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Abstract. We study the following alternating sums,

fn(m) ≡
∑

k≥0

(−1)k
(

n− k

k

)

Cn+m−k, n ≥ 0, m ≥ −1

where Cn is the nth Catalan number, and we express the results as closed forms that can
be represented as polynomials of degree m in n. We show that the number functions fn(m)
are: 1) integral-valued; 2) positive-definite in sign; and 3) have a common factor, n + 1, for
n ≥ 0, m ≥ 1. We also show how to obtain the coefficients in the polynomial representation
in powers of n.

1. Introduction

The following identity is proved in [1] and mentioned in [2]:

∑

k≥0

(−1)k
(

n− k
k

)

Cn−1−k = δn,1, n ≥ 0. (1.1)

In this expression, n is a nonnegative integer, δ is the Kronecker delta, and Cn is the nth
Catalan number [2]. The Catalan number Cn+1 may be found recursively [2], through

Cn+1 =

n
∑

k=0

CkCn−k, n ≥ 0, C0 = 1.

A Catalan number with a negative index vanishes, by definition. Likewise, a binomial coeffi-
cient with a negative upper and/or lower entry and one with a lower entry that exceeds the
upper one is taken to vanish. The first few Catalan numbers are: C0 = 1, C1 = 1, C2 = 2,
C3 = 5, C4 = 14, C5 = 42, C6 = 132, C7 = 429.

In this note, we generalize the summation identity given in (1.1) and investigate the rather
singular properties of the following sums, where m and n are integers:

fn(m) ≡
∑

k≥0

(−1)k
(

n− k
k

)

Cn+m−k, n ≥ 0, m ≥ −1. (1.2)

We readily conclude from (1.2) that fn(m) is integral-valued because the binomial coefficients
and the Catalan numbers are integers. However, it is not yet possible to determine the overall
sign of fn(m), due to the alternating nature of the sum. We note that identity (1.1) above is
the special case m = −1 of (1.2) so we have that:

fn(−1) = δn,1 n ≥ 0. (1.3)

Computational data suggest that, in the cases m = 0, 1, 2:
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fn(0) = 1; fn(1) = n+ 1; fn(2) =
1

2
(n2 + 5n+ 4), n ≥ 0. (1.4)

We shall prove the validity of these expressions later but for now, we note that the following
relations hold for n ≥ 0:

fn+1(2)− fn(2) = n+ 3 = fn+2(1) (1.5)

fn+1(1)− fn(1) = 1 = fn+2(0) (1.6)

fn+1(0)− fn(0) = 0 = fn+2(−1). (1.7)

These results and a further examination of the cases m = 3 and m = 4 led us to the following
conjectures.

Conjecture I: The number functions defined in (1.2) obey the following relation:

fn+1(m)− fn(m) = fn+2(m− 1), m, n ≥ 0. (1.8)

Conjecture II: The number functions defined in (1.2) may be represented as polynomials of
degree m in n.

The purpose of the present note is to prove Conjecture I, in the first instance, and to give
a closed-form solution for fn(m) that may be represented as a polynomial of degree m in n,
in the second instance (Conjecture II). The present topic is suitable for a course in number
theory and it should prove of interest to teachers, students, scientists, engineers and number
enthusiasts alike. The main results and a general solution of the problem are now presented.

2. Proof of Conjectures I and II

To prove Conjecture I, first rearrange (1.8) as follows:

fn+1(m)− fn+2(m− 1) = fn(m) m,n ≥ 0.

Then use the general expressions in (1.2) and insert the results in the above relation to get:

∑

k≥0

(−1)k
[(

n+ 1− k
k

)

−

(

n+ 2− k
k

)]

Cn+1+m−k =
∑

k≥0

(−1)k
(

n− k
k

)

Cn+m−k.

(2.1)
Next, note that the term with k = 0 in the left-hand sum vanishes and rewrite the left-hand
side (LHS) as

LHS =
∑

k≥1

(−1)k
[(

n+ 1− k
k

)

−

(

n+ 2− k
k

)]

Cn+1+m−k

=
∑

k≥0

(−1)k
[(

n+ 1− k
k + 1

)

−

(

n− k
k + 1

)]

Cn+m−k.

Finally, from the Pascal identity, we have
(

n+ 1− k
k + 1

)

−

(

n− k
k + 1

)

=

(

n− k
k

)

and the LHS of (2.1) then becomes identical to the right-hand side (RHS) of that equation.
Conjecture I is therefore true for m,n ≥ 0. We now turn to Conjecture II.
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To find expressions for fn(m) as a function of n, for a fixed value of m ≥ 0, we first shift n
to k in (1.8), then change the index label from k to k − 1 and sum over the range 1 ≤ k ≤ n.
The resulting sum collapses and we get, after noting that f0(m) = Cm, from (1.2):

fn(m) = Cm +

n+1
∑

k=2

fk(m− 1), m, n ≥ 0. (2.2)

We adopt the convention that the above summation vanishes for n = 0, regardless of the value
of m. For the case m = 0, we put C0 = 1 in (2.2) and use (1.3) to get that

fn(0) = 1 +

n+1
∑

k=2

δk,1 = 1, n ≥ 0.

Then, for the case m = 1, we put C1 = 1 in (2.2) and get that

fn(1) = 1 +
n+1
∑

k=2

1 = n+ 1, n ≥ 0.

As a final application of (2.2), consider the case m = 2 and get, with C2 = 2, that

fn(2) = 2 +

n+1
∑

k=2

(k + 1) = 2 +
1

2
n(n+ 5) =

1

2
(n2 + 5n+ 4), n ≥ 0.

These three results prove the computational formulas given in (1.4). It would be possible to
continue on in this recursive manner to obtain higher order polynomials in n, but the method
quickly becomes unwieldy. Consequently we seek a direct, closed-form solution for fn(m) by
proceeding as described next.

To start with, we invoke the known result [2]

Ck =
1

k + 1

(

2k
k

)

, k ≥ 0.

We then have, using (1.2) for the case n = 0, that

f0(m) = Cm

=
m+ 1−m

m+ 1

(

2m
m

)

=

(

2m
m

)

−
m

m+ 1

(

2m
m

)

=

(

2m
m

)

−

(

2m
m− 1

)

.
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Again using (1.2) to get the case n = 1, we have:

f1(m) = Cm+1

=
1

m+ 2

(

2m+ 2
m+ 1

)

=
2m+ 2

(m+ 2)(m+ 1)

(2m+ 1)!

(m+ 1)!m!

=
2

m+ 2

(

2m+ 1
m

)

.

We then further transform this result to get

f1(m) =
(m+ 2−m)

m+ 2

(

2m+ 1
m

)

=

(

2m+ 1
m

)

−
m

(m+ 2)

(

2m+ 1
m

)

=

(

2m+ 1
m

)

−

(

2m+ 1
m− 1

)

.

As a final example, we put n = 0 in (1.8) and get, with the help of the previous two results
and of the Pascal identity:

f2(m− 1) = f1(m)− f0(m)

=

[(

2m+ 1
m

)

−

(

2m+ 1
m− 1

)]

−

[(

2m
m

)

−

(

2m
m− 1

)]

=

[(

2m+ 1
m

)

−

(

2m
m

)]

−

[(

2m+ 1
m− 1

)

−

(

2m
m− 1

)]

=

(

2m
m− 1

)

−

(

2m
m− 2

)

.

Finally we replace m by m+ 1 in this result and get the sought quantity, f2(m):

f2(m) =

(

2m+ 2
m

)

−

(

2m+ 2
m− 1

)

.

We now prove generally that

fn(m) =

(

2m+ n
m

)

−

(

2m+ n
m− 1

)

, m, n ≥ 0. (2.3)

First note that (2.3) gives fn(0) = 1 for all nonnegative integers n and that it gives

f0(m) =

(

2m
m

)

−

(

2m
m− 1

)

for all nonnegative integers m. Both results agree with what we found previously, from (1.2)
directly. It therefore remains to be shown that (2.3) satisfies recurrence (1.8). We have, for
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the left-hand side of (1.8):

fn+1(m)− fn(m)=

[(

2m+ n+ 1
m

)

−

(

2m+ n+ 1
m− 1

)]

−

[(

2m+ n
m

)

−

(

2m+ n
m− 1

)]

=

[(

2m+ n+ 1
m

)

−

(

2m+ n
m

)]

−

[(

2m+ n+ 1
m− 1

)

−

(

2m+ n
m− 1

)]

=

(

2m+ n
m− 1

)

−

(

2m+ n
m− 2

)

.

The Pascal identity was used to get the last line, which equals fn+2(m−1), and is identical to
the RHS of (1.8). We conclude that (2.3) is the sought general solution of the present problem
since it satisfies (1.8), plus the boundary conditions at (m = 0, n ≥ 0) and at (m ≥ 0, n = 0).
Let us now consider a few specific cases of (2.3). The case m = 0 has already been handled.
For the next two cases we have:

fn(1) =

(

n+ 2
1

)

−

(

n+ 2
0

)

= n+ 1

fn(2) =

(

n+ 4
2

)

−

(

n+ 4
1

)

=
1

2
(n2 + 5n+ 4).

Both results agree with our previous findings. For the cases m = 3 and m = 4, we have:

fn(3) =

(

n+ 6
3

)

−

(

n+ 6
2

)

=
1

6
(n3 + 12n2 + 41n + 30)

fn(4) =

(

n+ 8
4

)

−

(

n+ 8
3

)

=
1

24
(n4 + 22n3 + 167n2 + 482n + 336).

The results can be obtained with relative ease and they all support the claim that fn(m) is a
polynomial of degree m in n (Conjecture II). We now show that this is generally true.

We have, from (2.3), that

fn(m) =
(n+ 2m)!

(n+m)!m!
−

(n+ 2m)!

(n+m+ 1)!(m− 1)!

=
(n+ 1)

(n+m+ 1)

(

2m+ n
m

)

.

For m = 0 and m = 1, we have that fn(0) = 1 and fn(1) = n+1. Now, for m ≥ 2, we simplify
the binomial coefficient in this expression and get:

fn(m) =
(n + 1)(n+ 2m)(n + 2m− 1) · · · (n+m+ 2)

m!
, m ≥ 2, n ≥ 0. (2.4)

The denominator in the right-hand side of this expression is independent of n and the nu-
merator contains exactly m multiplicative binomial factors in n. Consequently, fn(m) is a
polynomial of degree m in n, as conjectured, and we write that

fn(m) =
1

m!

m
∑

k=0

ak(m)nk m,n ≥ 0. (2.5)

We now give expressions for the sets of coefficients, {ak(m) : 0 ≤ k ≤ m}. For the special
cases m = 0 and m = 1, the polynomials are given by the first two equations in (1.4). Now,
for m ≥ 2, define the following set of m numbers:

b1(m) = 1; b2(m) = 2m; b3(m) = 2m− 1; . . . ; bm(m) = m+ 2.
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These numbers come from the binomial factors in the numerator of (2.4). It then follows, from
the theory of elementary symmetric functions [3], that ak(m) is the sum of the distinct products
of the above numbers, taken m− k at a time. We adopt the convention that am(m) = 1 for
all m ≥ 2. The ak(m) coefficients are therefore:

am(m) = 1; am−1(m) =
∑

1≤k≤m
bk(m); am−2(m) =

∑

1≤j<k≤m
bj(m)bk(m)

am−3(m) =
∑

1≤i<j<k≤m
bi(m)bj(m)bk(m); ...; a0(m) =

m
∏

k=1

bk(m).

Consider the coefficients of m!fn(m) (see (2.5)) in the following examples:

m = 2: a2(2) = 1; a1(2) = b1(2) + b2(2) = 5; a0(2) = b1(2)b2(2) = 4
m = 3: a3(3) = 1; a2(3) = b1(3) + b2(3) + b3(3) = 12;
a1(3) = b1(3)b2(3) + b1(3)b3(3) + b2(3)b3(3) = 41; a0(3) = b1(3)b2(3)b3(3) = 30

These coefficients agree with our earlier findings.
Before closing, we note the following important properties of fn(m):

1) One can see from (2.4) that fn(m) is positive for all m,n ≥ 0, a feature that is not
obvious from definition (1.2).

2) One can see, from (1.4) for the case m = 1, and from (2.4) for m ≥ 2, that every
number function fn(m) shares the common factor n + 1 with the others, although
fn(m)/(n + 1) is not necessarily integral (e.g. f2(3)/3 = 28/3 and f3(3)/4 = 12).

3) We recall also, from definition (1.2), that fn(m) is always integral-valued.
4) Finally, as a consequence of (2.4), each individual coefficient of a given polynomial is

positive, a feature that is somewhat surprising, considering that the sum defining (1.2)
is alternating in sign.

To conclude, we studied the alternating sums defined in (1.2) and expressed the results in
closed form. We further showed that these sums may be represented as integral-valued, positive
polynomials of degree m in the integer n and gave general expressions for the polynomial
coefficients.
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