MORDELL'S EQUATION AND THE TRIBONACCI FAMILY

JIŘÍ KLAŠKA AND LADISLAV SKULA

Abstract

We define a Tribonacci family as the set T of all cubic polynomials $f(x)=$ $x^{3}+a x^{2}+b x+c \in \mathbb{Z}[x]$ having the same discriminant as the Tribonacci polynomial $t(x)=$ $x^{3}-x^{2}-x-1$. Using integral solutions of Mordell's equation $Y^{2}=X^{3}+297$, we establish explicit forms of all polynomials in T. As the main result we prove that all polynomials in T have the same type of factorization over any Galois field \mathbb{F}_{p} where p is a prime.

1. Introduction

Mordell's equation

$$
\begin{equation*}
Y^{2}=X^{3}+k, 0 \neq k \in \mathbb{Z}, \tag{1.1}
\end{equation*}
$$

has had a long and interesting history. A synopsis of the first discoveries concerning (1.1) is given in Dickson [1, pp. 533-539]. See also [6, pp. 1-5]. In 1909, A. Thue [9] showed that (1.1) has only a finite number of solutions in integers X, Y. Various methods for finding the integral solutions of (1.1) are known [3, 6, 7]. Extensive lists of further references related to (1.1) can be found in [3] and [6].

In this paper we show an interesting application of integral solutions of (1.1) with $k=297$ to the theory of factorizations of the cubic polynomials $f(x)=x^{3}+a x^{2}+b x+c \in \mathbb{Z}[x]$ with a discriminant $D_{f}=-44$ over a Galois field \mathbb{F}_{p} where p is a prime. In particular, we prove that the set

$$
T=\left\{f(x)=x^{3}+a x^{2}+b x+c \in \mathbb{Z}[x] ; D_{f}=-44\right\}
$$

contains infinitely many polynomials, which can be partitioned into eight pairwise disjoint classes such that the polynomials of each class are given by a simple formula that depends on some integral solution of $Y^{2}=X^{3}+297$. Since the Tribonacci polynomial $t(x)=x^{3}-x^{2}-x-1$ belongs to T, we call T the Tribonacci family. As the main result we prove that, over any Galois field \mathbb{F}_{p} where p is a prime, all polynomials in T have the same type of factorization and, consequently, the same number of roots in \mathbb{F}_{p}. We do this by combining the Stickelberger Parity Theorem [8] for the case of a cubic polynomial [10], a modification of the results presented in [5, pp. 229-230], and the relations between the cubic characters of certain elements of the field $\mathbb{F}_{p^{2}}$ corresponding to integral solutions of $Y^{2}=X^{3}+297$. In general, we show that, for any $D \in \mathbb{Z}$, the set

$$
C=\left\{f(x)=x^{3}+a x^{2}+b x+c \in \mathbb{Z}[x] ; D_{f}=D\right\}
$$

can be obtained by means of integral solutions of Mordell's equation $Y^{2}=X^{3}-432 D$. This fact opens an interesting question, namely, for which $D \in \mathbb{Z}$ can our main result be generalized.

[^0]
MORDELL'S EQUATION AND THE TRIBONACCI FAMILY

2. Connection Between Mordel's Equation $Y^{2}=X^{3}-432 D$ and Cubic

Polynomials with Discriminant D
Let $f(x)=x^{3}+a x^{2}+b x+c \in \mathbb{Q}[x]$ and let $D_{f}=a^{2} b^{2}-4 b^{3}-4 a^{3} c-27 c^{2}+18 a b c$ be the discriminant of $f(x)$. Let $g_{f}(x)=f(x-a / 3)$. Then $D_{g_{f}}=D_{f}$ and $g_{f}(x)=x^{3}+r x+s \in \mathbb{Q}[x]$ where

$$
\begin{equation*}
r=b-\frac{a^{2}}{3} \text { and } s=\frac{2 a^{3}}{27}-\frac{a b}{3}+c . \tag{2.1}
\end{equation*}
$$

Next, let

$$
\begin{equation*}
d_{f}=\frac{r^{3}}{27}+\frac{s^{2}}{4} \tag{2.2}
\end{equation*}
$$

Then $D_{f}=-108 d_{f}$ and $d_{f}=d_{g_{f}}$. If $f(x) \in \mathbb{Z}[x]$, then (2.1) implies

$$
\begin{equation*}
r, s \in \mathbb{Z} \Longleftrightarrow 3 \mid a \tag{2.3}
\end{equation*}
$$

On the other hand, for $f(x) \in \mathbb{Z}[x]$,

$$
\begin{equation*}
3 \nmid a \Longleftrightarrow \text { there exists } u, v \in \mathbb{Z}: r=\frac{u}{3}, s=\frac{v}{27}, 3 \nmid u v . \tag{2.4}
\end{equation*}
$$

Moreover, by (2.1), we obtain

$$
\begin{equation*}
u=3 b-a^{2} \text { and } v=2 a^{3}-9 a b+27 c . \tag{2.5}
\end{equation*}
$$

For $e \in\{0,1,2\}$, let \mathbb{D}_{e} denote the set of all $d \in \mathbb{Q}$ for which there exists $f(x)=x^{3}+$ $a x^{2}+b x+c \in \mathbb{Z}[x]$ such that $a \equiv e(\bmod 3)$ and $d_{f}=d$. Some basic properties of \mathbb{D}_{e} will be established in the following lemma.
Lemma 2.1. For $\mathbb{D}_{0}, \mathbb{D}_{1}$ and \mathbb{D}_{2} we have

$$
\begin{equation*}
\mathbb{D}_{0}=\left\{d \in \mathbb{Q} ; d=\frac{4 u^{3}+27 v^{2}}{108}, u, v \in \mathbb{Z}\right\} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{D}_{1}=\mathbb{D}_{2}=\left\{d \in \mathbb{Q} ; d=\frac{4 u^{3}+v^{2}}{2916}, u, v \in \mathbb{Z}, u \equiv 2(\bmod 3), 3 u+v+1 \equiv 0(\bmod 27)\right\} . \tag{2.7}
\end{equation*}
$$

Proof. (i) Let $d \in \mathbb{D}_{0}$. Then there exists $f(x)=x^{3}+a x^{2}+b x+c \in \mathbb{Z}[x]$ such that $3 \mid a$ and $d_{f}=d$. By (2.3), $g_{f}(x)=x^{3}+r x+s \in \mathbb{Z}[x]$. Let $u=r, v=s$. Then $u, v \in \mathbb{Z}$ and, by (2.2), $d=d_{f}=\left(4 u^{3}+27 v^{2}\right) / 108$. Conversely, assume that $d=\left(4 u^{3}+27 v^{2}\right) / 108$ where $u, v \in \mathbb{Z}$. For any $w \in \mathbb{Z}$, let

$$
\begin{equation*}
a=3 w, b=3 w^{2}+u, c=w^{3}+u w+v . \tag{2.8}
\end{equation*}
$$

Then $f(x)=x^{3}+a x^{2}+b x+c \in \mathbb{Z}[x], 3 \mid a$, and $g_{f}(x)=x^{3}+r x+s \in \mathbb{Z}[x]$. Substituting (2.8) into (2.1), we obtain $r=u$ and $s=v$, which together with (2.2) yields $d=d_{f}=\left(4 u^{3}+27 v^{2}\right) / 108$. This proves (2.6).
(ii) Let $e \in\{1,2\}$. First show

$$
\begin{equation*}
\mathbb{D}_{e}=\left\{d \in \mathbb{Q} ; d=\frac{4 u^{3}+v^{2}}{2916}, u, v \in \mathbb{Z}, u \equiv 2(\bmod 3), e^{3}+3 e u+v \equiv 0(\bmod 27)\right\} . \tag{2.9}
\end{equation*}
$$

Let $d \in \mathbb{D}_{e}$. Then there exists $f(x)=x^{3}+a x^{2}+b x+c \in \mathbb{Z}[x]$ such that $a \equiv e(\bmod 3)$ and $d_{f}=d$. By (2.4), $g_{f}(x)=x^{3}+u x / 3+v / 27 \in \mathbb{Q}[x]$ where $u, v \in \mathbb{Z}$, and $3 \nmid u v$. Hence, by (2.2), $d=d_{f}=\left(4 u^{3}+v^{2}\right) / 2916$. Moreover, from (2.5) it follows that $u=3 b-a^{2} \equiv-e^{2} \equiv 2(\bmod 3)$.

THE FIBONACCI QUARTERLY

Since $a=3 w+e$ for some $w \in \mathbb{Z}$, the first identity of (2.1) yields $b=\left(a^{2}+u\right) / 3=3 w^{2}+$ $2 e w+\left(u+e^{2}\right) / 3$. Hence, by $(2.5), v \equiv 2(3 w+e)^{3}-9(3 w+e)\left(3 w^{2}+2 e w+\left(u+e^{2}\right) / 3\right) \equiv$ $-3 e u-e^{3}(\bmod 27)$, and $e^{3}+3 e u+v \equiv 0(\bmod 27)$ follows. Conversely, assume that $d=\left(4 u^{3}+v^{2}\right) / 2916$ where $u, v \in \mathbb{Z}$ such that $u \equiv 2(\bmod 3)$ and $e^{3}+3 e u+v \equiv 0(\bmod 27)$. For any $w \in \mathbb{Z}$, let $a=3 w+e, b=\left(a^{2}+u\right) / 3, c=\left(-2 a^{3}+9 a b+v\right) / 27$. Since $u \equiv 2(\bmod 3)$, we have $a^{2}+u \equiv e^{2}+2 \equiv 0(\bmod 3)$. Hence, $b \in \mathbb{Z}$. Next, after some calculation, we obtain $-2 a^{3}+9 a b+v \equiv-2(3 w+e)^{3}+9(3 w+e)\left(3 w^{2}+2 e w+\left(u+e^{2}\right) / 3\right)-e^{3}-3 e u \equiv 0(\bmod 27)$. Hence, $c \in \mathbb{Z}$. Let $f(x)=x^{3}+a x^{2}+b x+c$. Using (2.1), we get $g_{f}(x)=x^{3}+u x / 3+v / 27$ and (2.2) yields $d_{f}=\left(4 u^{3}+v^{2}\right) /\left(4 \cdot 27^{2}\right)=d$ as required. This proves (2.9).

It remains to prove $\mathbb{D}_{1}=\mathbb{D}_{2}$. Let u be an integer, $u \equiv 2(\bmod 3)$. Then $9 u+9 \equiv 0(\bmod 27)$, which implies

$$
\begin{equation*}
v+3 u+1 \equiv 0(\bmod 27) \Longleftrightarrow-v+6 u+8 \equiv 0(\bmod 27) \tag{2.10}
\end{equation*}
$$

for any $v \in \mathbb{Z}$. Clearly, if $d=d(u, v)=\left(4 u^{3}+v^{2}\right) / 2916$, then $d(u, v)=d(u,-v)$. This, together with (2.9) and (2.10), yields (2.7). The proof is complete.
Remark 2.2. Let $\mathbb{D}=\mathbb{D}_{1}=\mathbb{D}_{2}$. Then $\mathbb{D}_{0} \cap \mathbb{D}, \mathbb{D}_{0}-\mathbb{D}$, and $\mathbb{D}-\mathbb{D}_{0}$ are nonempty sets. For example, $23 / 108 \in \mathbb{D}_{0} \cap \mathbb{D},-13 / 108 \in \mathbb{D}_{0}-\mathbb{D}$, and $11 / 27 \in \mathbb{D}-\mathbb{D}_{0}$.

For any $d \in \mathbb{Q}$ let

$$
C(d)=\left\{f(x)=x^{3}+a x^{2}+b x+c \in \mathbb{Z}[x] ; d_{f}=d\right\} .
$$

Then, $C(d)=\left\{f(x)=x^{3}+a x^{2}+b x+c \in \mathbb{Z}[x] ; D_{f}=-108 d\right\}$. Furthermore, $C(d)=\emptyset$ if and only if $d \in \mathbb{Q}-\left(\mathbb{D}_{0} \cup \mathbb{D}\right)$. For $d \in \mathbb{D}_{0} \cup \mathbb{D}$, the following theorem can be stated.
Theorem 2.3. Assume that $f(x)=x^{3}+a x^{2}+b x+c \in \mathbb{Z}[x]$.
(i) Let $d \in \mathbb{D}_{0}$. Then $f(x) \in C(d)$ if and only if there exists $u, v, w \in \mathbb{Z}$ such that

$$
\begin{equation*}
a=3 w, b=3 w^{2}+u, c=w^{3}+u w+v \text { and } 4 u^{3}+27 v^{2}=108 d . \tag{2.11}
\end{equation*}
$$

(ii) Let $d \in \mathbb{D}_{e}$ and $e \in\{1,2\}$. Then $f(x) \in C(d)$ if and only if there exist $u, v, w \in \mathbb{Z}$ such that

$$
\begin{equation*}
a=3 w+e, b=3 w^{2}+2 e w+\frac{e^{2}+u}{3}, c=w^{3}+e w^{2}+\frac{e^{2}+u}{3} w+\frac{e^{3}+3 e u+v}{27} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
4 u^{3}+v^{2}=2916 d \text { where } u \equiv 2(\bmod 3), e^{3}+3 e u+v \equiv 0(\bmod 27) . \tag{2.13}
\end{equation*}
$$

Moreover, in (i) we have $g_{f}(x)=x^{3}+u x+v$ and, in (ii), $g_{f}(x)=x^{3}+u x / 3+v / 27$.
Proof. (i) Let $d \in \mathbb{D}_{0}$ and $f(x) \in C(d)$. Then there exist $w \in \mathbb{Z}$ such that $a=3 w$ and, by (2.3), $g_{f}(x)=x^{3}+r x+s \in \mathbb{Z}[x]$. Let $u=r$ and $v=s$. By (2.2), $d=d_{f}=\left(4 u^{3}+27 v^{2}\right) / 108$ and $4 u^{3}+27 v^{2}=108 d$ follows. Since $a=3 w$, the first equation of (2.1) implies $b=3 w^{2}+u$. Similarly, the second equation of (2.1) together with $a=3 w$ and $b=3 w^{2}+u$ yields $c=$ $w^{2}+u w+v$. Hence, (2.11) follows. Conversely, assume that a, b, c satisfy (2.11). Substituting $a=3 w, b=3 w^{2}+u$ and $c=w^{3}+u w+v$ into (2.1), after short calculation, we get, $r=u$ and $s=v$. Hence, by $(2.2), d_{f}=\left(4 u^{3}+27 v^{2}\right) / 108=d$ and $f(x) \in C(d)$ follows. This proves (i).
(ii) Let $d \in \mathbb{D}_{e}, e \in\{1,2\}$, and $f(x) \in C(d)$. Then there exists $w \in \mathbb{Z}$ such that $a=3 w+e$ and, by (2.4), $g_{f}(x)=x^{3}+u x / 3+v / 27 \in \mathbb{Q}[x]$ where $u, v \in \mathbb{Z}$ and $3 \nmid u v$. By (2.2), $d=d_{f}=\left(4 u^{3}+v^{2}\right) / 2916$ and $4 u^{3}+v^{2}=2916 d$ follows. Substituting $a=3 w+e$ into the first equality of (2.1), we obtain, $b=3 w^{2}+2 e w+\left(u+e^{2}\right) / 3$. This together with the second equality of (2.1) yields $c=w^{3}+e w^{2}+\left(u+e^{2}\right) w / 3+\left(3 e u+v+e^{3}\right) / 27$ and (2.13) follows.

MORDELL'S EQUATION AND THE TRIBONACCI FAMILY

Conversely, assume that a, b, c satisfy (2.12) and (2.13). Substituting (2.12) into (2.1), we get $r=u / 3$ and $s=v / 27$. Hence, $g_{f}(x)=x^{3}+u x / 3+v / 27$ and, by (2.2), we conclude that $d_{f}=\left(4 u^{3}+v^{2}\right) / 2916=d$.

The following corollary states that both Diophantine equations $4 u^{3}+27 v^{2}=108 d$ and $4 u^{3}+v^{2}=2919 d$ can be reduced to the same Mordell equation $Y^{2}=X^{3}-432 D$ with $D=-108 d$. Consequently, the coefficients a, b, c from (2.12) and (2.13) can be given by the integral solutions of $Y^{2}=X^{3}-432 D$.
Corollary 2.4. (i) Let $d \in \mathbb{D}_{0}$ and $D=-108 d$. Then $f(x)=x^{3}+a x^{2}+b x+c \in C(d)$ if and only if there exist $w, X, Y \in \mathbb{Z}$ such that

$$
\begin{equation*}
a=3 w, b=3 w^{2}-\frac{X}{12}, c=w^{3}-\frac{X}{12} w+\frac{Y}{108} \tag{2.14}
\end{equation*}
$$

and

$$
Y^{2}=X^{3}-432 D \text { where } 12|X, 108| Y
$$

(ii) Let $d \in \mathbb{D}_{e}, e \in\{1,2\}$ and $D=-108 d$. Then $f(x)=x^{3}+a x^{2}+b x+c \in C(d)$ if and only if there exist $w, X, Y \in \mathbb{Z}$ such that

$$
\begin{equation*}
a=3 w+e, b=3 w^{2}+2 e w+\frac{4 e^{2}-X}{12}, c=w^{3}+e w^{2}+\frac{4 e^{2}-X}{12} w+\frac{4 e^{3}-3 e X+Y}{108} \tag{2.15}
\end{equation*}
$$

and

$$
Y^{2}=X^{3}-432 D \text { where } 4|X, 4| Y, X \equiv 1(\bmod 3), 4 e^{3}-3 e X+Y \equiv 0 \quad(\bmod 27) .
$$

Corollary 2.4 can be easily obtained from Theorem 2.3 by the substitutions $X=-12 u$, $Y=108 v$ in case (i) and $X=-4 u, Y=4 v$ in case (ii).

Remark 2.5. The coefficients a, b, c given by (2.11), (2.12), (2.14) and (2.15) can be written using derivatives as follows: if $c=c(w)$, then $b=c^{\prime}(w)$ and $a=c^{\prime \prime}(w) / 2$.

Remark 2.6. A straightforward application of Corollary 2.4 with $d=11 / 27$ leads to Mordell's equation (1.1) with $k=19008$. In the following section, we show that the set $C(11 / 27)$ can also be obtained by means of integral solutions of (1.1) with $k=297$.

3. The Tribonacci Family

Let $t(x)=x^{3}-x^{2}-x-1$ be the Tribonacci polynomial. First, observe that

$$
D_{t}=-44, d_{t}=\frac{11}{27} \text { and } g_{t}(x)=x^{3}-\frac{4}{3} x-\frac{38}{27} .
$$

Since

$$
t(x) \in T=\left\{f(x)=x^{3}+a x^{2}+b x+c \in \mathbb{Z}[x] ; D_{f}=-44\right\}=C(11 / 27),
$$

the set T can be called the Tribonacci family. In this section, explicit forms of all polynomials in T will be given.
Lemma 3.1. Assume that $f(x)=x^{3}+a x^{2}+b x+c \in \mathbb{Z}[x]$.
(i) We have $11 / 27 \notin \mathbb{D}_{0}$.
(ii) $f(x) \in T$ if and only if there exists $e \in\{1,2\}$ and $w, X, Y \in \mathbb{Z}$ such that

$$
\begin{equation*}
a=3 w+e, \quad b=3 w^{2}+2 e w+\frac{e^{2}-X}{3}, c=w^{3}+e w^{2}+\frac{e^{2}-X}{3} w+\frac{e^{3}-3 e X+2 Y}{27} \tag{3.1}
\end{equation*}
$$

THE FIBONACCI QUARTERLY

and

$$
\begin{equation*}
Y^{2}=X^{3}+297 \text { where } X \equiv 1(\bmod 3) \text { and } e^{3}-3 e X+2 Y \equiv 0(\bmod 27) \tag{3.2}
\end{equation*}
$$

Moreover, $g_{f}(x)=x^{3}+r x+s$ where $r=-X / 3, s=2 Y / 27$ with X, Y satisfying (3.2).
Proof. (i) Suppose $11 / 27 \in \mathbb{D}_{0}$. Then, by (2.12), there exist $u, v \in \mathbb{Z}$ such that $4 u^{3}+27 v^{2}=44$. Hence, $2 \mid v$ and $u^{3}+27 k^{2}=11$ for some $k \in \mathbb{Z}$. Since $u^{3} \equiv 11(\bmod 27)$ has no solution, we get a contradiction. Consequently, $11 / 27 \notin \mathbb{D}_{0}$ and $3 \nmid a$. Part (ii) can be obtained easily from Theorem 2.3 by substituting $u=-X, v=2 Y$.
Theorem 3.2. Mordell's equation $Y^{2}=X^{3}+297$ has exactly eighteen integral solutions $(X, Y): \quad(-6, \pm 9), \quad(-2, \pm 17), \quad(3, \pm 18), \quad(4, \pm 19), \quad(12, \pm 45), \quad(34, \pm 199), \quad(48, \pm 333)$, ($1362, \pm 50265)$, and $(93844, \pm 28748141)$.

See Table 3 in [2, p. 96] or consult [6, p. 127].
Corollary 3.3. There exist exactly eight integral solutions (X, Y) of $Y^{2}=X^{3}+297$ satisfying $X \equiv 1(\bmod 3)$ and $e^{3}-3 e X+2 Y \equiv 0(\bmod 27)$ where $e=1$ or $e=2:(-2, \pm 17),(4, \pm 19)$, (34, $\pm 199)$, and (93844, ± 28748141).

Combining Lemma 3.1 and Corollary 3.3, we see that there exist exactly eight polynomials $g_{j}(x)=x^{3}+r_{j} x+s_{j} \in \mathbb{Q}[x], j \in\{1, \ldots, 8\}$ with $D_{g_{j}}=-44$:

$$
\begin{array}{ll}
g_{1}(x)=x^{3}+\frac{2}{3} x-\frac{34}{27}, & g_{2}(x)=x^{3}+\frac{2}{3} x+\frac{34}{27}, \\
g_{3}(x)=x^{3}-\frac{4}{3} x-\frac{38}{27}, & g_{4}(x)=x^{3}-\frac{4}{3} x+\frac{38}{27}, \tag{3.3}\\
g_{5}(x)=x^{3}-\frac{34}{3} x-\frac{398}{27}, & g_{6}(x)=x^{3}-\frac{34}{3} x+\frac{398}{27}, \\
g_{7}(x)=x^{3}-\frac{93844}{3} x-\frac{57496282}{27}, & g_{8}(x)=x^{3}-\frac{93844}{3} x+\frac{57496282}{27} .
\end{array}
$$

Next, letting $k=w$ in (3.1) and using Corollary 3.3, we find that $f(x) \in T$ if and only if $f(x)=t_{j}(x, k)$ for some $j \in\{1, \ldots, 8\}$ and $k \in \mathbb{Z}$ where

$$
\begin{align*}
& t_{1}(x, k)=x^{3}+(3 k+1) x^{2}+\left(3 k^{2}+2 k+1\right) x+k^{3}+k^{2}+k-1, \\
& t_{2}(x, k)=x^{3}+(3 k+2) x^{2}+\left(3 k^{2}+4 k+2\right) x+k^{3}+2 k^{2}+2 k+2, \\
& t_{3}(x, k)=x^{3}+(3 k+2) x^{2}+\left(3 k^{2}+4 k\right) x+k^{3}+2 k^{2}-2, \\
& t_{4}(x, k)=x^{3}+(3 k+1) x^{2}+\left(3 k^{2}+2 k-1\right) x+k^{3}+k^{2}-k+1, \\
& t_{5}(x, k)=x^{3}+(3 k+2) x^{2}+\left(3 k^{2}+4 k-10\right) x+k^{3}+2 k^{2}-10 k-22, \tag{3.4}\\
& t_{6}(x, k)=x^{3}+(3 k+1) x^{2}+\left(3 k^{2}+2 k-11\right) x+k^{3}+k^{2}-11 k+11, \\
& t_{7}(x, k)=x^{3}+(3 k+1) x^{2}+\left(3 k^{2}+2 k-31281\right) x+k^{3}+k^{2}-31281 k-2139919, \\
& t_{8}(x, k)=x^{3}+(3 k+2) x^{2}+\left(3 k^{2}+4 k-31280\right) x+k^{3}+2 k^{2}-31280 k+2108638 .
\end{align*}
$$

Consequently, T can be written as $T=\bigcup_{j=1}^{8}\left\{t_{j}(x, k) ; k \in \mathbb{Z}\right\}$ where $\left\{t_{j}(x, k) ; k \in \mathbb{Z}\right\}$ are pairwise disjoint sets. Finally, by (3.4), $t(x)=t_{3}(x,-1)$.

4. The Cubic Character of the Field $\mathbb{F}_{p^{2}}$

We start this section with a more general theorem.
Theorem 4.1. Let \mathbb{H} be a subfield of the field $\mathbb{G},[\mathbb{G}: \mathbb{H}]=2$, char $\mathbb{H} \neq 2,3$ and let $g(x)=$ $x^{3}+r x+s \in \mathbb{H}[x]$ with $r \neq 0$. Assume that $g(x)$ is irreducible over \mathbb{H} or $g(x)$ has three distinct roots in \mathbb{H}. Further let $d_{g}=r^{3} / 27+s^{2} / 4$ and $\varepsilon, \lambda \in \mathbb{G}$ be such that $\varepsilon^{2}+\varepsilon+1=0$ and $\lambda^{2}=d_{g}$. Then the following statements are equivalent:
(i) $g(x)$ has three distinct roots in \mathbb{H}.
(ii) $g(x)$ has three distinct roots in \mathbb{G}.
(iii) $A=-s / 2-\lambda$ is a cubic residue of \mathbb{G}.
(iv) $B=-s / 2+\lambda$ is a cubic residue of \mathbb{G}.

Proof. Clearly, (i) implies (ii). Assume (ii) and suppose that $g(x)$ is irreducible over \mathbb{H}. Then \mathbb{G} is a splitting field of $g(x)$ over \mathbb{H}. Hence, $[\mathbb{G}: \mathbb{H}]=3$ which is a contradiction. This proves that (i) and (ii) are equivalent. Next, a simple calculation yields $A B=(-r / 3)^{3}$. Since $r \neq 0$, it follows that (iii) and (iv) are equivalent.

Let \mathbb{K} be an arbitrary over-field of \mathbb{G} such that A, B are cubic residues of \mathbb{K}. Then there exists $\alpha, \gamma \in \mathbb{K}$ satisfying $\alpha^{3}=A, \gamma^{3}=B$. Since $(\alpha \gamma)^{3}=A B=(-r / 3)^{3}$ there exist $i \in\{0,1,2\}$ such that $\alpha \gamma \varepsilon^{i}=-r / 3$. Let $\beta=\gamma \varepsilon^{i}$. Then $\beta^{3}=B$ and $\alpha \beta=-r / 3$. Since $A+B=-s$, we have $g(\alpha+\beta)=A+B+(\alpha+\beta)(3 \alpha \beta+r)+s=0$.

Hence, it follows for $\mathbb{K}=\mathbb{G}$ that (iii) implies (ii). Finally, assume (ii) and suppose that A is not a cubic residue of \mathbb{G}. Let \mathbb{S} be a splitting field of $x^{3}-A$ over \mathbb{G}. Then A is a cubic residue of \mathbb{S} and $A B=(-r / 3)^{3}$ yields that B is a cubic reside of \mathbb{S}, too. By what was proved above, in the field $\mathbb{K}=\mathbb{S}$, there exist α, β such that $g(\alpha+\beta)=0$. Since $g(x)$ has three distinct roots in \mathbb{G}, we have $\alpha+\beta \in \mathbb{G}$. Let $\eta=\alpha+\beta$. Then $-s=A+B=\alpha^{3}+(\eta-\alpha)^{3}=3 \alpha^{2} \eta-3 \alpha \eta^{2}+\eta^{3}$. Since $1, \alpha, \alpha^{2}$ is a base of the extension \mathbb{S} / \mathbb{G}, we have $\eta=0$ and $s=0$. Let $\rho=-3 \lambda / r$. Then $\rho \in \mathbb{G}$ and $\lambda^{2}=d_{g}=r^{3} / 27$ yields $\rho^{3}=-27 \lambda^{3} / r^{3}=-\lambda=A$, a contradiction. Hence, (ii) implies (iii) as required. The proof is complete.

Note that Theorem 4.1 generalizes the results obtained in [5, pp. 229-230]. The following statement which is an easy consequence of Theorem 4.1 will be used in proving the main result presented in Section 5.
Theorem 4.2. Let p be a prime, $p>3$ and let $g(x)=x^{3}+r x+s \in \mathbb{F}_{p}[x]$ with $r \neq 0$. Assume that $g(x)$ is irreducible over \mathbb{F}_{p} or $g(x)$ has three distinct roots in \mathbb{F}_{p}. Then the following statements are equivalent:
(i) $g(x)$ has three distinct roots in \mathbb{F}_{p}.
(ii) $g(x)$ has three distinct roots in $\mathbb{F}_{p^{2}}$.
(iii) $A=-s / 2-\lambda$ is a cubic residue of $\mathbb{F}_{p^{2}}$.
(iv) $B=-s / 2+\lambda$ is a cubic residue of $\mathbb{F}_{p^{2}}$.

Remark 4.3. Theorems 4.1 and 4.2 also hold in the case of $r=0$ if we let $A=B=s$.
Let $\mathbb{F}_{p^{2}}^{\times}$denote the multiplicative group of the Galois field $\mathbb{F}_{p^{2}}$ where p is a prime, $p>3$. Recall that the cubic character χ of $\mathbb{F}_{p^{2}}$ is a mapping $\chi: \mathbb{F}_{p^{2}}^{\times} \rightarrow \mathbb{F}_{p^{2}}^{\times}$defined by $\chi(\xi)=\xi^{\left(p^{2}-1\right) / 3}$ for any $\xi \in \mathbb{F}_{p^{2}}^{\times}$. Let $\varepsilon \in \mathbb{F}_{p^{2}}^{\times}$be such that $\varepsilon^{2}+\varepsilon+1=0$. Then $\varepsilon^{3}=1$ and $\varepsilon \neq 1$. Clearly, if $\xi \in \mathbb{F}_{p^{2}}^{\times}$, then $\chi(\xi)=\varepsilon^{i}$ for some $i \in\{0,1,2\}$. Next, recall the following familiar properties of χ :

If $\xi_{1}, \xi_{2} \in \mathbb{F}_{p^{2}}^{\times}$, then $\chi\left(\xi_{1} \cdot \xi_{2}\right)=\chi\left(\xi_{1}\right) \cdot \chi\left(\xi_{2}\right)$.
If $\xi \in \mathbb{F}_{p^{2}}^{\times}$, then $\chi(\xi)=1$ if and only if ξ is a cube in the field $\mathbb{F}_{p^{2}}$.
If $\xi \in \mathbb{F}_{p}^{\times}$and $\chi(\xi)=1$, then ξ is a cube in the field \mathbb{F}_{p}.
Let $\lambda \in \mathbb{F}_{p^{2}}$ be such that $\lambda^{2}=d_{t}=11 / 27 \in \mathbb{F}_{p}$ and $g_{j}(x)=x^{3}+r_{j} x+s_{j}, j \in\{1, \ldots, 8\}$ be the cubic polynomials established in (3.3) considered as polynomials in $\mathbb{F}_{p}[x]$. For any $j \in\{1, \ldots, 8\}$, we define the elements $A\left(y_{j}\right), B\left(y_{j}\right) \in \mathbb{F}_{p^{2}}$ as follows:

$$
A\left(y_{j}\right)=-\frac{y_{j}}{27}-\frac{1}{9} \varkappa, B\left(y_{j}\right)=-\frac{y_{j}}{27}+\frac{1}{9} \varkappa \text { where } y_{j}=\frac{27}{2} s_{j} \text { and } \varkappa=9 \lambda .
$$

THE FIBONACCI QUARTERLY

Let $\mathbb{Y}=\left\{y_{j}, j=1, \ldots, 8\right\}$. Then $\mathbb{Y}=\{ \pm 17, \pm 19, \pm 199, \pm 28748141\}$ and $A(y), B(y) \neq 0$ in $\mathbb{F}_{p^{2}}$ for any $y \in \mathbb{Y}$ and $p \neq 17,29,809$. Furthermore, it is easy to verify that

$$
\begin{equation*}
\chi(A(y))=\chi(B(-y)) \text { and } \chi(A(y)) \cdot \chi(A(-y))=1 \text { for any } y \in \mathbb{Y} . \tag{4.1}
\end{equation*}
$$

Let

$$
\begin{aligned}
& R=\{A(17), B(-17), A(-19), B(19), A(-199), B(199), A(28748141), B(-28748141)\}, \\
& S=\{A(-17), B(17), A(19), B(-19), A(199), B(-199), A(-28748141), B(28748141)\} .
\end{aligned}
$$

The fundamental relations between the cubic characters of the elements of R and S will be stated in the following lemma.

Lemma 4.4. Let p be an arbitrary prime, $p \neq 2,3,17,29,809$. Then
(i) All elements of R have the same cubic character in $\mathbb{F}_{p^{2}}$.
(ii) All elements of S have the same cubic character in $\mathbb{F}_{p^{2}}$.
(iii) If $\rho \in R$ and $\sigma \in S$, then $\chi(\rho) \cdot \chi(\sigma)=1$.

Proof. By direct calculation we can easily verify that

$$
\begin{align*}
& (19+3 \sqrt{33}) \cdot(17+3 \sqrt{33})=(5+\sqrt{33})^{3}, \\
& (19+3 \sqrt{33}) \cdot(199-3 \sqrt{33})=(13+\sqrt{33})^{3}, \tag{4.2}\\
& (19+3 \sqrt{33}) \cdot(28748141+3 \sqrt{33})=(692+56 \sqrt{33})^{3} .
\end{align*}
$$

Since the mapping $H: \mathbb{Z}[\sqrt{33}] \rightarrow \mathbb{F}_{p^{2}}$ defined by $H(\alpha+\beta \sqrt{33})=\alpha+\beta \varkappa$ is a homomorphism of $\mathbb{Z}[\sqrt{33}]$ into $\mathbb{F}_{p^{2}},(4.2)$ yields $\chi(19+3 \varkappa) \cdot \chi(17+3 \varkappa)=\chi(19+3 \varkappa) \cdot \chi(199-3 \varkappa)=\chi(19+$ $3 \varkappa) \cdot \chi(28748141+3 \varkappa)=1$. Multiplying by $\chi(19-3 \varkappa)$ and using the second equality of (4.1) for $y=19$ we get $\chi(B(-17))=\chi(A(-199))=\chi(B(-28748141))=\chi(A(-19))$. This together with the first equality of (4.1) implies that all elements of R have the same cubic character. Since S can be written in the form $S=\{A(-y) ; A(y) \in R\} \cup\{B(-y) ; B(y) \in R\}$, the second equality of (4.1) implies that all elements of S have the same cubic character and $\chi(\rho) \cdot \chi(\sigma)=1$ for any $\rho \in R$ and $\sigma \in S$.

5. The Main Theorem

There exist five types of factorization of the cubic polynomial $f(x)=x^{3}+a x^{2}+b x+c \in \mathbb{Z}[x]$ over the Galois field \mathbb{F}_{p} with p a prime:

Type I: $f(x)$ is irreducible over \mathbb{F}_{p}, i.e., $f(x)$ has no root in \mathbb{F}_{p}.
Type II: $f(x)$ splits over \mathbb{F}_{p} into a linear factor and an irreducible quadratic factor.
Type III: $f(x)$ has three distinct roots in \mathbb{F}_{p}.
Type IV: $f(x)$ has a double root in \mathbb{F}_{p}.
Type V: $f(x)$ has a triple root in \mathbb{F}_{p}.
Cases I-V can partially be distinguished using the quadratic character of D_{f}. Let (D_{f} / p) denote the Legendre-Jacobi symbol. By the Stickelberger Parity Theorem [8] for the case of a cubic polynomial [10, p. 189], we can distinguish case II from cases I and III as follows.

Let N be the number of distinct roots of $f(x)=x^{3}+a x^{2}+b x+c \in \mathbb{Z}[x]$ over the Galois field \mathbb{F}_{p} with p a prime, $p>3$ and $p \nmid D_{f}$. Then

$$
\begin{gather*}
N=1 \text { if and only if }\left(D_{f} / p\right)=-1, \\
N=0 \text { or } N=3 \text { if and only if }\left(D_{f} / p\right)=1 . \tag{5.1}
\end{gather*}
$$

MORDELL'S EQUATION AND THE TRIBONACCI FAMILY

For distinguishing types I and III, we can use the cubic character and the field $\mathbb{F}_{p^{2}}$ by Theorem 4.2 as follows: Let $p>3$ and $\left(D_{f} / p\right)=1$. Set $r=b-a^{2} / 3, s=2 a^{3} / 27-a b / 3+c$, $d=r^{3} / 27+s^{2} / 4$ and let $\lambda \in \mathbb{F}_{p^{2}}$ with $\lambda^{2}=d$. Further let $A=-s / 2-\lambda, B=-s / 2+\lambda$ if $a^{2} \not \equiv 3 b(\bmod p)$ and $A=B=s$ if $a^{2} \equiv 3 b(\bmod p)$. Then
$f(x)$ is of type III if and only if A and B are cubic residues of $\mathbb{F}_{p^{2}}$.
Furthermore, for an arbitrary prime $p, f(x)$ has a multiple root in \mathbb{F}_{p} if and only if $p \mid D_{f}$. Clearly, for $p>2$, the condition $p \mid D_{f}$ is equivalent to $\left(D_{f} / p\right)=0$. Moreover, if $p>2$ and $p \mid D_{f}$, then using Viètes relations between the roots and coefficients of $f(x)$, it is easy to see that

$$
f(x) \text { is of the type } \begin{cases}\text { IV } & \text { if and only if } p \nmid a b-9 c \text { or } p \nmid a, p|b, p| c, \\ \mathrm{~V} & \text { otherwise. }\end{cases}
$$

Our next considerations will be restricted to polynomials $f(x)$ belonging to the Tribonacci family T. In this case, $D_{f}=-44$ and, for any prime $p \neq 2,11$, we have $\left(D_{f} / p\right)=(-44 / p)=$ ($p / 11$). See also [4, p. 23]. To prove the main theorem, we will need the following proposition.

Proposition 5.1. Let p be a prime, $p>3$ and $(p / 11)=1$. Then all polynomials in T have the same type of factorization over \mathbb{F}_{p}.

Proof. It is evident that, for any fixed $j \in\{1, \ldots, 8\}$, the polynomials $g_{j}(x)$ and $t_{j}(x, k), k \in \mathbb{Z}$ defined by (3.3) and (3.4) have the same type of factorization over an arbitrary Galois field \mathbb{F}_{p} with p a prime, $p>3$. Hence, it follows that all polynomials in T have the same type of factorization over \mathbb{F}_{p} if and only if the polynomials $g_{j}(x)=x^{3}+r_{j} x+s_{j} \in \mathbb{F}_{p}[x], j \in\{1, \ldots, 8\}$ have the same type of factorization over \mathbb{F}_{p}. Now we show that, if $p>3$ and $(p / 11)=1$, then $r_{j} \neq 0$ in \mathbb{F}_{p} for any $g_{j}(x)$. Suppose that $r_{j}=0$ for some j. Then it follows from (3.4) that $p \in\{17,29,809\}$. Since $(p / 11)=-1$ for any $p \in\{17,29,809\}$, a contradiction follows. Furthermore, if $p>3$ and $(p / 11)=1$, then, by (5.1), any $g_{j}(x), j \in\{1, \ldots, 8\}$ is of type I or type III. By Lemma 4.4, for any $\tau_{1}, \tau_{2} \in R \cup S$, we have $\chi\left(\tau_{1}\right)=1$ if and only if $\chi\left(\tau_{2}\right)=1$. This together with Theorem 4.2 concludes the proof.

Now we can to prove our main theorem.
Main Theorem 5.2. Let p be an arbitrary prime. Then all polynomials in T have the same type of factorization over the Galois field \mathbb{F}_{p}.

Proof. If $p>3$ and $(p / 11)=-1$, then the Stickelberger Parity Theorem says that each polynomial in T is of the type II over \mathbb{F}_{p}. If $p>3$ and $(p / 11)=1$, then all polynomials in T have the same type of factorization over \mathbb{F}_{p} by Proposition 5.1. Moreover, by the Stickelberger Parity Theorem, this type is either I or III.

Let $p=2$. Substituting $k=0,1$ into (3.4), we obtain the following identities over $\mathbb{F}_{2}[x]$: $t_{1}(x, 0)=t_{2}(x, 1)=t_{3}(x, 1)=t_{4}(x, 0)=t_{5}(x, 1)=t_{6}(x, 0)=t_{7}(x, 0)=t_{8}(x, 1)$ $=(x-1)^{3}$, and $t_{1}(x, 1)=t_{2}(x, 0)=t_{3}(x, 0)=t_{4}(x, 1)=t_{5}(x, 0)=t_{6}(x, 1)=t_{7}(x, 1)=t_{8}(x, 0)=x^{3}$. This proves that each polynomial in T is of type V over \mathbb{F}_{2}. Let $p=3$. Substituting $k=0,1,2$

THE FIBONACCI QUARTERLY

into (3.4), we get the following identities over $\mathbb{F}_{3}[x]$:

$$
\begin{align*}
& t_{1}(x, 0)=t_{4}(x, 1)=t_{6}(x, 0)=t_{7}(x, 2)=x^{3}+x^{2}+x+2 \\
& t_{1}(x, 1)=t_{4}(x, 2)=t_{6}(x, 1)=t_{7}(x, 0)=x^{3}+x^{2}+2 \\
& t_{1}(x, 2)=t_{4}(x, 0)=t_{6}(x, 2)=t_{7}(x, 1)=x^{3}+x^{2}+2 x+1 \\
& t_{2}(x, 0)=t_{3}(x, 2)=t_{5}(x, 0)=t_{8}(x, 1)=x^{3}+2 x^{2}+2 x+2, \tag{5.2}\\
& t_{2}(x, 1)=t_{3}(x, 0)=t_{5}(x, 1)=t_{8}(x, 2)=x^{3}+2 x^{2}+1 \\
& t_{2}(x, 2)=t_{3}(x, 1)=t_{5}(x, 2)=t_{8}(x, 0)=x^{3}+2 x^{2}+x+1
\end{align*}
$$

By direct calculation, it is easy to verify that all polynomials in (5.2) are irreducible over \mathbb{F}_{3}. This means that each polynomial in T is of type I over \mathbb{F}_{3}.

Finally, let $p=11$. Then the polynomials $g_{j}(x), j \in\{1, \ldots, 8\}$ established in (3.3), have the following factorizations over \mathbb{F}_{11} :

$$
\begin{array}{ll}
g_{1}(x)=(x+10)^{2}(x+2), & g_{2}(x)=(x+1)^{2}(x+9), \\
g_{3}(x)=(x+8)^{2}(x+6), & g_{4}(x)=(x+3)^{2}(x+5), \\
g_{5}(x)=(x+4)^{2}(x+3), & g_{6}(x)=(x+7)^{2}(x+8), \tag{5.3}\\
g_{7}(x)=(x+9)^{2}(x+4), & g_{8}(x)=(x+2)^{2}(x+7) .
\end{array}
$$

From (5.3) it follows that each polynomial in T is of type IV over \mathbb{F}_{11}. The proof is complete.

6. Conclusion

The results presented in Theorem 2.3 and Corollary 2.4 make it possible to find the set of all cubic polynomials $f(x)=x^{3}+a x^{2}+b x+c \in \mathbb{Z}[x]$ with a given discriminant $0 \neq D \in \mathbb{Z}$ if all integral solutions of Mordell's equation $Y^{2}=X^{3}+k, k=432 D$ are known. Thanks to the computations made by Gebel, Pethö and Zimmer [3], all integral solutions of this equation are determined for any $0 \neq|k| \leq 10^{5}$ and thus, for any $0 \neq|D| \leq 231$. Consequently, the method used in proving the Main Theorem 5.2 can actually be applied to any particular $0 \neq|D| \leq 231$. These facts open a new and interesting question, namely, for which $D \in \mathbb{Z}$ can the Main Theorem 5.2 be generalized. However, to determine all such D 's can be a difficult problem.

References

[1] L. E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea, New York, (1952).
[2] O. Hemer, On the Diophantine Equation $y^{2}-k=x^{3}$, Doctoral Dissertation, Uppsala, (1952).
[3] J. Gebel, A. Pethö, and G. H. Zimmer, On Mordell's equation, Compositio Mathematica, 110 (1998), 335-367.
[4] J. Klaška and L. Skula, The cubic character of the Tribonacci roots, The Fibonacci Quarterly, 48.1 (2010), 21-28.
[5] J. Klaška and L. Skula, Periods of the Tribonacci sequence modulo a prime $p \equiv 1(\bmod 3)$, The Fibonacci Quarterly, 48.3 (2010), 228-235.
[6] J. London and M. Finkelstein, On Mordell's Equation $y^{2}-k=x^{3}$, Bowling Green, Ohio Bowling Green State University, (1973).
[7] L. J. Mordell, The Diophantine equation $y^{2}-k=x^{3}$, London Math. Soc., 13 (1913), 60-80.
[8] L. Stickelberger, Über eine neue Eigenschaft der Diskriminanten algebraischer Zahlkörper, Verhand. I. Internat. Math. Kongress, (1897), 182-193.
[9] A. Thue, Über Annährungswerte algebraischer Zahlen, Reine u. Angew. Math., 135 (1909), 284-305.
[10] G. Voronoï, Sur une propriété du discriminant des fonctions entières, Verhand. III. Internat. Math. Kongress, (1905), 186-189.

MORDELL'S EQUATION AND THE TRIBONACCI FAMILY

MSC2010: 11B39, 11D25
Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 61669 Brno, Czech Republic

E-mail address: klaska@fme.vutbr.cz
Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 61669 Brno, Czech Republic

E-mail address: skula@fme.vutbr.cz

[^0]: The second author was supported by the Ministry of Education, Youth and Sports of the Czech Republic, research plan MSM0021630518 "Simulation modeling of mechatronic systems".

