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Abstract. For a fixed integer k ≥ 2, we study the k-Zeckendorf array, Xk, based upon the
kth order recurrence un = un−1 + un−k. We prove that the pattern of differences between
successive rows is a k-letter infinite word generalizing the infinite Fibonacci word.

1. Introduction and Background

Definition 1. The k-Zeckendorf array [3], Xk = {xr,c | r, c ≥ 0}, is a doubly subscripted
array of positive integers. The first row begins with x0,c = c+ 1 for 0 ≤ c < k. For i ≥ k,

x0,i = x0,i−1 + x0,i−k. (1.1)

Subsequent rows are specified inductively as follows. For r > 0, xr,0 is the smallest integer
not in previous rows. Let the k-Zeckendorf representation (see Definition 2 below) of xr,0 be
∑m

i=0 dix0,i. Then for c > 0,

xr,c =

m
∑

i=0

dix0,i+c. (1.2)

Definition 2. The k-Zeckendorf representation of n is
∑m

i=0 dix0,i, where for all i, di ∈ {0, 1}
and every sequence {di, di+1, . . . , di+k−1} contains at most one 1. The upper limit m in the
sum is the largest integer such that x0,m ≤ n.

The well-known Zeckendorf theorem is for k = 2, and the sequence {x0,c} is the Fibonacci
sequence {Fc+2} (see [5, 8]). This generalizes easily to the k-Zeckendorf representation, which
is also unique.

Definition 3. If the k-Zeckendorf representation of n is
∑m

i=0 dix0,i, the k-shift of n is
S(n) =

∑m
i=0 dix0,i+1.

Taking n = xr,0, we can write equation (1.2) as

xr,c = Sc(xr,0) = S · · ·S(xr,0). (1.3)

The arrays Xk have several well-known properties [2, 3, 4]:

(1) Every row of Xk satisfies the recurrence xr,c = xr,c−1 + xr,c−k.
(2) Xk contains every positive integer exactly once.
(3) Xk is an interspersion [3]. If xr,c < xr′,c′ < xr,c+1, then xr,c+1 < xr′,c′+1 < xr,c+2.

Portions of X2, X3, and X4 are displayed below. X2 is also known as the Wythoff array [3]
and is given as OEIS # A035513 in [7]. We use precursion:1 xr,n−k = xr,n−xr,n−1, to prepend
k columns to each Xk. We will establish later in Theorem 2 that xr,−k = r for r ≥ 0 in all Xk,
as shown by column c = −k in Table 1, Table 2, and Table 3.

1Clark Kimberling suggested the terminology at the 2010 Fibonacci Association conference in Mexico.
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TABLE 1. k-Zeckendorf array at k = 2.

X2 c : −2 −1 0 1 2 3 4 5 6 7

r : 0 0 1 1 2 3 5 8 13 21 34
1 1 3 4 7 11 18 29 47 76 123
2 2 4 6 10 16 26 42 68 110 178
3 3 6 9 15 24 39 63 102 165 267
4 4 8 12 20 32 52 84 136 220 356
5 5 9 14 23 37 60 97 157 254 411
6 6 11 17 28 45 73 118 191 309 500

TABLE 2. k-Zeckendorf array at k = 3.

X3 c : −3 −2 −1 0 1 2 3 4 5 6 7

r : 0 0 1 1 1 2 3 4 6 9 13 19
1 1 3 4 5 8 12 17 25 37 54 79
2 2 4 5 7 11 16 23 34 50 73 107
3 3 5 7 10 15 22 32 47 69 101 148
4 4 7 10 14 21 31 45 66 97 142 208
5 5 9 13 18 27 40 58 85 125 183 268
6 6 10 14 20 30 44 64 94 138 202 296

TABLE 3. k-Zeckendorf array at k = 4.

X4 c : −4 −3 −2 −1 0 1 2 3 4 5 6 7

r : 0 0 1 1 1 1 2 3 4 5 7 10 14
1 1 3 4 5 6 9 13 18 24 33 46 64
2 2 4 5 6 8 12 17 23 31 43 60 83
3 3 5 6 8 11 16 22 30 41 57 79 109
4 4 6 8 11 15 21 29 40 55 76 105 145
5 5 8 11 15 20 28 39 54 74 102 141 195
6 6 10 14 19 25 35 49 68 93 128 177 245

Sequences in Xk for rows 0 and columns 0 that are recorded in [7] are referenced here.

TABLE 4. Integer sequences.

X2 X3 X4

Row 0 A000045 A000930 A003269
Column 0 A003622 A020942

2. Preliminaries

We focus our attention now on column zero of Xk, {xr,0 | r ≥ 0}. The elements of column
zero of Xk are those numbers whose k-Zeckendorf representation ends with the least significant
portion (abbreviated LSP, with its complement MSP as the most significant portion) given by

(dk−1, dk−2, . . . , d1, d0) = (0, 0, . . . , 0, 1). (2.1)

In this notation we mimic the usual binary number representation with bit strings. The
rightmost bit is the coefficient of x0,0.
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Lemma 1. xr,0 = Sk(r) + 1 = S · · ·S(r) + 1.

Proof. This follows from the definition of Xk and equation (2.1). �

The shift function preserves order, so xr,0 < xr+1,0 for all r ≥ 0.
In Theorem 1 below, we examine the pattern of the differences xr+1,0 − xr,0 and then the

differences between successive rows of Xk. This pattern is captured in the sequence Wk of
words, which for k = 2 is the simplest Sturmian word (the Fibonacci word, see [1]), with its
higher order generalizations.

Definition 4. Wk = {wi}i≥0 is an infinite sequence of words over the k-letter alphabet
Σ = {ai | 0 ≤ i < k}. wi is a word of length x0,i, as follows:

w0 = a0,

w1 = a0a1,

w2 = a0a1a2,

...
...

wk−1 = a0a1a2 · · · ak−1,

wi = wi−1wi−k for i ≥ k.

We define another infinite sequence W ′
k of words, which is related to Wk. Each derivation

has useful word properties, which will be highlighted by Table 5 in Lemma 2.

Definition 5. W ′
k = {w′

i}i≥1 is an infinite sequence of words over the same k-letter alphabet
Σ = {ai | 0 ≤ i < k}, determined by the iterative algorithm:

w′
i =

{

ai for 1 ≤ i < k,
a0 at i = k,

w′
i = w′

i−1 w
′
i−k for i > k.

w′
i is a word of length x0,i−k, where the word length is one for 0 < i < k according to

precursion in row 0 of Xk. The shifted relationships between wi and w′
i and between their

respective lengths |wi| and |w′
i| are given by

wi = w′
i+k and |wi| = |w′

i+k| = x0,i for i ≥ 0.

The Fibonacci case (k = 2) has |wi| = x0,i = Fi+2 for i ≥ 0, and |w′
i| = x0,i−2 = Fi for i ≥ 1.

For i ≥ k, wi−1 is a prefix of wi and wi−k = w′
i is a suffix of wi, yielding the infinite word

w = lim
i→∞

wi = lim
i→∞

w′
i = {w(n)}n≥0 = w(0)w(1)w(2) . . . , (2.2)

where w(n) ∈ Σ. At k = 2, the infinite Fibonacci word w begins 1011010110110 . . . with
a0 = 1, a1 = 0.

Lemma 2. The least significant portion LSP of k − 1 coefficients of the k-Zeckendorf repre-
sentation of a sequence of nonnegative integers follows the algorithm used to construct Wk.

Proof. We express the k-Zeckendorf representation using at least k−1 bits. The LSP of length
k−1 may take on k different patterns (composed of either all zeros or zeros with a single one).
From these k patterns, we create our k-letter alphabet Σ = {ai | 0 ≤ i < k}. The k-Zeckendorf
representation of 0 is 0, and we assign a0 to instances when the LSP is 0k−1 (k − 1 0’s). For
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1 ≤ i ≤ k − 1, we have by Definition 1 that i = x0,i−1. The k-Zeckendorf representation of i

consists of a single term x0,i−1 with LSP of 0k−1−i10i−1, to which we assign the letter ai.
Table 5 with k = 3 illustrates the principle of this proof. Association between letters a, b, c

in Table 5 and letters ai in Wk and W ′
k is made by substitutions a = a1, b = a2, and c = a0,

with indices of ai listed in the last column of Table 5.

TABLE 5. k-Zeckendorf representations at k = 3.

n MSP of k-Zeck. LSP of k-Zeck. letters i

0 0 0 c 0
1 0 1 a 1
2 1 0 b 2
3 1 0 0 c 0
4 1 0 0 0 c 0
5 1 0 0 1 a 1
6 1 0 0 0 0 c 0
7 1 0 0 0 1 a 1
8 1 0 0 1 0 b 2
9 1 0 0 0 0 0 c 0
10 1 0 0 0 0 1 a 1
11 1 0 0 0 1 0 b 2
12 1 0 0 1 0 0 c 0

The horizontal lines in Table 5 are placed over the values n when n = x0,c, the entries of X3

in row 0 at c ≥ 0 beginning with 1, 2, 3, 4, 6, 9, 13. The sequence of words in the letters column
from the top of the table down to each horizontal line is the following:

c, ca, cab, cabc, cabcca, cabccacab, cabccacabcabc, . . . .

Thus from Definition 4, each successive word sequence wi from i ≥ 0 gives the letter sequence
from the table top to the next horizontal line, and each word length is |wi| = x0,i as required.

The sequence of words in the letters column between the consecutive horizontal lines in
Table 5 are the words w′

i for i ≥ 1 listed in sequence as

a, b, c, ca, cab, cabc, cabcca, cabccacab, cabccacabcabc, . . . .

At k = 3, row 0 of X3 for x0,c−k at c ≥ 1 beginning with 1, 1, 1, 2, 3, 4, 6, 9, 13 gives |w′
c| as the

number of terms between the horizontal lines in the table.
We now return to the general case, k ≤ 2, to form a table such as Table 5. We initialize the

first k lines (k = 3 in the illustration) straightforwardly: for 0 ≤ i < k, x0,i = i+1, so that the
k-Zeckendorf representation of i corresponds to the letter ai. Then proceed inductively. Having
constructed the first x0,n−1 lines, the next x0,n−k lines are then built. If x0,n−1 ≤ m < x0,n, the
k-Zeckendorf representation of m is the k-Zeckendorf representation of m−x0,n−k augmented
by x0,n−1. As bit strings, take the initial x0,n−k lines of the table, pad their k-Zeckendorf
representations with zeros on the left to make them all bit strings of length n − k. Then
prepend each of these strings with 10k−1, giving the new x0,n−k lines, extending the table to
x0,n lines.

The list of LSP’s follows the same algorithm used to construct Wk. �

In the above, in the words in {a, b, c}, a is always followed by b or c, b is always followed by
c, and c is always followed by a or c. For general k, Σ = {ai | 0 ≤ i < k}, ai will always be
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followed by either ai+1 or a0, with the latter occurring when there is a carry, a replacement
of xi + xi+k−1 with xi+k. ak−1 is always followed by a0.

The subscript i of ai is simply the value of the length k − 1 LSP of the Zeckendorf repre-
sentation of i. In other words, if the k-Zeckendorf representation of r is

∑m
h=0 dh x0,h, then

i =
∑k−2

h=0 dhx0,h.

3. Main Theorems

Theorem 1. The difference between two adjacent rows of Xk is a shift of row 0, where the
difference δr(c) = xr+1,c−xr,c = x0,c+j(r) with 1 ≤ j(r) ≤ k. Specifically the shift index j(r) is

j(r) =

{

i if w(r) = ai for 0 < i < k,
k if w(r) = a0

(3.1)

where w(r) is the letter located at position r of the infinite word w of equation (2.2).

Proof. By Lemma 1, xr,0 = Sk(r) + 1, so xr+1,0 − xr,0 = Sk(r + 1)− Sk(r).
Suppose w(r) = ai. Then w(r + 1) = ai+1 or w(r + 1) = a0, with the latter case occurring

when there is one or more carries.
Case 1: w(r) = ai with 0 < i < k. Express the k-Zeckendorf representation of r as

∑

dnx0,n.
i− 1 is the smallest subscript such that di−1 = 1, and i− 1 + k is the smallest subscript such
that d′i−1+k = 1 in the k-Zeckendorf representation of Sk(r) as

∑

d′nx0,n.

Case 1.1: Suppose w(r + 1) = ai+1 and the k-Zeckendorf representation of Sk(r + 1) is
∑

d′′nx0,n. We have d′′n = d′n for n > i+ k, so Sk(r + 1)− Sk(r) = x0,i+k − x0,i−1+k = x0,i.
Case 1.2: If w(r + 1) = a0, we may execute a sequence of borrows reversing the above

mentioned sequence of carries, to write Sk(r+1) =
∑

d′′nx0,n (which, after borrowing is not k-

Zeckendorf). We have d′′n = d′n for n > i+1, so again Sk(r+1)−Sk(r) = x0,i+k−x0,i−1+k = x0,i.
Case 2: w(r) = a0. The two sub-cases, w(r+1) = a1 and w(r+1) = a0 follow a very similar

argument to that given in Case 1. In both these sub-cases, Sk(r+1)−Sk(r) = x0,k−0 = x0,k.
The above argument carries through identically for the general case

δr(c) = xr+1,c − xr,c = Sc+k(r + 1)− Sc+k(r) (3.2)

= Sc(Sk(r + 1)− Sk(r))

= Sc(x0,j(r))

= x0,j(r)+c

where j(r) is given in equation (3.1). �

For illustration, we show that the first 13 differences in column 0 of X3 have the same
pattern as the 3-letter word of W3. The first 13 terms of the sequences {δr(0)}, {j(r)} and
{w(r)} for 0 ≤ r ≤ 12 are shown below. The substitution of {c, a, b} for {a0, a1, a2} is made
in the word {w(r)}r≥0.

TABLE 6. Terms in Theorem 1 for k-Zeckendorf array at k = 3.

δ0,...,12(0) j(0, . . . , 12) w(0, . . . , 12)
4,2,3,4,4,2,4,2,3,4,2,3,4 3,1,2,3,3,1,3,1,2,3,1,2,3 cabccacabcabc

Theorem 2. For all r, xr,−k = r.
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Proof. xr+1,−k − xr,−k = x0,−k+j(r) = x0,n. Because 1 ≤ j(r) ≤ k, we have 1 − k ≤ n ≤ 0.
It follows from Definition 1 and a simple precursion argument that x0,n is always 1, and that
x0,−k = 0. �

Theorem 3. For all r ≥ 0, w(xr,c) = ac+1 if 0 ≤ c ≤ k − 2, and w(xr,c) = a0 if c > k − 2.

Proof. This follows from the definition of Xk, Definition 3, equation (1.3), Lemma 1, equation
(2.1), and Lemma 2.

By Lemma 2, the LSP of 0k−1−i10i−1 assigns w(n) = ai if 1 ≤ i ≤ k − 1 and w(n) = a0
if i = 0 or i ≥ k. Likewise by Lemma 1, column 0 has LSP of 0k−1−i1; and by Definition 3
(equation (1.3)), column c has LSP of 0k−1−c10c−1. �

Some examples of Theorem 3 include:

(1) w(xr,0) = a1 for r ≥ 0, k ≥ 2,
(2) w(xr,1) = a2 for r ≥ 0, k ≥ 3,
(3) w(xr,k−1) = a0 for r ≥ 0.

The following results deal with how the numbers in column c of Xk punctuate (i.e., break into
factors) the infinite word w. By Theorem 1, we know there are k different intervals [xr,c, xr+1,c),
and the lengths of these intervals are k successive numbers of the sequence {x0,i}.

Definition 6. Let the sequence

vr,c = 〈w(i) | xr,c ≤ i < xr+1,c〉

be a factor of the infinite word w. Its length is

|vr,c| = δr(c) = xr+1,c − xr,c = x0,c+j(r).

Definition 7. Let σ : Σ∗ → Σ∗ be a morphism defined by

σ(a0) = a0a1,

σ(ai) = ai+1 for 1 ≤ i ≤ k − 1.

As specified in Definition 5 and Theorem 1, we take ak = a0.

Lemma 3. The infinite word w is the fixed point of σ.

Proof. A straightforward inductive argument shows σ(wi) = wi+1 for all i ≥ 0. �

Definition 8. For 0 ≤ λ < k, define words ψλ(c) as follows:

ψ0(0) = a1 a0,

ψλ(0) = a1 · · · aλ+1 a0 for 1 ≤ λ ≤ k − 2,

ψk−1(0) = a1 · · · ak−1 ak a0.

For c > 0, let ψλ(c) = σ(ψλ(c− 1)).

Lemma 4. |ψλ(c)| = x0,c+λ+1 for c ≥ 0.

Proof. For 0 ≤ λ ≤ k − 1, the word ψλ(0) has length x0,λ+1 and is a permutation of the
word wλ+1. The result then follows from the observation that σ(wi) = wi+1 for all i ≥ 0 (see
Lemma 3) and that σ is a morphism. �

Theorem 4. For c ≥ 0, the ψλ(c) are the only strings among the words vr,c.
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Proof. From Definition 8, each string ψλ(0) begins with the letter a1, and it contains no other
instance of a1. In the infinite word w, every factor ψλ(0) is followed by the letter a1, beginning
the next factor. The infinite string w, therefore, satisfies the following equations:

w = w0, 〈ψj(r)+1(0) | r = 0, 1, 2, . . .〉,

σ(w) = w1, 〈ψj(r)+1(1) | r = 0, 1, 2, . . .〉, (3.3)

...
...

σc(w) = wc, 〈ψj(r)+1(c) | r = 0, 1, 2, . . .〉.

Because w is the fixed point of σ, the result follows. �

We illustrate the first few iterations from (3.3) using k = 3. For clarity of presentation, we
substitute for letters ai in Theorem 4 and Definition 8 according to a = a1, b = a2, and c = a0.

w = c, abcc, ac, abc, abcc, abcc, ac, abcc, ac, abc, abcc, ac, abc, abcc, abcc, ac, abc, . . .

σ(w) = ca, bccaca, bca, bcca, bccaca, bccaca, bca, bccaca, bca, bcca, bccaca, bca, bcca, . . .

σ2(w) = cab, ccacabcab, ccab, ccacab, ccacab, cab, ccacab, cab, ccab, ccacab, cab, ccab, . . . .

Finally for k = 3, we display the k distinct strings ψλ(c) in the first few columns c ≥ 0.

TABLE 7. Words wc and strings ψλ(c) for k-Zeckendorf array at k = 3.

ψλ(c) c : 0 1 2 3 4

wc c ca cab cabc cabcca

λ : 0 ac bca ccab cacabc cabcabcca

1 abc bcca ccacab cacabcabc cabcabccabcca

2 abcc bccaca ccacabcab cacabcabccabc cabcabccabccacabcca

We note that the strings, ψλ(c) and ψλ−1(c + 1), have the same length and are a cyclic
permutation of each other. We thus define a cycle operator ρ such that ρ(aix) = xai for
ai ∈ Σ and aix ∈ Σ∗, and we present the following proposition without proof.

Proposition 1. ψλ(c) = ρ · · · ρ(wc+λ+1) = ρ|wc|(wc+λ+1).

Taking k = 3 and c = 1, Proposition 1 gives ψλ(1) = ρ|w1|(w2+λ) with ψ0(1) = ρ2(cab) =
bca, ψ1(1) = ρ2(cabc) = bcca, and ψ2(1) = ρ2(cabcca) = bccaca. As noted for diagonals, at

λ + c = 3 we get ψλ(c) = ρ|wc|(w4) with ψ2(1) = ρ2(cabcca) = bccaca, ψ1(2) = ρ3(cabcca) =
ccacab, and ψ0(3) = ρ4(cabcca) = cacabc; having equal lengths |ψλ(c)| = |w4| = x0,4 = 6 as
required by Proposition 1, Theorem 1, and Lemma 4.
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