)x2+(3k2+2k−1)x+k3+k2−k+1,
t5(x, k)=x3+(3k+2)x2+(3k2+4k−10)x+k3+2k2−10k−22,
t6(x, k)=x3+(3k+1)x2+(3k2+2k−11)x+k3+k2−11k+11,
t7(x, k)=x3+(3k+1)x2+(3k2+2k−31281)x+k3+k2−31281k−2139919,
t8(x, k)=x3+(3k+2)x2+(3k2+4k−31280)x+k3+2k2−31280k+2108638.

(3.4)

Consequently, T can be written as T =
⋃8

j=1{tj(x, k); k ∈ Z} where {tj(x, k); k ∈ Z} are

pairwise disjoint sets. Finally, by (3.4), t(x) = t3(x,−1).

4. The Cubic Character of the Field Fp2

We start this section with a more general theorem.

Theorem 4.1. Let H be a subfield of the field G, [G : H] = 2, char H 6= 2, 3 and let g(x) =
x3+rx+s ∈ H[x] with r 6= 0. Assume that g(x) is irreducible over H or g(x) has three distinct

roots in H. Further let dg = r3/27+s2/4 and ε, λ ∈ G be such that ε2+ε+1 = 0 and λ2 = dg.
Then the following statements are equivalent:

(i) g(x) has three distinct roots in H.

(ii) g(x) has three distinct roots in G.
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(iii) A = −s/2− λ is a cubic residue of G.

(iv) B = −s/2 + λ is a cubic residue of G.

Proof. Clearly, (i) implies (ii). Assume (ii) and suppose that g(x) is irreducible over H. Then
G is a splitting field of g(x) over H. Hence, [G : H] = 3 which is a contradiction. This proves
that (i) and (ii) are equivalent. Next, a simple calculation yields AB = (−r/3)3. Since r 6= 0,
it follows that (iii) and (iv) are equivalent.

Let K be an arbitrary over-field of G such that A,B are cubic residues of K. Then there
exists α, γ ∈ K satisfying α3 = A, γ3 = B. Since (αγ)3 = AB = (−r/3)3 there exist
i ∈ {0, 1, 2} such that αγεi = −r/3. Let β = γεi. Then β3 = B and αβ = −r/3. Since
A+B = −s, we have g(α + β) = A+B + (α+ β)(3αβ + r) + s = 0.

Hence, it follows for K = G that (iii) implies (ii). Finally, assume (ii) and suppose that A is
not a cubic residue of G. Let S be a splitting field of x3−A over G. Then A is a cubic residue
of S and AB = (−r/3)3 yields that B is a cubic reside of S, too. By what was proved above, in
the field K = S, there exist α, β such that g(α+ β) = 0. Since g(x) has three distinct roots in
G, we have α+β ∈ G. Let η = α+β. Then −s = A+B = α3 +(η−α)3 = 3α2η− 3αη2 + η3.
Since 1, α, α2 is a base of the extension S/G, we have η = 0 and s = 0. Let ρ = −3λ/r. Then
ρ ∈ G and λ2 = dg = r3/27 yields ρ3 = −27λ3/r3 = −λ = A, a contradiction. Hence, (ii)
implies (iii) as required. The proof is complete. �

Note that Theorem 4.1 generalizes the results obtained in [5, pp. 229–230]. The following
statement which is an easy consequence of Theorem 4.1 will be used in proving the main result
presented in Section 5.

Theorem 4.2. Let p be a prime, p > 3 and let g(x) = x3 + rx+ s ∈ Fp[x] with r 6=0. Assume

that g(x) is irreducible over Fp or g(x) has three distinct roots in Fp. Then the following

statements are equivalent:

(i) g(x) has three distinct roots in Fp.

(ii) g(x) has three distinct roots in Fp2.

(iii) A = −s/2− λ is a cubic residue of Fp2.

(iv) B = −s/2 + λ is a cubic residue of Fp2.

Remark 4.3. Theorems 4.1 and 4.2 also hold in the case of r = 0 if we let A = B = s.

Let F×

p2
denote the multiplicative group of the Galois field Fp2 where p is a prime, p > 3.

Recall that the cubic character χ of Fp2 is a mapping χ : F×

p2
→ F×

p2
defined by χ(ξ) = ξ(p

2
−1)/3

for any ξ ∈ F×

p2
. Let ε ∈ F×

p2
be such that ε2 + ε+ 1 = 0. Then ε3 = 1 and ε 6= 1. Clearly, if

ξ ∈ F×

p2
, then χ(ξ) = εi for some i ∈ {0, 1, 2}. Next, recall the following familiar properties of

χ:

If ξ1, ξ2 ∈ F×

p2
, then χ(ξ1 · ξ2) = χ(ξ1) · χ(ξ2).

If ξ ∈ F×

p2
, then χ(ξ) = 1 if and only if ξ is a cube in the field Fp2.

If ξ ∈ F×

p and χ(ξ) = 1, then ξ is a cube in the field Fp.

Let λ ∈ Fp2 be such that λ2 = dt = 11/27 ∈ Fp and gj(x) = x3 + rjx + sj , j ∈ {1, . . . , 8}
be the cubic polynomials established in (3.3) considered as polynomials in Fp[x]. For any
j ∈ {1, . . . , 8}, we define the elements A(yj), B(yj) ∈ Fp2 as follows:

A(yj) = − yj
27

− 1

9
κ, B(yj) = − yj

27
+

1

9
κ where yj =

27

2
sj and κ = 9λ.
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Let Y={yj, j = 1, . . . , 8}. Then Y = {±17,±19,±199,±28748141} and A(y), B(y) 6= 0 in Fp2

for any y ∈ Y and p 6= 17, 29, 809. Furthermore, it is easy to verify that

χ(A(y)) = χ(B(−y)) and χ(A(y)) · χ(A(−y)) = 1 for any y ∈ Y. (4.1)

Let

R={A(17), B(−17), A(−19), B(19), A(−199), B(199), A(28748141), B(−28748141)},
S={A(−17), B(17), A(19), B(−19), A(199), B(−199), A(−28748141), B(28748141)}.

The fundamental relations between the cubic characters of the elements of R and S will be
stated in the following lemma.

Lemma 4.4. Let p be an arbitrary prime, p 6= 2, 3, 17, 29, 809. Then

(i) All elements of R have the same cubic character in Fp2.

(ii) All elements of S have the same cubic character in Fp2.

(iii) If ρ ∈ R and σ ∈ S, then χ(ρ) · χ(σ) = 1.

Proof. By direct calculation we can easily verify that

(19 + 3
√
33)·(17 + 3

√
33) = (5 +

√
33)3,

(19 + 3
√
33)·(199 − 3

√
33) = (13 +

√
33)3,

(19 + 3
√
33)·(28748141 + 3

√
33) = (692 + 56

√
33)3.

(4.2)

Since the mapping H : Z[
√
33] → Fp2 defined by H(α+ β

√
33) = α+ βκ is a homomorphism

of Z[
√
33] into Fp2, (4.2) yields χ(19 + 3κ) · χ(17 + 3κ) = χ(19 + 3κ) · χ(199 − 3κ) = χ(19 +

3κ) · χ(28748141 + 3κ) = 1. Multiplying by χ(19 − 3κ) and using the second equality of
(4.1) for y = 19 we get χ(B(−17)) = χ(A(−199)) = χ(B(−28748141)) = χ(A(−19)). This
together with the first equality of (4.1) implies that all elements of R have the same cubic
character. Since S can be written in the form S = {A(−y);A(y) ∈ R} ∪ {B(−y);B(y) ∈ R},
the second equality of (4.1) implies that all elements of S have the same cubic character and
χ(ρ) · χ(σ) = 1 for any ρ ∈ R and σ ∈ S. �

5. The Main Theorem

There exist five types of factorization of the cubic polynomial f(x) = x3+ax2+bx+c ∈ Z[x]
over the Galois field Fp with p a prime:

Type I: f(x) is irreducible over Fp, i.e., f(x) has no root in Fp.

Type II: f(x) splits over Fp into a linear factor and an irreducible quadratic factor.

Type III: f(x) has three distinct roots in Fp.

Type IV: f(x) has a double root in Fp.

Type V: f(x) has a triple root in Fp.

Cases I–V can partially be distinguished using the quadratic character of Df . Let (Df/p)
denote the Legendre–Jacobi symbol. By the Stickelberger Parity Theorem [8] for the case of
a cubic polynomial [10, p. 189], we can distinguish case II from cases I and III as follows.

Let N be the number of distinct roots of f(x) = x3 + ax2 + bx + c ∈ Z[x] over the Galois

field Fp with p a prime, p > 3 and p - Df . Then

N = 1 if and only if (Df/p) = −1,
N = 0 or N = 3 if and only if (Df/p) = 1.

(5.1)
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For distinguishing types I and III, we can use the cubic character and the field Fp2 by

Theorem 4.2 as follows: Let p > 3 and (Df/p) = 1. Set r = b− a2/3, s = 2a3/27 − ab/3 + c,
d = r3/27 + s2/4 and let λ ∈ Fp2 with λ2 = d. Further let A = −s/2 − λ, B = −s/2 + λ if

a2 6≡ 3b (mod p) and A = B = s if a2 ≡ 3b (mod p). Then

f(x) is of type III if and only if A and B are cubic residues of Fp2.

Furthermore, for an arbitrary prime p, f(x) has a multiple root in Fp if and only if p|Df .
Clearly, for p > 2, the condition p|Df is equivalent to (Df/p) = 0. Moreover, if p > 2 and
p|Df , then using Viètes relations between the roots and coefficients of f(x), it is easy to see
that

f(x) is of the type

{

IV if and only if p - ab− 9c or p - a, p|b, p|c,
V otherwise.

Our next considerations will be restricted to polynomials f(x) belonging to the Tribonacci
family T . In this case, Df = −44 and, for any prime p 6= 2, 11, we have (Df/p) = (−44/p) =
(p/11). See also [4, p. 23]. To prove the main theorem, we will need the following proposition.

Proposition 5.1. Let p be a prime, p > 3 and (p/11) = 1. Then all polynomials in T have

the same type of factorization over Fp.

Proof. It is evident that, for any fixed j ∈ {1, . . . , 8}, the polynomials gj(x) and tj(x, k), k ∈ Z
defined by (3.3) and (3.4) have the same type of factorization over an arbitrary Galois field
Fp with p a prime, p > 3. Hence, it follows that all polynomials in T have the same type of
factorization over Fp if and only if the polynomials gj(x) = x3+rjx+sj ∈ Fp[x], j ∈ {1, . . . , 8}
have the same type of factorization over Fp. Now we show that, if p > 3 and (p/11) = 1, then
rj 6= 0 in Fp for any gj(x). Suppose that rj = 0 for some j. Then it follows from (3.4)
that p ∈ {17, 29, 809}. Since (p/11) = −1 for any p ∈ {17, 29, 809}, a contradiction follows.
Furthermore, if p > 3 and (p/11) = 1, then, by (5.1), any gj(x), j ∈ {1, . . . , 8} is of type I or
type III. By Lemma 4.4, for any τ1, τ2 ∈ R ∪ S, we have χ(τ1) = 1 if and only if χ(τ2) = 1.
This together with Theorem 4.2 concludes the proof. �

Now we can to prove our main theorem.

Main Theorem 5.2. Let p be an arbitrary prime. Then all polynomials in T have the same
type of factorization over the Galois field Fp.

Proof. If p > 3 and (p/11) = −1, then the Stickelberger Parity Theorem says that each
polynomial in T is of the type II over Fp. If p > 3 and (p/11) = 1, then all polynomials in T
have the same type of factorization over Fp by Proposition 5.1. Moreover, by the Stickelberger
Parity Theorem, this type is either I or III.

Let p = 2. Substituting k = 0, 1 into (3.4), we obtain the following identities over F2[x]:
t1(x, 0) = t2(x, 1) = t3(x, 1) = t4(x, 0) = t5(x, 1) = t6(x, 0) = t7(x, 0) = t8(x, 1)
=(x− 1)3, and t1(x, 1)= t2(x, 0)= t3(x, 0)= t4(x, 1)= t5(x, 0)= t6(x, 1)= t7(x, 1)= t8(x, 0)=x3.
This proves that each polynomial in T is of type V over F2. Let p=3. Substituting k=0, 1, 2
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into (3.4), we get the following identities over F3[x]:

t1(x, 0) = t4(x, 1) = t6(x, 0) = t7(x, 2) = x3 + x2 + x+ 2,
t1(x, 1) = t4(x, 2) = t6(x, 1) = t7(x, 0) = x3 + x2 + 2,
t1(x, 2) = t4(x, 0) = t6(x, 2) = t7(x, 1) = x3 + x2 + 2x+ 1,
t2(x, 0) = t3(x, 2) = t5(x, 0) = t8(x, 1) = x3 + 2x2 + 2x+ 2,
t2(x, 1) = t3(x, 0) = t5(x, 1) = t8(x, 2) = x3 + 2x2 + 1,
t2(x, 2) = t3(x, 1) = t5(x, 2) = t8(x, 0) = x3 + 2x2 + x+ 1.

(5.2)

By direct calculation, it is easy to verify that all polynomials in (5.2) are irreducible over F3.
This means that each polynomial in T is of type I over F3.

Finally, let p = 11. Then the polynomials gj(x), j ∈ {1, . . . , 8} established in (3.3), have
the following factorizations over F11:

g1(x) = (x+ 10)2(x+ 2), g2(x) = (x+ 1)2(x+ 9),
g3(x) = (x+ 8)2(x+ 6), g4(x) = (x+ 3)2(x+ 5),
g5(x) = (x+ 4)2(x+ 3), g6(x) = (x+ 7)2(x+ 8),
g7(x) = (x+ 9)2(x+ 4), g8(x) = (x+ 2)2(x+ 7).

(5.3)

From (5.3) it follows that each polynomial in T is of type IV over F11. The proof is complete.
�

6. Conclusion

The results presented in Theorem 2.3 and Corollary 2.4 make it possible to find the set of
all cubic polynomials f(x) = x3 + ax2 + bx + c ∈ Z[x] with a given discriminant 0 6= D ∈ Z
if all integral solutions of Mordell’s equation Y 2 = X3 + k, k = 432D are known. Thanks to
the computations made by Gebel, Pethö and Zimmer [3], all integral solutions of this equation
are determined for any 0 6= |k| ≤ 105 and thus, for any 0 6= |D| ≤ 231. Consequently,
the method used in proving the Main Theorem 5.2 can actually be applied to any particular
0 6= |D| ≤ 231. These facts open a new and interesting question, namely, for which D ∈ Z can
the Main Theorem 5.2 be generalized. However, to determine all such D’s can be a difficult
problem.
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