A TRIBONACCI-LIKE SEQUENCE OF COMPOSITE NUMBERS

JONAS ŠIURYS

ABSTRACT. We find three positive integers x_0, x_1, x_2 satisfying $gcd(x_0, x_1, x_2) = 1$ such that the tribonacci-like sequence $(x_n)_{n=0}^{\infty}$ given by $x_{n+1} = x_n + x_{n-1} + x_{n-2}$ for $n \ge 2$ consists of composite numbers only. The initial values are $x_0 = 99202581681909167232$, $x_1 = 67600144946390082339$, $x_2 = 139344212815127987596$. This is a natural extension of a similar result of Graham for the Fibonacci-like sequence.

1. INTRODUCTION

Let $S(x_0, x_1, x_2) = (x_n)_{n=0}^{\infty}$ be a sequence of integers satisfying the ternary recurrence relation

$$x_{n+1} = x_n + x_{n-1} + x_{n-2} \tag{1.1}$$

for $n = 2, 3, 4, \ldots$ The values of x_0, x_1 and x_2 determine the sequence $S(x_0, x_1, x_2)$. If $x_0 = 0$, $x_1 = 0$, and $x_2 = 1$, then $S(x_0, x_1, x_2)$ is a classical tribonacci sequence. This sequence has been examined by many authors. See, for example, [5, 8, 11]. The aim of this paper is to find three positive integers A, B, and C satisfying gcd(A, B, C) = 1 such that the sequence S(A, B, C) contains no prime numbers.

In general, it is difficult to say whether a given integer sequence contains some prime (or composite) numbers or not. In 1960, Sierpiński [9] proved that there exist infinitely many odd integers k such that $k \cdot 2^n + 1$ is composite for every $n \in \mathbb{N}$. Two years later, Selfridge (unpublished) showed that 78557 is a Sierpiński number, i.e., $78557 \cdot 2^n + 1$ is composite for each $n \in \mathbb{N}$. However, after extensive computer calculation it has not yet been proven that 78557 is the smallest Sierpiński number (see, e.g., [3, Section B21], [14, 15]).

The main motivation of this paper is an old result of Graham [2]. He found a sequence given by some initial values x_0, x_1 with $gcd(x_0, x_1) = 1$ and the binary recurrence

$$x_{n+1} = x_n + x_{n-1}$$

for n = 1, 2, 3, ... that contains only composite numbers. Graham's pair (x_0, x_1) was

(331635635998274737472200656430763, 1510028911088401971189590305498785).

Several authors (see [6, 7, 12]) made some progress in finding smaller pairs. Currently, the smallest known such pair (in the sense that $\max(x_0, x_1)$ is the smallest positive integer) is due to Vsemirnov [10]

 $(x_0, x_1) = (106276436867, 35256392432).$

The complete analysis of a binary linear recurrence sequence of composite numbers is given in [1]. The main result of [1] is the following: if $(a, b) \in \mathbb{Z}^2$, where $b \neq 0$ and $(a, b) \neq (\pm 2, -1)$, then there exist two positive relatively prime composite integers x_0, x_1 such that the sequence given by $x_{n+1} = ax_n + bx_{n-1}, n = 1, 2, \ldots$, consists of composite numbers only.

As pointed out in [1], all these results are based on the fact that the Fibonacci sequence is a regular divisibility sequence, i.e., $F_0 = 0$ and $F_n | F_m$ if n | m. However, by a result of Hall [4], there are no regular divisibility sequences in case $S(0, x_1, x_2)$ for any $x_1, x_2 \in \mathbb{Z}$.

A TRIBONACCI-LIKE SEQUENCE OF COMPOSITE NUMBERS

In this paper we shall overcome this difficulty and prove the following result.

Theorem 1.1. If

$$\begin{aligned} x_0 &= 99202581681909167232, \\ x_1 &= 67600144946390082339, \\ x_2 &= 139344212815127987596, \end{aligned}$$

then $gcd(x_0, x_1, x_2) = 1$ and the sequence $S(x_0, x_1, x_2)$ contains no prime numbers.

As the proof of this theorem is quite long, we will first prove two auxiliary lemmas. In Lemma 2.2, we give a sufficient condition for the sequence $(y_n)_{n=0}^{\infty} \equiv S(0, a, b) \pmod{p}$ under which $y_{km} \equiv 0 \pmod{p}$, where p is a prime number, $m \ge 2$ and $a, b \in \mathbb{Z}$. The notation $(y_n)_{n=0}^{\infty} \equiv S(0, a, b) \pmod{p}$ means "for every $n \ge 0$, $y_n \equiv S(0, a, b)_n \pmod{p}$ ". In Lemma 2.3 we discuss how to choose y_1 and y_2 so that the condition of Lemma 2.2 would be satisfied. In Section 3 our main result will be proved.

2. Auxiliary Lemmas

We first observe one elementary property of the tribonacci-like sequence.

Lemma 2.1. If $(u_n)_{n=0}^{\infty} = S(a, b, c)$, $(v_n)_{n=0}^{\infty} = S(a', b', c')$, and $(z_n)_{n=0}^{\infty} = S(a + a', b + b', c + c')$, then $z_n = u_n + v_n$ for all $n \ge 0$.

The proof of this fact is by a trivial induction.

Define two sequences $(s_n)_{n=0}^{\infty} = S(0,1,0)$ and $(t_n)_{n=0}^{\infty} = S(0,0,1)$. Let p be a prime number and let $(y_n)_{n=0}^{\infty} \equiv S(0,a,b) \pmod{p}$ for $a, b \in \mathbb{Z}$. Lemma 2.1 implies

$$y_n \equiv s_n a + t_n b \pmod{p}. \tag{2.1}$$

Lemma 2.2. Let p be a prime number and let $(y_n)_{n=0}^{\infty} \equiv S(0, a, b) \pmod{p}$ with some $a, b \in \mathbb{Z}$. Suppose that $m \ge 2$ is an integer. If $y_m \equiv y_{2m} \equiv 0 \pmod{p}$ then $y_{km} \equiv 0 \pmod{p}$ for $k = 0, 1, 2, \ldots$

Proof. Let

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \quad \text{and} \quad Y_n = (y_{n+2}, y_{n+1}, y_n).$$

Then the recurrence relation $y_{n+3} = y_{n+2} + y_{n+1} + y_n$ can be rewritten in the matrix form $Y_{n+1} = Y_n A$, for $n = 0, 1, 2 \dots$ In particular, $Y_n = Y_0 A^n$ and

$$Y_{km} = (y_{km+2}, y_{km+1}, y_{km}) = (y_2, y_1, y_0)(A^m)^k.$$
(2.2)

Assume, that $y_0 \equiv y_m \equiv y_{2m} \equiv 0 \pmod{p}$. If the vector $Y_0 \pmod{p}$ is an eigenvector of $A^m \pmod{p}$, then $y_{km} \equiv 0 \pmod{p}$ by (2.2). If not, then $Y_m \pmod{p}$ and $Y_0 \pmod{p}$ (considered as vectors over the finite field $\mathbb{Z}/p\mathbb{Z}$) are linearly independent, hence form a basis for the vector space $V = \{(u, v, 0)\} \subset (\mathbb{Z}/p\mathbb{Z})^3$. Since $Y_{2m} = Y_m A^m \mod{p}$ is also in V by assumption, we have that $VA^m \subset V$. Therefore, by induction, $Y_{km} \pmod{p}$ is in V for $k = 0, 1, 2, \ldots$. Hence, $y_{km} \equiv 0 \pmod{p}$.

Lemma 2.3. Let p be a prime number. Suppose that $m \ge 2$ and $s_m t_{2m} - s_{2m} t_m \equiv 0 \pmod{p}$. Then there exist a, $b \in \mathbb{Z}$ such that at least one of a, b is not divisible by p and

$$s_{km}a + t_{km}b \equiv 0 \pmod{p}$$

for $k = 0, 1, 2, \dots$

NOVEMBER 2011

THE FIBONACCI QUARTERLY

Proof. Set $y_n = s_n a + t_n b$. Since $y_0 = s_0 a + t_0 b = 0$, by Lemma 2.2, it suffices to show that there exist a, b such that $y_m \equiv 0 \pmod{p}$ and $y_{2m} \equiv 0 \pmod{p}$. Our aim is to solve the following system of linear equations:

$$\begin{cases} s_m a + t_m b \equiv 0 \pmod{p}, \\ s_{2m} a + t_{2m} b \equiv 0 \pmod{p}. \end{cases}$$
(2.3)

If $s_m \equiv t_m \equiv s_{2m} \equiv t_{2m} \equiv 0 \pmod{p}$, then we can choose a = b = 1. Suppose that $t_m \neq 0 \pmod{p}$ (the proof in the other cases, when p does not divide s_m, s_{2m} or t_{2m} , is the same). Set $a = 1, b = -t_m^{-1}s_m$ where t_m^{-1} denote an integer for which $t_m t_m^{-1} \equiv 1 \pmod{p}$. It follows easily that the first equation of (2.3) is satisfied. Then the second equation is equivalent to

$$-s_{2m}t_m + s_m t_{2m} \equiv 0 \pmod{p}.$$
(2.4)

Hence, by the condition of the lemma, (2.4) is true, which completes the proof of the lemma.

3. Proof of Theorem 1.1

Consider the following table:

i	1	2	3	4	5	6	7	8	9	10	11
m_i	2	5	6	8	10	12	15	20	24	30	40
r_i	0	0	5	7	9	9	13	17	3	1	27
TABLE 1											

One can verify that every integer belongs to at least one of the arithmetic progressions

$$P_i = \{m_i k + r_i, k \in \mathbb{Z}\}, \quad i = 1, 2, \dots 11.$$
(3.1)

In other words, the integers m_i, r_i are chosen so that P_1, P_2, \ldots, P_{11} is a *covering system* of \mathbb{Z} , i.e.,

$$\mathbb{Z} = \bigcup_{i=1}^{11} P_i. \tag{3.2}$$

To prove (3.2) it is enough to check that any number between 1 and $gcd(m_1, m_2, \ldots, m_{11}) = 120$ is covered by at least one progression (3.1).

We are interested in the differences $s_{m_i}t_{2m_i} - s_{2m_i}t_{m_i}$ (i = 1, 2, ..., 11).

Let us fix $i \in \{1, 2, ..., 11\}$. As we can see from Table 2, each prime number p_i divides the corresponding difference $s_{m_i}t_{2m_i} - s_{2m_i}t_{m_i}$. By Lemma 2.3, for every pair (p_i, m_i) we can choose $a_i, b_i \in \mathbb{Z}$ so that at least one of a_i, b_i is not divisible by p_i and

$$s_{km_i}a_i + t_{km_i}b_i \equiv 0 \pmod{p_i} \tag{3.3}$$

for $k = 0, 1, 2, \dots$

Next, we shall construct the sequence $(x_n)_{n=0}^{\infty} = S(x_0, x_1, x_2)$ satisfying

$$x_n \equiv s_{m_i - r_i + n} a_i + t_{m_i - r_i + n} b_i \pmod{p_i} \quad i = 1, 2, \dots 11$$
(3.4)

for $n = 0, 1, 2, \dots$ Set

 $A_{i} = s_{m_{i}-r_{i}} a_{i} + t_{m_{i}-r_{i}} b_{i},$ $B_{i} = s_{m_{i}-r_{i}+1} a_{i} + t_{m_{i}-r_{i}+1} b_{i},$ $C_{i} = s_{m_{i}-r_{i}+2} a_{i} + t_{m_{i}-r_{i}+2} b_{i},$

VOLUME 49, NUMBER 4

i	p_i	m_i	$ s_{m_i}t_{2m_i} - s_{2m_i}t_{m_i} $				
1	2	2	2				
2	29	5	29				
3	17	6	$2 \cdot 17$				
4	7	8	$2^{6} \cdot 7$				
5	11	10	$2 \cdot 11 \cdot 29$				
6	107	12	$2^3 \cdot 17 \cdot 107$				
7	8819	15	$29 \cdot 8819$				
8	19	20	$2^3 \cdot 11 \cdot 19 \cdot 29 \cdot 239$				
9	1151	24	$2^6 \cdot 7 \cdot 17 \cdot 107 \cdot 1151$				
10	1621	30	$2\cdot 11\cdot 17\cdot 29\cdot 1621\cdot 8819$				
11	79	40	$2^6 \cdot 7 \cdot 11 \cdot 19 \cdot 29 \cdot 79 \cdot 239 \cdot 35281$				
TABLE 2							

A TRIBONACCI-LIKE SEQUENCE OF COMPOSITE NUMBERS

for i = 1, 2, ..., 11. Since the sequence $(x_n)_{n=0}^{\infty}$ is defined by its first three terms, it suffices to solve the following equations:

$$x_0 \equiv A_i \pmod{p_i},$$

$$x_1 \equiv B_i \pmod{p_i},$$

$$x_2 \equiv C_i \pmod{p_i},$$

(3.5)

for i = 1, 2, ..., 11. The values of a_i, b_i , and $A_i \pmod{p_i}$, $B_i \pmod{p_i}$, $C_i \pmod{p_i}$ for i = 1, 2, ..., 11 are given in Table 3.

i	1	2	3	4	5	6	7	8	9	10	11
a_i	1	1	1	1	1	1	1	1	1	1	1
b_i	0	21	4	5	5	14	2994	7	858	623	61
A_i	0	0	1	1	1	15	2994	8	43	95	41
B_i	1	8	4	5	5	30	2995	16	1127	0	50
C_i	0	23	5	6	6	59	5990	12	1132	1556	50
TABLE 3											

By the Chinese Reminder Theorem (see, e.g., in [13, Theorem 1.6.21]), we find that the system of congruences (3.5) has the following solution

 $x_0 = 99202581681909167232,$ $x_1 = 67600144946390082339,$ $x_2 = 139344212815127987596.$

Moreover, we have $gcd(x_0, x_1, x_2) = 1$.

By (3.3) and (3.4), p_i divides x_n if $n \equiv r_i \pmod{m_i}$, where $i \in \{1, 2, ..., 11\}$. Since $\{P_i, i = 1, 2, ..., 11\}$ cover the integers, we see that for every nonnegative integer n there is some $i, 1 \leq i \leq 11$, such that p_i divides x_n . All prime divisors p_i are relatively small (smaller than $\min_{i \geq 0} x_i = x_1$), so $p_i \mid x_n$, where i = 1, 2, ..., 11, implies that x_n is composite for each n = 0, 1, 2, ... This completes the proof of the theorem.

Another interesting problem is to determine how far from the optimal (i.e., the smallest) solution we are. If (a, b) is a solution of (2.3), then (ka, kb), where $k \in \mathbb{Z}$, is also a solution

THE FIBONACCI QUARTERLY

of (2.3). So we can vary (a_i, b_i) in Table 3. Also, we can choose a different covering system based on another set of primes.

4. ACKNOWLEDGEMENT

I am very grateful to A. Dubickas and the referees for useful comments and corrections.

References

- A. Dubickas, A. Novikas, and J. Šiurys, A binary linear recurrence sequence of composite numbers, J. Number Theory, 130 (2010), 1737–1749.
- [2] R. L. Graham, A Fibonacci-like sequence of composite numbers, Math. Mag., 37 (1964), 322–324.
- [3] R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer-Verlag, 2004.
- [4] M. Hall, Divisibility sequences of third order, Am. J. Math., 58 (1936), 577-584.
- [5] J. Klaška, A search for Tribonacci-Wieferich primes, Acta Math. Univ. Ostrav., 16 (2008), 15–20.
- [6] D. E. Knuth, A Fibonacci-like sequence of composite numbers, Math. Mag., 63 (1990), 21–25.
- [7] J. W. Nicol, A Fibonacci-like sequence of composite numbers, Electron. J. Comb., 6 (1999), #R44, 6p.
- [8] T. D. Noe and J. V. Post, Primes in Fibonacci n-step and Lucas n-step sequences, J. Integer Seq., 8 (2005), Art. 05.4.4, 12p.
- [9] W. Sierpiński, Sur un problème concernant les nombres $k \cdot 2^n + 1$, Elem. Math., 15 (1960), 73–74.
- [10] M. Vsemirnov, A new Fibonacci-like sequence of composite numbers, J. Integer Seq., 7 (2004), Art. 04.3.7, 3 p.
- [11] M. E. Waddill, Some properties of a generalized Fibonacci sequence modulo m, The Fibonacci Quarterly, 16 (1978), 344–353.
- [12] H. S. Wilf, Letters to the editor, Math. Mag., 63 (1990), 284.
- [13] S. Y. Yan, Number Theory for Computing, 2nd ed., Springer, Berlin, 2002.
- [14] http://www.prothsearch.net/sierp.html
- [15] http://www.seventeenorbust.com/stats/

MSC2010: 11B37, 11A07, 11Y55

DEPARTMENT OF MATHEMATICS AND INFORMATICS, VILNIUS UNIVERSITY, NAUGARDUKO 24, VILNIUS, LT-03225, LITHUANIA

E-mail address: jonas.siurys@gmail.com