PATTERNS IN DIFFERENCES BETWEEN ROWS IN k-ZECKENDORF ARRAYS

LARRY ERICKSEN AND PETER G. ANDERSON

Abstract

For a fixed integer $k \geq 2$, we study the k-Zeckendorf array, \mathcal{X}_{k}, based upon the k th order recurrence $u_{n}=u_{n-1}+u_{n-k}$. We prove that the pattern of differences between successive rows is a k-letter infinite word generalizing the infinite Fibonacci word.

1. Introduction and Background

Definition 1. The k-Zeckendorf array [3], $\mathcal{X}_{k}=\left\{x_{r, c} \mid r, c \geq 0\right\}$, is a doubly subscripted array of positive integers. The first row begins with $x_{0, c}=c+1$ for $0 \leq c<k$. For $i \geq k$,

$$
\begin{equation*}
x_{0, i}=x_{0, i-1}+x_{0, i-k} . \tag{1.1}
\end{equation*}
$$

Subsequent rows are specified inductively as follows. For $r>0, x_{r, 0}$ is the smallest integer not in previous rows. Let the k-Zeckendorf representation (see Definition 2 below) of $x_{r, 0}$ be $\sum_{i=0}^{m} d_{i} x_{0, i}$. Then for $c>0$,

$$
\begin{equation*}
x_{r, c}=\sum_{i=0}^{m} d_{i} x_{0, i+c} . \tag{1.2}
\end{equation*}
$$

Definition 2. The k-Zeckendorf representation of n is $\sum_{i=0}^{m} d_{i} x_{0, i}$, where for all $i, d_{i} \in\{0,1\}$ and every sequence $\left\{d_{i}, d_{i+1}, \ldots, d_{i+k-1}\right\}$ contains at most one 1 . The upper limit m in the sum is the largest integer such that $x_{0, m} \leq n$.

The well-known Zeckendorf theorem is for $k=2$, and the sequence $\left\{x_{0, c}\right\}$ is the Fibonacci sequence $\left\{F_{c+2}\right\}$ (see $[5,8]$). This generalizes easily to the k-Zeckendorf representation, which is also unique.

Definition 3. If the k-Zeckendorf representation of n is $\sum_{i=0}^{m} d_{i} x_{0, i}$, the k-shift of n is $S(n)=\sum_{i=0}^{m} d_{i} x_{0, i+1}$.

Taking $n=x_{r, 0}$, we can write equation (1.2) as

$$
\begin{equation*}
x_{r, c}=S^{c}\left(x_{r, 0}\right)=S \cdots S\left(x_{r, 0}\right) . \tag{1.3}
\end{equation*}
$$

The arrays \mathcal{X}_{k} have several well-known properties $[2,3,4]$:
(1) Every row of \mathcal{X}_{k} satisfies the recurrence $x_{r, c}=x_{r, c-1}+x_{r, c-k}$.
(2) \mathcal{X}_{k} contains every positive integer exactly once.
(3) \mathcal{X}_{k} is an interspersion [3]. If $x_{r, c}<x_{r^{\prime}, c^{\prime}}<x_{r, c+1}$, then $x_{r, c+1}<x_{r^{\prime}, c^{\prime}+1}<x_{r, c+2}$.

Portions of $\mathcal{X}_{2}, \mathcal{X}_{3}$, and \mathcal{X}_{4} are displayed below. \mathcal{X}_{2} is also known as the Wythoff array [3] and is given as OEIS \# A035513 in [7]. We use precursion: ${ }^{1} x_{r, n-k}=x_{r, n}-x_{r, n-1}$, to prepend k columns to each \mathcal{X}_{k}. We will establish later in Theorem 2 that $x_{r,-k}=r$ for $r \geq 0$ in all \mathcal{X}_{k}, as shown by column $c=-k$ in Table 1, Table 2, and Table 3.

[^0]
THE FIBONACCI QUARTERLY

TABLE 1. k-Zeckendorf array at $k=2$.

\mathcal{X}_{2}	$c:-2$	-1	0	1	2	3	4	5	6	7
$r: 0$	0	1	1	2	3	5	8	13	21	34
1	1	3	4	7	11	18	29	47	76	123
2	2	4	6	10	16	26	42	68	110	178
3	3	6	9	15	24	39	63	102	165	267
4	4	8	12	20	32	52	84	136	220	356
5	5	9	14	23	37	60	97	157	254	411
6	6	11	17	28	45	73	118	191	309	500

TABLE 2. k-Zeckendorf array at $k=3$.

\mathcal{X}_{3}	$c:-3$	-2	-1	0	1	2	3	4	5	6	7
$r: 0$	0	1	1	1	2	3	4	6	9	13	19
1	1	3	4	5	8	12	17	25	37	54	79
2	2	4	5	7	11	16	23	34	50	73	107
3	3	5	7	10	15	22	32	47	69	101	148
4	4	7	10	14	21	31	45	66	97	142	208
5	5	9	13	18	27	40	58	85	125	183	268
6	6	10	14	20	30	44	64	94	138	202	296

TABLE 3. k-Zeckendorf array at $k=4$.

\mathcal{X}_{4}	$c:-4$	-3	-2	-1	0	1	2	3	4	5	6	7
$r: 0$	0	1	1	1	1	2	3	4	5	7	10	14
1	1	3	4	5	6	9	13	18	24	33	46	64
2	2	4	5	6	8	12	17	23	31	43	60	83
3	3	5	6	8	11	16	22	30	41	57	79	109
4	4	6	8	11	15	21	29	40	55	76	105	145
5	5	8	11	15	20	28	39	54	74	102	141	195
6	6	10	14	19	25	35	49	68	93	128	177	245

Sequences in \mathcal{X}_{k} for rows 0 and columns 0 that are recorded in [7] are referenced here.
TABLE 4. Integer sequences.

	\mathcal{X}_{2}	\mathcal{X}_{3}	\mathcal{X}_{4}
Row 0	A 000045	A 000930	A 003269
Column 0	A 003622	A 020942	

2. Preliminaries

We focus our attention now on column zero of $\mathcal{X}_{k},\left\{x_{r, 0} \mid r \geq 0\right\}$. The elements of column zero of \mathcal{X}_{k} are those numbers whose k-Zeckendorf representation ends with the least significant portion (abbreviated LSP, with its complement MSP as the most significant portion) given by

$$
\begin{equation*}
\left(d_{k-1}, d_{k-2}, \ldots, d_{1}, d_{0}\right)=(0,0, \ldots, 0,1) \tag{2.1}
\end{equation*}
$$

In this notation we mimic the usual binary number representation with bit strings. The rightmost bit is the coefficient of $x_{0,0}$.

Lemma 1. $x_{r, 0}=S^{k}(r)+1=S \cdots S(r)+1$.
Proof. This follows from the definition of \mathcal{X}_{k} and equation (2.1).
The shift function preserves order, so $x_{r, 0}<x_{r+1,0}$ for all $r \geq 0$.
In Theorem 1 below, we examine the pattern of the differences $x_{r+1,0}-x_{r, 0}$ and then the differences between successive rows of \mathcal{X}_{k}. This pattern is captured in the sequence \mathcal{W}_{k} of words, which for $k=2$ is the simplest Sturmian word (the Fibonacci word, see [1]), with its higher order generalizations.

Definition 4. $\mathcal{W}_{k}=\left\{w_{i}\right\}_{i \geq 0}$ is an infinite sequence of words over the k-letter alphabet $\Sigma=\left\{a_{i} \mid 0 \leq i<k\right\} . w_{i}$ is a word of length $x_{0, i}$, as follows:

$$
\begin{aligned}
w_{0} & =a_{0}, \\
w_{1} & =a_{0} a_{1}, \\
w_{2} & =a_{0} a_{1} a_{2}, \\
\vdots & \vdots \\
w_{k-1} & =a_{0} a_{1} a_{2} \cdots a_{k-1}, \\
w_{i} & =w_{i-1} w_{i-k} \text { for } i \geq k .
\end{aligned}
$$

We define another infinite sequence \mathcal{W}_{k}^{\prime} of words, which is related to \mathcal{W}_{k}. Each derivation has useful word properties, which will be highlighted by Table 5 in Lemma 2.

Definition 5. $\mathcal{W}_{k}^{\prime}=\left\{w_{i}^{\prime}\right\}_{i \geq 1}$ is an infinite sequence of words over the same k-letter alphabet $\Sigma=\left\{a_{i} \mid 0 \leq i<k\right\}$, determined by the iterative algorithm:

$$
\begin{aligned}
w_{i}^{\prime} & =\left\{\begin{array}{lll}
a_{i} & \text { for } \quad 1 \leq i<k, \\
a_{0} & \text { at } i=k,
\end{array}\right. \\
w_{i}^{\prime} & =w_{i-1}^{\prime} w_{i-k}^{\prime} \text { for } i>k .
\end{aligned}
$$

w_{i}^{\prime} is a word of length $x_{0, i-k}$, where the word length is one for $0<i<k$ according to precursion in row 0 of \mathcal{X}_{k}. The shifted relationships between w_{i} and w_{i}^{\prime} and between their respective lengths $\left|w_{i}\right|$ and $\left|w_{i}^{\prime}\right|$ are given by

$$
w_{i}=w_{i+k}^{\prime} \quad \text { and } \quad\left|w_{i}\right|=\left|w_{i+k}^{\prime}\right|=x_{0, i} \text { for } i \geq 0
$$

The Fibonacci case $(k=2)$ has $\left|w_{i}\right|=x_{0, i}=F_{i+2}$ for $i \geq 0$, and $\left|w_{i}^{\prime}\right|=x_{0, i-2}=F_{i}$ for $i \geq 1$.
For $i \geq k, w_{i-1}$ is a prefix of w_{i} and $w_{i-k}=w_{i}^{\prime}$ is a suffix of w_{i}, yielding the infinite word

$$
\begin{equation*}
w=\lim _{i \rightarrow \infty} w_{i}=\lim _{i \rightarrow \infty} w_{i}^{\prime}=\{w(n)\}_{n \geq 0}=w(0) w(1) w(2) \ldots, \tag{2.2}
\end{equation*}
$$

where $w(n) \in \Sigma$. At $k=2$, the infinite Fibonacci word w begins $1011010110110 \ldots$ with $a_{0}=1, a_{1}=0$.

Lemma 2. The least significant portion LSP of $k-1$ coefficients of the k-Zeckendorf representation of a sequence of nonnegative integers follows the algorithm used to construct \mathcal{W}_{k}.

Proof. We express the k-Zeckendorf representation using at least $k-1$ bits. The LSP of length $k-1$ may take on k different patterns (composed of either all zeros or zeros with a single one). From these k patterns, we create our k-letter alphabet $\Sigma=\left\{a_{i} \mid 0 \leq i<k\right\}$. The k-Zeckendorf representation of 0 is 0 , and we assign a_{0} to instances when the LSP is 0^{k-1} ($k-10$'s). For

THE FIBONACCI QUARTERLY

$1 \leq i \leq k-1$, we have by Definition 1 that $i=x_{0, i-1}$. The k-Zeckendorf representation of i consists of a single term $x_{0, i-1}$ with LSP of $0^{k-1-i} 10^{i-1}$, to which we assign the letter a_{i}.

Table 5 with $k=3$ illustrates the principle of this proof. Association between letters a, b, c in Table 5 and letters a_{i} in \mathcal{W}_{k} and \mathcal{W}_{k}^{\prime} is made by substitutions $a=a_{1}, b=a_{2}$, and $c=a_{0}$, with indices of a_{i} listed in the last column of Table 5.

TABLE 5. k-Zeckendorf representations at $k=3$.

n	MSP of k-Zeck.	LSP of k-Zeck.	letters	i
0		00	c	0
1		01	a	1
2		10	b	2
3	1	00	c	0
4	10	00	c	0
5	10	01	a	1
6	100	00	c	0
7	100	01	a	1
8	100	10	b	2
9	1000	00	c	0
10	1000	01	a	1
11	1000	10	b	2
12	1001	00	c	0

The horizontal lines in Table 5 are placed over the values n when $n=x_{0, c}$, the entries of \mathcal{X}_{3} in row 0 at $c \geq 0$ beginning with $1,2,3,4,6,9,13$. The sequence of words in the letters column from the top of the table down to each horizontal line is the following:

$$
c, c a, c a b, c a b c, c a b c c a, c a b c c a c a b, c a b c c a c a b c a b c, \ldots .
$$

Thus from Definition 4, each successive word sequence w_{i} from $i \geq 0$ gives the letter sequence from the table top to the next horizontal line, and each word length is $\left|w_{i}\right|=x_{0, i}$ as required.

The sequence of words in the letters column between the consecutive horizontal lines in Table 5 are the words w_{i}^{\prime} for $i \geq 1$ listed in sequence as

$$
a, b, c, c a, c a b, c a b c, c a b c c a, c a b c c a c a b, c a b c c a c a b c a b c, \ldots .
$$

At $k=3$, row 0 of \mathcal{X}_{3} for $x_{0, c-k}$ at $c \geq 1$ beginning with $1,1,1,2,3,4,6,9,13$ gives $\left|w_{c}^{\prime}\right|$ as the number of terms between the horizontal lines in the table.

We now return to the general case, $k \leq 2$, to form a table such as Table 5 . We initialize the first k lines ($k=3$ in the illustration) straightforwardly: for $0 \leq i<k, x_{0, i}=i+1$, so that the k-Zeckendorf representation of i corresponds to the letter a_{i}. Then proceed inductively. Having constructed the first $x_{0, n-1}$ lines, the next $x_{0, n-k}$ lines are then built. If $x_{0, n-1} \leq m<x_{0, n}$, the k-Zeckendorf representation of m is the k-Zeckendorf representation of $m-x_{0, n-k}$ augmented by $x_{0, n-1}$. As bit strings, take the initial $x_{0, n-k}$ lines of the table, pad their k-Zeckendorf representations with zeros on the left to make them all bit strings of length $n-k$. Then prepend each of these strings with 10^{k-1}, giving the new $x_{0, n-k}$ lines, extending the table to $x_{0, n}$ lines.

The list of LSP's follows the same algorithm used to construct \mathcal{W}_{k}.
In the above, in the words in $\{a, b, c\}, a$ is always followed by b or c, b is always followed by c, and c is always followed by a or c. For general $k, \Sigma=\left\{a_{i} \mid 0 \leq i<k\right\}, a_{i}$ will always be

PATTERNS IN DIFFERENCES BETWEEN ROWS IN k-ZECKENDORF ARRAYS

followed by either a_{i+1} or a_{0}, with the latter occurring when there is a carry, a replacement of $x_{i}+x_{i+k-1}$ with $x_{i+k} . a_{k-1}$ is always followed by a_{0}.

The subscript i of a_{i} is simply the value of the length $k-1$ LSP of the Zeckendorf representation of i. In other words, if the k-Zeckendorf representation of r is $\sum_{h=0}^{m} d_{h} x_{0, h}$, then $i=\sum_{h=0}^{k-2} d_{h} x_{0, h}$.

3. Main Theorems

Theorem 1. The difference between two adjacent rows of \mathcal{X}_{k} is a shift of row 0 , where the difference $\delta_{r}(c)=x_{r+1, c}-x_{r, c}=x_{0, c+j(r)}$ with $1 \leq j(r) \leq k$. Specifically the shift index $j(r)$ is

$$
j(r)=\left\{\begin{array}{lll}
i & \text { if } w(r)=a_{i} \tag{3.1}\\
k & \text { if } w(r)=a_{0}
\end{array}\right.
$$

where $w(r)$ is the letter located at position r of the infinite word w of equation (2.2).
Proof. By Lemma 1, $x_{r, 0}=S^{k}(r)+1$, so $x_{r+1,0}-x_{r, 0}=S^{k}(r+1)-S^{k}(r)$.
Suppose $w(r)=a_{i}$. Then $w(r+1)=a_{i+1}$ or $w(r+1)=a_{0}$, with the latter case occurring when there is one or more carries.

Case 1: $w(r)=a_{i}$ with $0<i<k$. Express the k-Zeckendorf representation of r as $\sum d_{n} x_{0, n}$. $i-1$ is the smallest subscript such that $d_{i-1}=1$, and $i-1+k$ is the smallest subscript such that $d_{i-1+k}^{\prime}=1$ in the k-Zeckendorf representation of $S^{k}(r)$ as $\sum d_{n}^{\prime} x_{0, n}$.

Case 1.1: Suppose $w(r+1)=a_{i+1}$ and the k-Zeckendorf representation of $S^{k}(r+1)$ is $\sum d_{n}^{\prime \prime} x_{0, n}$. We have $d_{n}^{\prime \prime}=d_{n}^{\prime}$ for $n>i+k$, so $S^{k}(r+1)-S^{k}(r)=x_{0, i+k}-x_{0, i-1+k}=x_{0, i}$.

Case 1.2: If $w(r+1)=a_{0}$, we may execute a sequence of borrows reversing the above mentioned sequence of carries, to write $S^{k}(r+1)=\sum d_{n}^{\prime \prime} x_{0, n}$ (which, after borrowing is not k Zeckendorf). We have $d_{n}^{\prime \prime}=d_{n}^{\prime}$ for $n>i+1$, so again $S^{k}(r+1)-S^{k}(r)=x_{0, i+k}-x_{0, i-1+k}=x_{0, i}$.

Case 2: $w(r)=a_{0}$. The two sub-cases, $w(r+1)=a_{1}$ and $w(r+1)=a_{0}$ follow a very similar argument to that given in Case 1. In both these sub-cases, $S^{k}(r+1)-S^{k}(r)=x_{0, k}-0=x_{0, k}$.

The above argument carries through identically for the general case

$$
\begin{align*}
\delta_{r}(c)=x_{r+1, c}-x_{r, c} & =S^{c+k}(r+1)-S^{c+k}(r) \tag{3.2}\\
& =S^{c}\left(S^{k}(r+1)-S^{k}(r)\right) \\
& =S^{c}\left(x_{0, j(r)}\right) \\
& =x_{0, j(r)+c}
\end{align*}
$$

where $j(r)$ is given in equation (3.1).
For illustration, we show that the first 13 differences in column 0 of \mathcal{X}_{3} have the same pattern as the 3 -letter word of \mathcal{W}_{3}. The first 13 terms of the sequences $\left\{\delta_{r}(0)\right\},\{j(r)\}$ and $\{w(r)\}$ for $0 \leq r \leq 12$ are shown below. The substitution of $\{c, a, b\}$ for $\left\{a_{0}, a_{1}, a_{2}\right\}$ is made in the word $\{w(r)\}_{r \geq 0}$.

TABLE 6. Terms in Theorem 1 for k-Zeckendorf array at $k=3$.

$\delta_{0, \ldots, 12}(0)$	$j(0, \ldots, 12)$	$w(0, \ldots, 12)$
$4,2,3,4,4,2,4,2,3,4,2,3,4$	$3,1,2,3,3,1,3,1,2,3,1,2,3$	cabccacabcabc

Theorem 2. For all $r, x_{r,-k}=r$.

THE FIBONACCI QUARTERLY

Proof. $x_{r+1,-k}-x_{r,-k}=x_{0,-k+j(r)}=x_{0, n}$. Because $1 \leq j(r) \leq k$, we have $1-k \leq n \leq 0$. It follows from Definition 1 and a simple precursion argument that $x_{0, n}$ is always 1 , and that $x_{0,-k}=0$.

Theorem 3. For all $r \geq 0, w\left(x_{r, c}\right)=a_{c+1}$ if $0 \leq c \leq k-2$, and $w\left(x_{r, c}\right)=a_{0}$ if $c>k-2$.
Proof. This follows from the definition of \mathcal{X}_{k}, Definition 3, equation (1.3), Lemma 1, equation (2.1), and Lemma 2.

By Lemma 2, the LSP of $0^{k-1-i} 10^{i-1}$ assigns $w(n)=a_{i}$ if $1 \leq i \leq k-1$ and $w(n)=a_{0}$ if $i=0$ or $i \geq k$. Likewise by Lemma 1, column 0 has LSP of $0^{\bar{k}-1-i} 1$; and by Definition 3 (equation (1.3)), column c has LSP of $0^{k-1-c} 10^{c-1}$.

Some examples of Theorem 3 include:
(1) $w\left(x_{r, 0}\right)=a_{1}$ for $r \geq 0, k \geq 2$,
(2) $w\left(x_{r, 1}\right)=a_{2}$ for $r \geq 0, k \geq 3$,
(3) $w\left(x_{r, k-1}\right)=a_{0}$ for $r \geq 0$.

The following results deal with how the numbers in column c of \mathcal{X}_{k} punctuate (i.e., break into factors) the infinite word w. By Theorem 1, we know there are k different intervals $\left[x_{r, c}, x_{r+1, c}\right)$, and the lengths of these intervals are k successive numbers of the sequence $\left\{x_{0, i}\right\}$.

Definition 6. Let the sequence

$$
v_{r, c}=\left\langle w(i) \mid x_{r, c} \leq i<x_{r+1, c}\right\rangle
$$

be a factor of the infinite word w. Its length is

$$
\left|v_{r, c}\right|=\delta_{r}(c)=x_{r+1, c}-x_{r, c}=x_{0, c+j(r)} .
$$

Definition 7. Let $\sigma: \Sigma^{*} \rightarrow \Sigma^{*}$ be a morphism defined by

$$
\begin{aligned}
\sigma\left(a_{0}\right) & =a_{0} a_{1}, \\
\sigma\left(a_{i}\right) & =a_{i+1} \quad \text { for } 1 \leq i \leq k-1 .
\end{aligned}
$$

As specified in Definition 5 and Theorem 1, we take $a_{k}=a_{0}$.
Lemma 3. The infinite word w is the fixed point of σ.
Proof. A straightforward inductive argument shows $\sigma\left(w_{i}\right)=w_{i+1}$ for all $i \geq 0$.
Definition 8. For $0 \leq \lambda<k$, define words $\psi_{\lambda}(c)$ as follows:

$$
\begin{aligned}
\psi_{0}(0) & =a_{1} a_{0}, \\
\psi_{\lambda}(0) & =a_{1} \cdots a_{\lambda+1} a_{0} \quad \text { for } 1 \leq \lambda \leq k-2, \\
\psi_{k-1}(0) & =a_{1} \cdots a_{k-1} a_{k} a_{0} .
\end{aligned}
$$

For $c>0$, let $\psi_{\lambda}(c)=\sigma\left(\psi_{\lambda}(c-1)\right)$.
Lemma 4. $\left|\psi_{\lambda}(c)\right|=x_{0, c+\lambda+1}$ for $c \geq 0$.
Proof. For $0 \leq \lambda \leq k-1$, the word $\psi_{\lambda}(0)$ has length $x_{0, \lambda+1}$ and is a permutation of the word $w_{\lambda+1}$. The result then follows from the observation that $\sigma\left(w_{i}\right)=w_{i+1}$ for all $i \geq 0$ (see Lemma 3) and that σ is a morphism.

Theorem 4. For $c \geq 0$, the $\psi_{\lambda}(c)$ are the only strings among the words $v_{r, c}$.

PATTERNS IN DIFFERENCES BETWEEN ROWS IN k-ZECKENDORF ARRAYS

Proof. From Definition 8, each string $\psi_{\lambda}(0)$ begins with the letter a_{1}, and it contains no other instance of a_{1}. In the infinite word w, every factor $\psi_{\lambda}(0)$ is followed by the letter a_{1}, beginning the next factor. The infinite string w, therefore, satisfies the following equations:

$$
\begin{align*}
w & =w_{0},\left\langle\psi_{j(r)+1}(0) \mid r=0,1,2, \ldots\right\rangle, \\
\sigma(w) & =w_{1},\left\langle\psi_{j(r)+1}(1) \mid r=0,1,2, \ldots\right\rangle, \tag{3.3}\\
\vdots & \vdots \\
\sigma^{c}(w) & =w_{c},\left\langle\psi_{j(r)+1}(c) \mid r=0,1,2, \ldots\right\rangle .
\end{align*}
$$

Because w is the fixed point of σ, the result follows.
We illustrate the first few iterations from (3.3) using $k=3$. For clarity of presentation, we substitute for letters a_{i} in Theorem 4 and Definition 8 according to $a=a_{1}, b=a_{2}$, and $c=a_{0}$.

$$
\begin{aligned}
w & =c, a b c c, a c, a b c, a b c c, a b c c, a c, a b c c, a c, a b c, a b c c, a c, a b c, a b c c, a b c c, a c, a b c, \ldots \\
\sigma(w) & =c a, b c c a c a, b c a, b c c a, b c c a c a, b c c a c a, b c a, b c c a c a, b c a, b c c a, b c c a c a, b c a, b c c a, \ldots \\
\sigma^{2}(w) & =c a b, c c a c a b c a b, c c a b, c c a c a b, c c a c a b, c a b, c c a c a b, c a b, c c a b, c c a c a b, c a b, c c a b, \ldots
\end{aligned}
$$

Finally for $k=3$, we display the k distinct strings $\psi_{\lambda}(c)$ in the first few columns $c \geq 0$.
TABLE 7. Words w_{c} and strings $\psi_{\lambda}(c)$ for k-Zeckendorf array at $k=3$.

$\psi_{\lambda}(c)$	$c: 0$	1	2	3	4
w_{c}	c	$c a$	$c a b$	$c a b c$	$c a b c c a$
$\lambda: 0$	$a c$	$b c a$	$c c a b$	$c a c a b c$	$c a b c a b c c a$
1	$a b c$	$b c c a$	$c c a c a b$	$c a c a b c a b c$	$c a b c a b c c a b c c a$
2	$a b c c$	$b c c a c a$	$c c a c a b c a b$	$c a c a b c a b c c a b c$	$c a b c a b c c a b c c a c a b c c a$

We note that the strings, $\psi_{\lambda}(c)$ and $\psi_{\lambda-1}(c+1)$, have the same length and are a cyclic permutation of each other. We thus define a cycle operator ρ such that $\rho\left(a_{i} x\right)=x a_{i}$ for $a_{i} \in \Sigma$ and $a_{i} x \in \Sigma^{*}$, and we present the following proposition without proof.

Proposition 1. $\psi_{\lambda}(c)=\rho \cdots \rho\left(w_{c+\lambda+1}\right)=\rho^{\left|w_{c}\right|}\left(w_{c+\lambda+1}\right)$.
Taking $k=3$ and $c=1$, Proposition 1 gives $\psi_{\lambda}(1)=\rho^{\left|w_{1}\right|}\left(w_{2+\lambda}\right)$ with $\psi_{0}(1)=\rho^{2}(c a b)=$ $b c a, \psi_{1}(1)=\rho^{2}(c a b c)=b c c a$, and $\psi_{2}(1)=\rho^{2}(c a b c c a)=b c c a c a$. As noted for diagonals, at $\lambda+c=3$ we get $\psi_{\lambda}(c)=\rho^{\left|w_{c}\right|}\left(w_{4}\right)$ with $\psi_{2}(1)=\rho^{2}(c a b c c a)=b c c a c a, \psi_{1}(2)=\rho^{3}(c a b c c a)=$ $c c a c a b$, and $\psi_{0}(3)=\rho^{4}(c a b c c a)=c a c a b c$; having equal lengths $\left|\psi_{\lambda}(c)\right|=\left|w_{4}\right|=x_{0,4}=6$ as required by Proposition 1, Theorem 1, and Lemma 4.

4. Acknowledgment

Thanks to Jenny Fayette (an "epsilon") for suggesting this topic to us. We thank the anonymous referee for suggestions that improved the presentation of the paper.

THE FIBONACCI QUARTERLY

References

[1] J.-P. Allouche and J. O. Shallit, Automatic Sequences. Theory, Applications, Generalizations, Cambridge University Press, Cambridge, 2003.
[2] C. Cooper, The k-Zeckendorf array, Presented at the Fourteenth International Conference on Fibonacci Numbers and Their Applications, Morelia, Mexico, July 2010.
[3] C. Kimberling, The Zeckendorf array equals the Wythoff array, The Fibonacci Quarterly, 33.1 (1995), 3-8.
[4] C. Kimberling, The Wythoff triangle and unique representation of positive integers, Presented at the Fourteenth International Conference on Fibonacci Numbers and Their Applications, Morelia, Mexico, July 2010.
[5] C. G. Lekkerkerker, Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci, Simon Stevin, 29 (1952-1953), 190-195.
[6] D. R. Morrison, A Stolarsky array of Wythoff pairs, A Collection of Manuscripts Related to the Fibonacci Sequence, 18th Anniversary Volume, V. E. Hoggatt, Jr. and Marjorie Bicknell-Johnson, eds., 1980, 134-136.
[7] N. J. A. Sloane (Ed.), The On-Line Encyclopedia of Integer Sequences, 2011, http://www.research.att.com/~njas/sequences/.
[8] E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Liege, 41 (1972), 179-182.

MSC2010: 11B34, 11B37, 11B39, 68R15.
Millville, NJ 08332
E-mail address: LE22@cornell.edu
Department of Computer Science, Rochester Institute of Technology, Rochester, NY 14623
E-mail address: pga@cs.rit.edu

[^0]: ${ }^{1}$ Clark Kimberling suggested the terminology at the 2010 Fibonacci Association conference in Mexico.

