ON THE CYCLE STRUCTURE OF REPEATED EXPONENTIATION MODULO A PRIME POWER

MIN SHA

Abstract

We obtain some results about the repeated exponentiation modulo a prime power from the viewpoint of arithmetic dynamical systems. In particular, we extend two asymptotic formulas about periodic points and tails in the case of modulo a prime to the case of modulo a prime power.

1. Introduction

For a positive integer M, denote by $\mathbb{Z} / M \mathbb{Z}$ the residue ring of \mathbb{Z} modulo M and ($\mathbb{Z} / M \mathbb{Z})^{*}$ the unit group. For an integer $k \geq 2$, we consider the following endomorphism of $(\mathbb{Z} / M \mathbb{Z})^{*}$,

$$
f:(\mathbb{Z} / M \mathbb{Z})^{*} \rightarrow(\mathbb{Z} / M \mathbb{Z})^{*}, x \rightarrow x^{k}
$$

For any initial value $x \in(\mathbb{Z} / M \mathbb{Z})^{*}$, we repeat the action of f, then we get a sequence

$$
x_{0}=x, x_{n}=x_{n-1}^{k}, n=1,2,3, \ldots
$$

This sequence is known as the power generator of pseudorandom numbers. Studying such sequences in the cases that M is a prime or a product of two distinct primes, is of independent interest and is also important for several cryptographic applications, see [1, 6]. From the viewpoint of cryptography, there are numerous results about these sequences, see the papers mentioned in [2], more recently see [3] and its references.

If we view $(\mathbb{Z} / M \mathbb{Z})^{*}$ as a vertex set and draw a directed edge from a to b if $f(a)=b$, then we get a digraph. There are also many results in this direction, see [12] and the papers mentioned there, more recently see $[8,9,10,11]$.

As in [2], in this article we will study $(\mathbb{Z} / M \mathbb{Z})^{*}$ under the action of f from the viewpoint of arithmetic dynamical systems, where M is a prime power. Specifically we will extend two asymptotic formulas in [2] to the case of modulo a prime power.

It is easy to see that for any initial value $x \in(\mathbb{Z} / M \mathbb{Z})^{*}$ the corresponding sequence becomes eventually periodic, that is, for some positive integer $s_{k, M}(x)$ and tail $t_{k, M}(x)<s_{k, M}(x)$, the elements $x_{0}=x, x_{1}, \ldots, x_{s_{k, M}(x)-1}$ are pairwise distinct and $x_{s_{k, M}(x)}=x_{t_{k, M}(x)}$. So we can define a tail function $t_{k, M}$ on $(\mathbb{Z} / M \mathbb{Z})^{*}$.

The sequence $x_{t_{k, M}(x)}, \ldots, x_{s_{k, M}(x)-1}$, ordered up to a cyclic shift, is called a cycle. The cycle length is $c_{k, M}(x)=s_{k, M}(x)-t_{k, M}(x)$. The elements in the cycle are called periodic points and their periods are $c_{k, M}(x)$. So we can define a cycle length function $c_{k, M}$ on $(\mathbb{Z} / M \mathbb{Z})^{*}$. In particular, $[4,5]$ gave lower bounds for the largest period.

We denote by $P_{r}(k, M)$ and $P(k, M)$, respectively the number of periodic points with period r and the number of periodic points in $(\mathbb{Z} / M \mathbb{Z})^{*}$. Also, we denote by $C_{r}(k, M)$ and $C(k, M)$, respectively the number of cycles with length r and the number of cycles in $(\mathbb{Z} / M \mathbb{Z})^{*}$. We denote the average values of $c_{k, M}(x)$ and $t_{k, M}(x)$ over all $x \in(\mathbb{Z} / M \mathbb{Z})^{*}$ by $c(k, M)$ and $t(k, M)$,

ON THE CYCLE STRUCTURE OF EXPONENTIATION MODULO A PRIME POWER

 respectively,$$
c(k, M)=\frac{1}{\varphi(M)} \sum_{x \in(\mathbb{Z} / M \mathbb{Z})^{*}} c_{k, M}(x), \quad t(k, M)=\frac{1}{\varphi(M)} \sum_{x \in(\mathbb{Z} / M \mathbb{Z})^{*}} t_{k, M}(x),
$$

where φ is the Euler totient function.
When M is an odd prime power, we will derive explicit formulas for $P_{r}(k, M)$ and $C_{r}(k, M)$ by the results in [10], and we will also derive explicit formulas for $c(k, M)$ and $t(k, M)$ which generalize those in [11].

For two integers $r, m \geq 1$, we call

$$
\lim _{X \rightarrow \infty} \frac{1}{\pi(X)} \sum_{p \leq X} P_{r}\left(k, p^{m}\right)
$$

the asymptotic mean number of periodic points with period r in $\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{*}$ for different choices of prime p, and we denote it by $A P_{r}(k, m)$. Similarly, we can define the asymptotic mean number for cycles with length r and denote it by $A C_{r}(k, m)$. We will derive explicit formulas for $A P_{r}(k, m)$ and $A C_{r}(k, m)$.

For an integer $m \geq 1$, following [11], we study the average values of $P\left(k, p^{m}\right)$ and $t\left(k, p^{m}\right)$ over all primes $p \leq N$,

$$
S_{0}(k, m, N)=\frac{1}{\pi(N)} \sum_{p \leq N} P\left(k, p^{m}\right), \quad S(k, m, N)=\frac{1}{\pi(N)} \sum_{p \leq N} t\left(k, p^{m}\right)
$$

where, as usual, $\pi(N)$ is the number of primes $p \leq N$. Following the method in [2], we will get asymptotic formulas for $S_{0}(k, m, N)$ and $S(k, m, N)$.

2. Preparations

For two integers l and n, we denote their greatest common divisor by $\operatorname{gcd}(l, n)$. For a positive integer n, we denote by $\tau(n)$ the number of its positive divisors. Theorem 4.9 in [7] tells us that

$$
\begin{equation*}
\lim _{X \rightarrow \infty} \frac{1}{\pi(X)} \sum_{p \leq X} \operatorname{gcd}(p-1, n)=\tau(n) . \tag{2.1}
\end{equation*}
$$

For two integers $m \geq 1$ and $n \geq 2$, we denote the largest prime divisor of n by q. Then we have

$$
\begin{align*}
& \lim _{X \rightarrow \infty} \frac{1}{\pi(X)} \sum_{p \leq X} \operatorname{gcd}\left(p^{m-1}(p-1), n\right) \\
& \quad=\lim _{X \rightarrow \infty} \frac{1}{\pi(X)} \sum_{q<p \leq X} \operatorname{gcd}\left(p^{m-1}(p-1), n\right) \tag{2.2}\\
& \quad=\lim _{X \rightarrow \infty} \frac{1}{\pi(X)} \sum_{q<p \leq X} \operatorname{gcd}(p-1, n) \\
& \quad=\tau(n) .
\end{align*}
$$

Notice that if p is an odd prime, $\operatorname{gcd}\left(p^{m}-p^{m-1}, n\right)$ is the number of solutions of the equation $x^{n}=1$ in $\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{*}$.

THE FIBONACCI QUARTERLY

Given two integers a and n with $\operatorname{gcd}(a, n)=1$, following the method in the proof of formula (2) in [2], we can get

$$
\begin{equation*}
\sum_{\substack{p \leq X \\ p \equiv a(\bmod n)}} p^{m}=\frac{X^{m+1}}{(m+1) \varphi(n) \ln X}+O\left(X^{m+1} \ln ^{-2} X\right) \tag{2.3}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\sum_{\substack{p \leq X \\ p \equiv a(\bmod n)}} p^{m-1}(p-1)=\frac{X^{m+1}}{(m+1) \varphi(n) \ln X}+O\left(X^{m+1} \ln ^{-2} X\right) . \tag{2.4}
\end{equation*}
$$

Following the same method in the proof of formula (4) in [2], we have

$$
\begin{equation*}
\sum_{\substack{p \leq X \\ p \equiv a(\bmod n)}} p^{m-1}(p-1)=O\left(\frac{X^{m+1}}{n}+X^{m}\right) \tag{2.5}
\end{equation*}
$$

3. Main Results

For two integers d and n satisfying $\operatorname{gcd}(d, n)=1$, we denote the multiplicative order of n modulo d by ord ${ }_{d} n$. For an integer n and a prime p, we denote $v_{p}(n)$ the exact power of p dividing n.

Let μ be the Möbius function. For a real number a, we denote $\lceil a\rceil$ the least integer which is not less than a.

Write $k=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{s}^{n_{s}} \geq 2$, where p_{1}, \ldots, p_{s} are distinct primes, $p_{1}<p_{2}<\cdots<p_{s}$ and $n_{1}, \ldots, n_{s} \geq 1$. Let m be a fixed positive integer.

Proposition 3.1. Let p be an odd prime and r be a positive integer. Write $p^{m}-p^{m-1}=$ $p_{1}^{r_{1}} \cdots p_{s}^{r_{s}} \cdot \rho$, where $r_{1}, \ldots, r_{s} \geq 0$ are integers and $\operatorname{gcd}\left(p_{1} \ldots p_{s}, \rho\right)=1$. We have
(1) $C_{r}\left(k, p^{m}\right)=\frac{1}{r} \sum_{d \mid r} \mu(d) \operatorname{gcd}\left(p^{m}-p^{m-1}, k^{r / d}-1\right)$.
(2) $P_{r}\left(k, p^{m}\right)=\sum_{d \mid r} \mu(d) \operatorname{gcd}\left(p^{m}-p^{m-1}, k^{r / d}-1\right)$.
(3) $P\left(k, p^{m}\right)=\rho$.
(4) $C\left(k, p^{m}\right)=\sum_{d \mid \rho} \frac{\varphi(d)}{\text { ord }_{d} k}$.
(5) For any $x \in\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{*}$, denote $\operatorname{ord}_{p^{m}} x$ by $\operatorname{ord} x, c_{k, p^{m}}(x)=\operatorname{ord}_{\operatorname{gcd}(\operatorname{ord} x, \rho)} k$.
(6) $c\left(k, p^{m}\right)=\frac{1}{\rho} \sum_{d \mid \rho} \varphi(d) \operatorname{ord}_{d} k$.
(7) For any $x \in\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{*}$, denote $\operatorname{ord}_{p^{m}} x$ by ord x,

$$
t_{k, p^{m}}(x)=\max \left\{\left\lceil\frac{v_{p_{1}}(\operatorname{ord} x)}{n_{1}}\right\rceil,\left\lceil\frac{v_{p_{2}}(\operatorname{ord} x)}{n_{2}}\right\rceil, \ldots,\left\lceil\frac{v_{p_{s}}(\operatorname{ord} x)}{n_{s}}\right\rceil\right\} .
$$

(8) $t\left(k, p^{m}\right)=\frac{1}{p_{1}^{r_{1} \ldots p_{s}^{r_{s}}}} \sum_{d \mid p_{1}^{r_{1}} \ldots p_{s}^{r_{s}}} \varphi(d) \max \left\{\left\lceil\frac{v_{p_{1}}(d)}{n_{1}}\right\rceil, \ldots,\left\lceil\frac{v_{p_{s}}(d)}{n_{s}}\right\rceil\right\}$.

Proof. (1) and (2) By Möbius inversion formula and Theorem 5.6 in [10].
(3) A special case of Corollary 3 in [12].
(4) By Theorem 2 and Theorem 3 in [12]
(5) By Lemma 3 and Theorem 2 in [12].

ON THE CYCLE STRUCTURE OF EXPONENTIATION MODULO A PRIME POWER
(6) Denote $p_{1}^{r_{1}} \cdots p_{s}^{r_{s}}$ by w, from (5), we have

$$
\begin{aligned}
c\left(k, p^{m}\right) & =\frac{1}{p^{m}-p^{m-1}} \sum_{x \in\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{*}} c_{k, p^{m}}(x) \\
& =\frac{1}{p^{m}-p^{m-1}} \sum_{d \mid \rho} \sum_{n \mid w} \varphi(d n) \operatorname{ord}_{d} k \\
& =\frac{1}{p^{m}-p^{m-1}} \sum_{n \mid w} \varphi(n) \sum_{d \mid \rho} \varphi(d) \operatorname{ord}_{d} k=\frac{1}{\rho} \sum_{d \mid \rho} \varphi(d) \operatorname{ord}_{d} k .
\end{aligned}
$$

(7) Let w_{x} be the factor of $\operatorname{ord} x$ such that $\frac{\operatorname{ord} x}{w_{x}}$ is the largest factor relatively prime to k. By Lemma 3 in [12], we have $t_{k, p^{m}}(x)$ is the least non-negative integer l such that $w_{x} \mid k^{l}$. In other words, $t_{k, p^{m}}(x)$ is the least non-negative integer l such that $v_{p_{i}}($ ord $x) \leq l n_{i}$, for any $1 \leq i \leq s$. Then we get the desired result.
(8) Notice that for any $x \in\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{*}$, ord $x \mid\left(p^{m}-p^{m-1}\right)$, and there are $\varphi(\operatorname{ord} x)$ elements with the order ord x. By (7), we have

$$
t\left(k, p^{m}\right)=\frac{1}{p^{m}-p^{m-1}} \sum_{d \mid\left(p^{m}-p^{m-1}\right)} \varphi(d) \max \left\{\left\lceil\frac{v_{p_{1}}(d)}{n_{1}}\right\rceil,\left\lceil\frac{v_{p_{2}}(d)}{n_{2}}\right\rceil, \ldots,\left\lceil\frac{v_{p_{s}}(d)}{n_{s}}\right\rceil\right\}
$$

Furthermore, we have

$$
\begin{aligned}
t\left(k, p^{m}\right) & =\frac{1}{p^{m}-p^{m-1}} \sum_{d \mid p_{1}^{r_{1}} \ldots p_{s}^{r_{s}} \rho} \varphi(d) \max \left\{\left\lceil\frac{v_{p_{1}}(d)}{n_{1}}\right\rceil, \ldots,\left\lceil\frac{v_{p_{s}}(d)}{n_{s}}\right\rceil\right\} \\
& =\frac{1}{p^{m}-p^{m-1}} \sum_{i_{1}=0}^{r_{1}} \cdots \sum_{i_{s}=0}^{r_{s}} \sum_{d \mid \rho} \varphi\left(p_{1}^{i_{1}} \cdots p_{s}^{i_{s}} d\right) \max \left\{\left\lceil\frac{i_{1}}{n_{1}}\right\rceil, \ldots,\left\lceil\frac{i_{s}}{n_{s}}\right\rceil\right\} \\
& =\frac{1}{p^{m}-p^{m-1}} \sum_{d \mid \rho} \varphi(d) \sum_{i_{1}=0}^{r_{1}} \cdots \sum_{i_{s}=0}^{r_{s}} \varphi\left(p_{1}^{i_{1}} \cdots p_{s}^{i_{s}}\right) \max \left\{\left\lceil\frac{i_{1}}{n_{1}}\right\rceil, \ldots,\left\lceil\frac{i_{s}}{n_{s}}\right\rceil\right\} \\
& =\frac{1}{p_{1}^{r_{1}} \cdots p_{s}^{r_{s}}} \sum_{d \mid p_{1}^{r_{1} \ldots p_{s}^{r_{s}}}} \varphi(d) \max \left\{\left\lceil\frac{v_{p_{1}}(d)}{n_{1}}\right\rceil, \ldots,\left\lceil\frac{v_{p_{s}}(d)}{n_{s}}\right\rceil\right\} .
\end{aligned}
$$

Remark 3.2. If we put $k=2$ and $m=1$, then the formulas (3), (4), (6), and (8) correspond to Theorem 6 in [11].

Remark 3.3. Since the conclusions in [10] and [12] are about the general case of modulo a positive integer, it is easy to get similar formulas for the case of $p=2$.
Proposition 3.4. Let r be a positive integer, we have

$$
\begin{align*}
A P_{r}(k, m) & =\sum_{d \mid r} \mu(d) \tau\left(k^{r / d}-1\right) \tag{3.1}\\
A C_{r}(k, m) & =\frac{1}{r} \sum_{d \mid r} \mu(d) \tau\left(k^{r / d}-1\right) \tag{3.2}
\end{align*}
$$

Proof. Combining (2.2) and Proposition 3.1 (1) and (2), we can get the desired formulas.

THE FIBONACCI QUARTERLY

In the following, we denote by Ω the set of positive \mathcal{S}-units with $\mathcal{S}=\left\{p_{1}, \ldots, p_{s}\right\}$. Here a positive \mathcal{S}-unit means a positive integer whose prime divisors all belong to \mathcal{S}.
Proposition 3.5. We have

$$
\lim _{N \rightarrow \infty} \frac{S_{0}(k, m, N)}{N^{m}}=\frac{1}{m+1}\left(\prod_{i=1}^{s} \frac{p_{i}^{2}}{p_{i}^{2}-1}-1\right) .
$$

Proof. Let $Q=p_{1} p_{2} \ldots p_{s}$ and denote by \mathcal{U}_{Q} the set of integers $u, 1 \leq u \leq Q$, and $\operatorname{gcd}(u, Q)=$ 1.

For each odd prime p, let ρ_{p} be the largest divisor of $p^{m}-p^{m-1}$ coprime to $p_{1} p_{2} \ldots p_{s}$. It is easy to see

$$
\lim _{N \rightarrow \infty} \frac{S_{0}(k, m, N)}{N^{m}}=\lim _{N \rightarrow \infty} \frac{1}{N^{m} \pi(N)} \sum_{p_{s}<p \leq N} \rho_{p} .
$$

Notice that if a prime $p>p_{s}$, then $v_{p_{i}}\left(p^{m}-p^{m-1}\right)=v_{p_{i}}(p-1)$ for any $1 \leq i \leq s$. Hence, following the method in Theorem 2 of [2], we have

$$
\lim _{N \rightarrow \infty} \frac{S_{0}(k, m, N)}{N^{m}}=\lim _{N \rightarrow \infty} \frac{1}{N^{m} \pi(N)} \sum_{q \in \Omega} q^{-1} \sum_{u \in \mathcal{U}_{Q}} \sum_{\substack{p \leq N \\ p \equiv q u+1(\bmod q Q)}}\left(p^{m}-p^{m-1}\right) .
$$

Following the method in Theorem 2 of [2], we have

$$
\lim _{N \rightarrow \infty} \frac{S_{0}(k, m, N)}{N^{m}}=\frac{1}{m+1} \sum_{q \in \Omega} \frac{1}{q^{2}} .
$$

Moreover, we have

$$
\begin{aligned}
\sum_{q \in \Omega} \frac{1}{q^{2}} & =\sum_{i_{1}, \ldots, i_{s}=0}^{\infty} \frac{1}{\left(p_{1}^{i_{1}} \cdots p_{s}^{i_{s}}\right)^{2}}-1 \\
& =\sum_{i_{1}=0}^{\infty} \frac{1}{p_{1}^{2 i_{1}}} \cdots \sum_{i_{s}=0}^{\infty} \frac{1}{p_{s}^{2 i_{s}}}-1 \\
& =\prod_{i=1}^{s} \frac{p_{i}^{2}}{p_{i}^{2}-1}-1 .
\end{aligned}
$$

Hence, we get the desired result.
Corollary 3.6. We have

$$
\frac{1}{k^{2}(m+1)}<\lim _{N \rightarrow \infty} \frac{S_{0}(k, m, N)}{N^{m}}<\frac{2^{s}-1}{m+1} .
$$

Proof. Notice that for any prime p, we have

$$
1+p^{-2}<\frac{p^{2}}{p^{2}-1}=1+\frac{1}{p^{2}-1}<2 .
$$

Given $q=p_{1}^{r_{1}} \cdots p_{s}^{r_{s}} \in \Omega$, we denote

$$
\psi(q)=\frac{1}{q} \sum_{d \mid q} \varphi(d) \max \left\{\left\lceil\frac{v_{p_{1}}(d)}{n_{1}}\right\rceil, \ldots,\left\lceil\frac{v_{p_{s}}(d)}{n_{s}}\right\rceil\right\} .
$$

ON THE CYCLE STRUCTURE OF EXPONENTIATION MODULO A PRIME POWER

Proposition 3.7. We have

$$
\lim _{N \rightarrow \infty} S(k, m, N)=\sum_{q \in \Omega} \frac{\psi(q)}{q} .
$$

Proof. Given $q=p_{1}^{r_{1}} \cdots p_{s}^{r_{s}} \in \Omega$. Suppose $r_{1} \geq 1$. We want to estimate $\frac{1}{q} \sum_{d \mid q} \varphi(d)\left\lceil\frac{v_{p_{1}}(d)}{n_{1}}\right\rceil$. For simplicity, we replace p_{1}, r_{1}, and n_{1} by p, r, and n, respectively. By the division algorithm, we write $r=\ln +d$ with $0 \leq d<n$. We have

$$
\begin{aligned}
\frac{1}{q} \sum_{d \mid q} \varphi(d)\left\lceil\frac{v_{p}(d)}{n}\right\rceil & =\frac{1}{p^{r}} \sum_{d \mid p^{r}} \varphi(d)\left\lceil\frac{v_{p}(d)}{n}\right\rceil \\
& =\frac{p-1}{p^{r}} \sum_{i=1}^{r} p^{i-1}\left\lceil\frac{i}{n}\right\rceil \\
& =\frac{p-1}{p^{r}}\left[\sum_{i=1}^{n} p^{i-1}+\sum_{i=n+1}^{2 n} 2 p^{i-1}+\cdots+\sum_{i=(l-1) n+1}^{l n} l p^{i-1}+\sum_{i=l n+1}^{l n+d}(l+1) p^{i-1}\right] \\
& =\frac{p^{n}-1}{p^{r}}\left[1+2 p^{n}+\cdots+l p^{(l-1) n}\right]+\frac{(l+1) p^{l n}\left(p^{d}-1\right)}{p^{r}} \\
& =\frac{l p^{l n}}{p^{r}}-\frac{p^{l n}-1}{p^{r}\left(p^{n}-1\right)}+\frac{(l+1) p^{l n}\left(p^{d}-1\right)}{p^{r}} \\
& \leq l+(l+1) \leq 3 r .
\end{aligned}
$$

Hence, we have

$$
\begin{align*}
\psi(q) & \leq \frac{1}{q} \sum_{d \mid q} \varphi(d)\left(\left\lceil\frac{v_{p_{1}}(d)}{n_{1}}\right\rceil+\cdots+\left\lceil\frac{v_{p_{s}}(d)}{n_{s}}\right\rceil\right) \\
& \leq 3\left(r_{1}+\cdots+r_{s}\right) \tag{3.3}\\
& \leq \frac{3}{\ln 2} \ln q=O(\ln q) .
\end{align*}
$$

Similarly to Proposition 3.5, by Proposition 3.1 (8), we have

$$
\lim _{N \rightarrow \infty} S(k, m, N)=\lim _{N \rightarrow \infty} \frac{1}{\pi(N)} \sum_{q \in \Omega} \psi(q) \sum_{u \in \mathcal{U}_{Q}} \sum_{\substack{p \leq N \\ p \equiv q u+1(\bmod q Q)}} 1 .
$$

Then following the method in Theorem 2 of [2], we can get the desired result.
Corollary 3.8. We have

$$
\frac{1}{k}<\lim _{N \rightarrow \infty} S(k, m, N)<\frac{5 \sqrt{p_{1}} \cdots \sqrt{p_{s}}}{\left(\sqrt{p_{1}}-1\right) \cdots\left(\sqrt{p_{s}}-1\right)} .
$$

THE FIBONACCI QUARTERLY

Proof. On one hand we have

$$
\begin{aligned}
\sum_{q \in \Omega} \frac{\psi(q)}{q} & >\sum_{i_{1} \geq n_{1}, \cdots, i_{s} \geq n_{s}} \frac{\varphi\left(p_{1}^{i_{1}} \cdots p_{s}^{i_{s}}\right)}{\left(p_{1}^{i_{1}} \cdots p_{s}^{i_{s}}\right)^{2}} \\
& =\frac{\left(p_{1}-1\right) \cdots\left(p_{s}-1\right)}{p_{1} \cdots p_{s}} \sum_{i_{1} \geq n_{1}}^{\infty} \frac{1}{p_{1}^{i_{1}}} \cdots \sum_{i_{s} \geq n_{s}}^{\infty} \frac{1}{p_{s}^{i_{s}}} \\
& =\frac{1}{k} .
\end{aligned}
$$

On the other hand, by (3.3) we have $\psi(q)<5 \ln q$, then we have

$$
\begin{aligned}
\sum_{q \in \Omega} \frac{\psi(q)}{q} & <\sum_{q \in \Omega} \frac{5 \ln q}{q} \\
& <5 \sum_{q \in \Omega} \frac{1}{\sqrt{q}} \\
& =5 \sum_{i_{1}=0, \cdots, i_{s}=0} \frac{1}{\sqrt{p_{1}^{i_{1}} \cdots p_{s}^{i_{s}}}} \\
& =\frac{5 \sqrt{p_{1} \cdots \sqrt{p_{s}}}}{\left(\sqrt{p_{1}}-1\right) \cdots\left(\sqrt{p_{s}}-1\right)} .
\end{aligned}
$$

4. Remarks on the General Case

In this section, we will give some remarks on the case of modulo a positive integer.
We can deduce formulas for $C_{r}(k, M)$ and $P_{r}(k, M)$ directly from Theorem 5.6 in [10]. Corollary 3 in [12] has given a formula for $P(k, M)$. We can also derive a formula for $C(K, M)$ directly by applying Theorem 2 and Theorem 3 in [12].

Following the same methods, we can easily determine the cycle length function $c_{k, M}(x)$ and the tail function $t_{k, M}(x)$ on $(\mathbb{Z} / M \mathbb{Z})^{*}$, then we can get formulas for $c(k, M)$ and $t(k, M)$.

In fact, [12] and [10] can tell us more information about the properties of repeated exponentiation modulo a positive integer.

5. Acknowledgment

We would like to thank Prof. I. E. Shparlinski for suggesting this problem and for his helpful advice.

References

[1] L. Blum, M. Blum, and M. Shub, A simple unpredictable pseudo-random number generator, SIAM J. Comp., 15 (1986), 364-383.
[2] W.-S. Chou and I. E. Shparlinski, On the cycle structure of repeated exponentiation modulo a prime, J. Number Theory, 107 (2004), 345-356.
[3] E. D. El-Mahassni, On the distribution of the power generator over a residue ring for parts of the period, Rev. Mat. Complut., 21 (2008), 319-325.
[4] J. B. Friedlander, C. Pomerance, and I. E. Shparlinski, Period of the power generator and small values of Carmichael's function, Math. Comp., 70 (2001), 1591-1605.
[5] P. Kurlberg and C. Pomerance, On the period of the linear congruential and power generators, Acta Arith., 119 (2005), 149-169.

ON THE CYCLE STRUCTURE OF EXPONENTIATION MODULO A PRIME POWER

[6] J. C. Lagarias, Pseudorandom number generators in cryptography and number theory, Proc. Symp. in Appl. Math., Amer. Math. Soc., Providence, RI, 42 (1990), 115-143.
[7] M. Nilsson, Cycles of monomials and perturbated monomial p-adic dynamical systems, Ann. Math. Blaise Pascal, 7.1 (2000), 37-63.
[8] L. Somer and M. Křížek, Structure of digraphs associated with quadratic congruences with composite moduli, Discrete Math., 306 (2006), 2174-2185.
[9] L. Somer and M. Křížek, On semiregular digraphs of the congruence $x^{k} \equiv y(\bmod n)$, Comment. Math. Univ. Carolin., 48 (2007), 41-58.
[10] L. Somer and M. Křižek, On symmetric digraphs of the congruence $x^{k} \equiv y(\bmod n)$, Discrete Math., 309 (2009), 1999-2009.
[11] T. Vasiga and J. Shallit, On the iteration of certain quadratic maps over GF(p), Discrete Math., 277 (2004), 219-240.
[12] B. Wilson, Power digraphs modulo n, The Fibonacci Quarterly, 36.3 (1998), 229-239.
MSC2010: 37P35, 11K45, 11B50
Institut de Mathematiques de Bordeaux, Universite Bordeaux 1, 33405 Talence Cedex, France E-mail address: shamin2010@gmail.com

