A TRIBONACCI-LIKE SEQUENCE OF COMPOSITE NUMBERS

JONAS ŠIURYS

Abstract

We find three positive integers x_{0}, x_{1}, x_{2} satisfying $\operatorname{gcd}\left(x_{0}, x_{1}, x_{2}\right)=1$ such that the tribonacci-like sequence $\left(x_{n}\right)_{n=0}^{\infty}$ given by $x_{n+1}=x_{n}+x_{n-1}+x_{n-2}$ for $n \geqslant 2$ consists of composite numbers only. The initial values are $x_{0}=99202581681909167232$, $x_{1}=67600144946390082339, x_{2}=139344212815127987596$. This is a natural extension of a similar result of Graham for the Fibonacci-like sequence.

1. Introduction

Let $S\left(x_{0}, x_{1}, x_{2}\right)=\left(x_{n}\right)_{n=0}^{\infty}$ be a sequence of integers satisfying the ternary recurrence relation

$$
\begin{equation*}
x_{n+1}=x_{n}+x_{n-1}+x_{n-2} \tag{1.1}
\end{equation*}
$$

for $n=2,3,4, \ldots$. The values of x_{0}, x_{1} and x_{2} determine the sequence $S\left(x_{0}, x_{1}, x_{2}\right)$. If $x_{0}=0$, $x_{1}=0$, and $x_{2}=1$, then $S\left(x_{0}, x_{1}, x_{2}\right)$ is a classical tribonacci sequence. This sequence has been examined by many authors. See, for example, $[5,8,11]$. The aim of this paper is to find three positive integers A, B, and C satisfying $\operatorname{gcd}(A, B, C)=1$ such that the sequence $S(A, B, C)$ contains no prime numbers.

In general, it is difficult to say whether a given integer sequence contains some prime (or composite) numbers or not. In 1960, Sierpiński [9] proved that there exist infinitely many odd integers k such that $k \cdot 2^{n}+1$ is composite for every $n \in \mathbb{N}$. Two years later, Selfridge (unpublished) showed that 78557 is a Sierpiński number, i.e., $78557 \cdot 2^{n}+1$ is composite for each $n \in \mathbb{N}$. However, after extensive computer calculation it has not yet been proven that 78557 is the smallest Sierpiński number (see, e.g., [3, Section B21], [14, 15]).

The main motivation of this paper is an old result of Graham [2]. He found a sequence given by some initial values x_{0}, x_{1} with $\operatorname{gcd}\left(x_{0}, x_{1}\right)=1$ and the binary recurrence

$$
x_{n+1}=x_{n}+x_{n-1}
$$

for $n=1,2,3, \ldots$ that contains only composite numbers. Graham's pair (x_{0}, x_{1}) was (331635635998274737472200656430763, 1510028911088401971189590305498785).
Several authors (see $[6,7,12]$) made some progress in finding smaller pairs. Currently, the smallest known such pair (in the sense that $\max \left(x_{0}, x_{1}\right)$ is the smallest positive integer) is due to Vsemirnov [10]

$$
\left(x_{0}, x_{1}\right)=(106276436867,35256392432) .
$$

The complete analysis of a binary linear recurrence sequence of composite numbers is given in [1]. The main result of [1] is the following: if $(a, b) \in \mathbb{Z}^{2}$, where $b \neq 0$ and $(a, b) \neq(\pm 2,-1)$, then there exist two positive relatively prime composite integers x_{0}, x_{1} such that the sequence given by $x_{n+1}=a x_{n}+b x_{n-1}, n=1,2, \ldots$, consists of composite numbers only.

As pointed out in [1], all these results are based on the fact that the Fibonacci sequence is a regular divisibility sequence, i.e., $F_{0}=0$ and $F_{n} \mid F_{m}$ if $n \mid m$. However, by a result of Hall [4], there are no regular divisibility sequences in case $S\left(0, x_{1}, x_{2}\right)$ for any $x_{1}, x_{2} \in \mathbb{Z}$.

A TRIBONACCI-LIKE SEQUENCE OF COMPOSITE NUMBERS

In this paper we shall overcome this difficulty and prove the following result.
Theorem 1.1. If

$$
\begin{aligned}
& x_{0}=99202581681909167232, \\
& x_{1}=67600144946390082339, \\
& x_{2}=139344212815127987596,
\end{aligned}
$$

then $\operatorname{gcd}\left(x_{0}, x_{1}, x_{2}\right)=1$ and the sequence $S\left(x_{0}, x_{1}, x_{2}\right)$ contains no prime numbers.
As the proof of this theorem is quite long, we will first prove two auxiliary lemmas. In Lemma 2.2, we give a sufficient condition for the sequence $\left(y_{n}\right)_{n=0}^{\infty} \equiv S(0, a, b)(\bmod p)$ under which $y_{k m} \equiv 0(\bmod p)$, where p is a prime number, $m \geqslant 2$ and $a, b \in \mathbb{Z}$. The notation $\left(y_{n}\right)_{n=0}^{\infty} \equiv S(0, a, b)(\bmod p)$ means "for every $n \geqslant 0, y_{n} \equiv S(0, a, b)_{n}(\bmod p)$ ". In Lemma 2.3 we discuss how to choose y_{1} and y_{2} so that the condition of Lemma 2.2 would be satisfied. In Section 3 our main result will be proved.

2. Auxiliary Lemmas

We first observe one elementary property of the tribonacci-like sequence.
Lemma 2.1. If $\left(u_{n}\right)_{n=0}^{\infty}=S(a, b, c),\left(v_{n}\right)_{n=0}^{\infty}=S\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$, and $\left(z_{n}\right)_{n=0}^{\infty}=S\left(a+a^{\prime}, b+b^{\prime}, c+\right.$ c^{\prime}), then $z_{n}=u_{n}+v_{n}$ for all $n \geqslant 0$.

The proof of this fact is by a trivial induction.
Define two sequences $\left(s_{n}\right)_{n=0}^{\infty}=S(0,1,0)$ and $\left(t_{n}\right)_{n=0}^{\infty}=S(0,0,1)$. Let p be a prime number and let $\left(y_{n}\right)_{n=0}^{\infty} \equiv S(0, a, b)(\bmod p)$ for $a, b \in \mathbb{Z}$. Lemma 2.1 implies

$$
\begin{equation*}
y_{n} \equiv s_{n} a+t_{n} b \quad(\bmod p) . \tag{2.1}
\end{equation*}
$$

Lemma 2.2. Let p be a prime number and let $\left(y_{n}\right)_{n=0}^{\infty} \equiv S(0, a, b)(\bmod p)$ with some $a, b \in \mathbb{Z}$. Suppose that $m \geqslant 2$ is an integer. If $y_{m} \equiv y_{2 m} \equiv 0(\bmod p)$ then $y_{k m} \equiv 0(\bmod p)$ for $k=0,1,2, \ldots$.

Proof. Let

$$
A=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \quad \text { and } \quad Y_{n}=\left(y_{n+2}, y_{n+1}, y_{n}\right)
$$

Then the recurrence relation $y_{n+3}=y_{n+2}+y_{n+1}+y_{n}$ can be rewritten in the matrix form $Y_{n+1}=Y_{n} A$, for $n=0,1,2 \ldots$ In particular, $Y_{n}=Y_{0} A^{n}$ and

$$
\begin{equation*}
Y_{k m}=\left(y_{k m+2}, y_{k m+1}, y_{k m}\right)=\left(y_{2}, y_{1}, y_{0}\right)\left(A^{m}\right)^{k} . \tag{2.2}
\end{equation*}
$$

Assume, that $y_{0} \equiv y_{m} \equiv y_{2 m} \equiv 0(\bmod p)$. If the vector $Y_{0}(\bmod p)$ is an eigenvector of A^{m} $(\bmod p)$, then $y_{k m} \equiv 0(\bmod p)$ by (2.2). If not, then $Y_{m}(\bmod p)$ and $Y_{0}(\bmod p)$ (considered as vectors over the finite field $\mathbb{Z} / p \mathbb{Z}$) are linearly independent, hence form a basis for the vector space $V=\{(u, v, 0)\} \subset(\mathbb{Z} / p \mathbb{Z})^{3}$. Since $Y_{2 m}=Y_{m} A^{m}$ modulo p is also in V by assumption, we have that $V A^{m} \subset V$. Therefore, by induction, $Y_{k m}(\bmod p)$ is in V for $k=0,1,2, \ldots$. Hence, $y_{k m} \equiv 0(\bmod p)$.
Lemma 2.3. Let p be a prime number. Suppose that $m \geqslant 2$ and $s_{m} t_{2 m}-s_{2 m} t_{m} \equiv 0(\bmod p)$. Then there exist $a, b \in \mathbb{Z}$ such that at least one of a, b is not divisible by p and

$$
s_{k m} a+t_{k m} b \equiv 0 \quad(\bmod p)
$$

for $k=0,1,2, \ldots$.

THE FIBONACCI QUARTERLY

Proof. Set $y_{n}=s_{n} a+t_{n} b$. Since $y_{0}=s_{0} a+t_{0} b=0$, by Lemma 2.2, it suffices to show that there exist a, b such that $y_{m} \equiv 0(\bmod p)$ and $y_{2 m} \equiv 0(\bmod p)$. Our aim is to solve the following system of linear equations:

$$
\left\{\begin{array}{l}
s_{m} a+t_{m} b \equiv 0 \quad(\bmod p), \tag{2.3}\\
s_{2 m} a+t_{2 m} b \equiv 0 \quad(\bmod p) .
\end{array}\right.
$$

If $s_{m} \equiv t_{m} \equiv s_{2 m} \equiv t_{2 m} \equiv 0(\bmod p)$, then we can choose $a=b=1$. Suppose that $t_{m} \not \equiv 0$ $(\bmod p)$ (the proof in the other cases, when p does not divide $s_{m}, s_{2 m}$ or $t_{2 m}$, is the same). Set $a=1, b=-t_{m}^{-1} s_{m}$ where t_{m}^{-1} denote an integer for which $t_{m} t_{m}^{-1} \equiv 1(\bmod p)$. It follows easily that the first equation of (2.3) is satisfied. Then the second equation is equivalent to

$$
\begin{equation*}
-s_{2 m} t_{m}+s_{m} t_{2 m} \equiv 0 \quad(\bmod p) . \tag{2.4}
\end{equation*}
$$

Hence, by the condition of the lemma, (2.4) is true, which completes the proof of the lemma.

3. Proof of Theorem 1.1

Consider the following table:

i	1	2	3	4	5	6	7	8	9	10	11
m_{i}	2	5	6	8	10	12	15	20	24	30	40
r_{i}	0	0	5	7	9	9	13	17	3	1	27

Table 1

One can verify that every integer belongs to at least one of the arithmetic progressions

$$
\begin{equation*}
P_{i}=\left\{m_{i} k+r_{i}, k \in \mathbb{Z}\right\}, \quad i=1,2, \ldots 11 . \tag{3.1}
\end{equation*}
$$

In other words, the integers m_{i}, r_{i} are chosen so that $P_{1}, P_{2}, \ldots, P_{11}$ is a covering system of \mathbb{Z}, i.e.,

$$
\begin{equation*}
\mathbb{Z}=\bigcup_{i=1}^{11} P_{i} . \tag{3.2}
\end{equation*}
$$

To prove (3.2) it is enough to check that any number between 1 and $\operatorname{gcd}\left(m_{1}, m_{2}, \ldots, m_{11}\right)=$ 120 is covered by at least one progression (3.1).

We are interested in the differences $s_{m_{i}} t_{2 m_{i}}-s_{2 m_{i}} t_{m_{i}}(i=1,2, \ldots, 11)$.
Let us fix $i \in\{1,2, \ldots, 11\}$. As we can see from Table 2, each prime number p_{i} divides the corresponding difference $s_{m_{i}} t_{2 m_{i}}-s_{2 m_{i}} t_{m_{i}}$. By Lemma 2.3, for every pair (p_{i}, m_{i}) we can choose $a_{i}, b_{i} \in \mathbb{Z}$ so that at least one of a_{i}, b_{i} is not divisible by p_{i} and

$$
\begin{equation*}
s_{k m_{i}} a_{i}+t_{k m_{i}} b_{i} \equiv 0 \quad\left(\bmod p_{i}\right) \tag{3.3}
\end{equation*}
$$

for $k=0,1,2, \ldots$.
Next, we shall construct the sequence $\left(x_{n}\right)_{n=0}^{\infty}=S\left(x_{0}, x_{1}, x_{2}\right)$ satisfying

$$
\begin{equation*}
x_{n} \equiv s_{m_{i}-r_{i}+n} a_{i}+t_{m_{i}-r_{i}+n} b_{i} \quad\left(\bmod p_{i}\right) \quad i=1,2, \ldots 11 \tag{3.4}
\end{equation*}
$$

for $n=0,1,2, \ldots$. Set

$$
\begin{aligned}
& A_{i}=s_{m_{i}-r_{i}} a_{i}+t_{m_{i}-r_{i}} b_{i}, \\
& B_{i}=s_{m_{i}-r_{i}+1} a_{i}+t_{m_{i}-r_{i}+1} b_{i}, \\
& C_{i}=s_{m_{i}-r_{i}+2} a_{i}+t_{m_{i}-r_{i}+2} b_{i},
\end{aligned}
$$

i	p_{i}	m_{i}	$\left\|s_{m_{i}} t_{2 m_{i}}-s_{2 m_{i}} t_{m_{i}}\right\|$
1	2	2	2
2	29	5	29
3	17	6	$2 \cdot 17$
4	7	8	$2^{6} \cdot 7$
5	11	10	$2 \cdot 11 \cdot 29$
6	107	12	$2^{3} \cdot 17 \cdot 107$
7	8819	15	$29 \cdot 8819$
8	19	20	$2^{3} \cdot 11 \cdot 19 \cdot 29 \cdot 239$
9	1151	24	$2^{6} \cdot 7 \cdot 17 \cdot 107 \cdot 1151$
10	1621	30	$2 \cdot 11 \cdot 17 \cdot 29 \cdot 1621 \cdot 8819$
11	79	40	$2^{6} \cdot 7 \cdot 11 \cdot 19 \cdot 29 \cdot 79 \cdot 239 \cdot 35281$

TABLE 2
for $i=1,2, \ldots, 11$. Since the sequence $\left(x_{n}\right)_{n=0}^{\infty}$ is defined by its first three terms, it suffices to solve the following equations:

$$
\begin{align*}
& x_{0} \equiv A_{i} \quad\left(\bmod p_{i}\right) \\
& x_{1} \equiv B_{i} \quad\left(\bmod p_{i}\right), \tag{3.5}\\
& x_{2} \equiv C_{i} \quad\left(\bmod p_{i}\right),
\end{align*}
$$

for $i=1,2, \ldots, 11$. The values of a_{i}, b_{i}, and $A_{i}\left(\bmod p_{i}\right), B_{i}\left(\bmod p_{i}\right), C_{i}\left(\bmod p_{i}\right)$ for $i=$ $1,2, \ldots 11$ are given in Table 3.

i	1	2	3	4	5	6	7	8	9	10	11
a_{i}	1	1	1	1	1	1	1	1	1	1	1
b_{i}	0	21	4	5	5	14	2994	7	858	623	61
A_{i}	0	0	1	1	1	15	2994	8	43	95	41
B_{i}	1	8	4	5	5	30	2995	16	1127	0	50
C_{i}	0	23	5	6	6	59	5990	12	1132	1556	50

TABLE 3

By the Chinese Reminder Theorem (see, e.g., in [13, Theorem 1.6.21]), we find that the system of congruences (3.5) has the following solution

$$
\begin{aligned}
& x_{0}=99202581681909167232 \\
& x_{1}=67600144946390082339 \\
& x_{2}=139344212815127987596
\end{aligned}
$$

Moreover, we have $\operatorname{gcd}\left(x_{0}, x_{1}, x_{2}\right)=1$.
By (3.3) and (3.4), p_{i} divides x_{n} if $n \equiv r_{i}\left(\bmod m_{i}\right)$, where $i \in\{1,2, \ldots, 11\}$. Since $\left\{P_{i}, i=1,2, \ldots, 11\right\}$ cover the integers, we see that for every nonnegative integer n there is some $i, 1 \leqslant i \leqslant 11$, such that p_{i} divides x_{n}. All prime divisors p_{i} are relatively small (smaller than $\min _{i \geqslant 0} x_{i}=x_{1}$), so $p_{i} \mid x_{n}$, where $i=1,2, \ldots 11$, implies that x_{n} is composite for each $n=0,1,2, \ldots$ This completes the proof of the theorem.

Another interesting problem is to determine how far from the optimal (i.e., the smallest) solution we are. If (a, b) is a solution of (2.3), then $(k a, k b)$, where $k \in \mathbb{Z}$, is also a solution

THE FIBONACCI QUARTERLY

of (2.3). So we can vary $\left(a_{i}, b_{i}\right)$ in Table 3 . Also, we can choose a different covering system based on another set of primes.

4. Acknowledgement

I am very grateful to A. Dubickas and the referees for useful comments and corrections.

References

[1] A. Dubickas, A. Novikas, and J. Šiurys, A binary linear recurrence sequence of composite numbers, J. Number Theory, 130 (2010), 1737-1749.
[2] R. L. Graham, A Fibonacci-like sequence of composite numbers, Math. Mag., 37 (1964), 322-324.
[3] R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer-Verlag, 2004.
[4] M. Hall, Divisibility sequences of third order, Am. J. Math., 58 (1936), 577-584.
[5] J. Klaška, A search for Tribonacci-Wieferich primes, Acta Math. Univ. Ostrav., 16 (2008), 15-20.
[6] D. E. Knuth, A Fibonacci-like sequence of composite numbers, Math. Mag., 63 (1990), 21-25.
[7] J. W. Nicol, A Fibonacci-like sequence of composite numbers, Electron. J. Comb., 6 (1999), \#R44, 6p.
[8] T. D. Noe and J. V. Post, Primes in Fibonacci n-step and Lucas n-step sequences, J. Integer Seq., 8 (2005), Art. 05.4.4, 12p.
[9] W. Sierpiński, Sur un problème concernant les nombres $k \cdot 2^{n}+1$, Elem. Math., 15 (1960), 73-74.
[10] M. Vsemirnov, A new Fibonacci-like sequence of composite numbers, J. Integer Seq., 7 (2004), Art. 04.3.7, 3 p.
[11] M. E. Waddill, Some properties of a generalized Fibonacci sequence modulo m, The Fibonacci Quarterly, 16 (1978), 344-353.
[12] H. S. Wilf, Letters to the editor, Math. Mag., 63 (1990), 284.
[13] S. Y. Yan, Number Theory for Computing, 2nd ed., Springer, Berlin, 2002.
[14] http://www.prothsearch.net/sierp.html
[15] http://www.seventeenorbust.com/stats/
MSC2010: 11B37, 11A07, 11Y55
Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius, LT03225, Lithuania

E-mail address: jonas.siurys@gmail.com

