# SOME CONNECTIONS BETWEEN A GENERALIZED TRIBONACCI TRIANGLE AND A GENERALIZED FIBONACCI SEQUENCE 

KANTAPHON KUHAPATANAKUL


#### Abstract

In this paper we consider a generalized Fibonacci type second order linear recurrence $\left\{U_{n}\right\}$. We derive explicit formulas for the squares of generalized Fibonacci numbers, $U_{n}^{2}$, and the products of consecutive generalized Fibonacci numbers, $U_{n} U_{n+1}$, by using some properties of the generalized tribonacci triangle.


## 1. Introduction

For real numbers $a$ and $b$, the generalized Fibonacci sequence $\left\{U_{n}\right\}$ is defined by

$$
U_{0}=0, \quad U_{1}=1 \quad \text { and } \quad U_{n+1}=a U_{n}+b U_{n-1} \quad(n \geq 1) .
$$

If $a=b=1$, then $U_{n}=F_{n}$ is the classical Fibonacci number. It is well-known that the Fibonacci numbers can be derived by summing elements on the rising diagonal lines in Pascal's triangle

$$
F_{n+1}=\sum_{i=1}^{\lfloor n / 2\rfloor}\binom{n-i}{i} \quad(n \geq 0)
$$

where $\lfloor x\rfloor$ is the largest integer not exceeding $x$, see [3, chapter 12]. For the generalized Fibonacci number $U_{n}$, we have the following well-known expansion, see [5],

$$
U_{n+1}=\sum_{i=0}^{\lfloor n / 2\rfloor}\binom{n-i}{i} a^{n-2 i} b^{i} \quad(n \geq 0) .
$$

In 1977, Alladi and Hoggatt [1] constructed the tribonacci triangle, see Figure 1, to derive the expansion of the tribonacci numbers.

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 |  |  |  |  |  |  |  |  |
| 1 | 1 | 1 |  |  |  |  |  |  |  |
| 2 | 1 | 3 | 1 |  |  |  |  |  |  |
| 3 | 1 | 5 | 5 | 1 |  |  |  |  |  |
| 4 | 1 | 7 | 13 | 7 | 1 |  |  |  |  |
| 5 | 1 | 9 | 25 | 25 | 9 | 1 |  |  |  |
| 6 | 1 | 11 | 41 | 63 | 41 | 11 | 1 |  |  |
| 7 | 1 | 13 | 61 | 129 | 129 | 61 | 13 | 1 |  |
| $\vdots$ |  |  | $\vdots$ |  |  |  |  |  |  |

Figure 1: Tribonacci triangle.

[^0]
## CONNECTIONS BETWEEN A TRIANGLE AND A FIBONACCI SEQUENCE

If we use $B(n, i)$ to denote the element in the $n$th row and $i$ th column of the tribonacci triangle, then we may obtain:

$$
\begin{equation*}
B(n+1, i)=B(n, i)+B(n, i-1)+B(n-1, i-1), \tag{1.1}
\end{equation*}
$$

where $B(n, 0)=B(n, n)=1$. Alladi and Hoggatt showed that the sum of elements on the rising diagonal lines in the tribonacci triangle is the tribonacci number $t_{n}$, that is,

$$
\begin{equation*}
t_{n+1}=\sum_{i=0}^{\lfloor n / 2\rfloor} B(n-i, i), \tag{1.2}
\end{equation*}
$$

where $t_{0}=0, t_{1}=t_{2}=1$ and $t_{n+2}=t_{n+1}+t_{n}+t_{n-1}$.
P. Barry [2, Example 16] proved that

$$
\begin{equation*}
B(n, i)=\sum_{j=0}^{i}\binom{i}{j}\binom{n-j}{i} . \tag{1.3}
\end{equation*}
$$

By using the identity (1.3), the identity (1.2) can be written as

$$
t_{n+1}=\sum_{i=0}^{\lfloor n / 2\rfloor} \sum_{j=0}^{i}\binom{i}{j}\binom{n-i-j}{i} .
$$

The objective here is to find connections between a generalized tribonacci triangle and a generalized Fibonacci sequence. First, we state some formulas for the numbers $F_{n}^{2}$ and $F_{n} F_{n+1}$ suggested from the tribonacci triangle. Next, we define a generalized tribonacci triangle and derive the formulas of the numbers $U_{n}^{2}$ and $U_{n} U_{n+1}$. Their proofs will be given in the last section.

## 2. Skipping Rows in the Tribonacci Triangle

We delete the odd-numbered rows in the tribonacci triangle to obtain Figure 2 as follows:

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 1 | 3 | 1 |  |  |  |  |  |  |  |  |  |
| 4 | 1 | 7 | 13 | 7 | 1 |  |  |  |  |  |  |  |
| 6 | 1 | 11 | 41 | 63 | 41 | 11 | 1 |  |  |  |  |  |
| 8 | 1 | 15 | 85 | 231 | 321 | 231 | 85 | 15 | 1 |  |  |  |
| 10 | 1 | 19 | 145 | 575 | 1289 | 1683 | 1289 | 575 | 145 | 19 | 1 |  |
| 12 | 1 | 23 | 221 | 1159 | 3649 | 7183 | $\cdots$ |  |  |  |  |  |
| $\vdots$ |  |  | $\vdots$ |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Figure 2.
Observe that the sums of elements on each rising diagonal line in Figure 2 give the squared Fibonacci numbers, $F_{n}^{2}$, namely

$$
\begin{gathered}
F_{1}^{2}=1, F_{2}^{2}=1, F_{3}^{2}=1+3=2^{2}, F_{4}^{2}=1+7+1=3^{2}, F_{5}^{2}=1+11+13=5^{2}, \\
F_{6}^{2}=1+15+41+7=8^{2}, F_{7}^{2}=1+19+85+63+1=13^{2}, \ldots
\end{gathered}
$$

Using the identity (1.3), we conjecture the following expansion

$$
\begin{equation*}
F_{n+1}^{2}=\sum_{i=0}^{\lfloor 2 n / 3\rfloor} B(2 n-2 i, i)=\sum_{i=0}^{\lfloor 2 n / 3\rfloor} \sum_{j=0}^{i}\binom{i}{j}\binom{2 n-2 i-j}{i} . \tag{2.1}
\end{equation*}
$$

Next, we delete the even-numbered rows in the tribonacci triangle to obtain Figure 3.

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 1 | 5 | 5 | 1 |  |  |  |  |  |  |  |  |  |
| 5 | 1 | 9 | 25 | 25 | 9 | 1 |  |  |  |  |  |  |  |
| 7 | 1 | 13 | 61 | 129 | 129 | 61 | 13 |  |  |  |  |  |  |
| 9 | 1 | 17 | 113 | 377 | 681 | 681 | 377 | 113 | 17 | 1 |  |  |  |
| 11 | 1 | 21 | 181 | 833 | 2241 | 3653 | 3653 | 2241 | 833 | 181 | 21 | 1 |  |
| 13 | 1 | 25 | 265 | 1561 | 5641 | 13073 | $\cdots$ |  |  |  |  |  |  |
| $\vdots$ |  |  | $\vdots$ |  |  |  |  |  |  |  |  |  |  |

Figure 3.
Similarly, sums of elements on each rising diagonal line in Figure 3 would appear to give the products of the consecutive Fibonacci numbers, $F_{n} F_{n+1}$, leading to the conjecture:

$$
\begin{equation*}
F_{n} F_{n+1}=\sum_{i=0}^{\lfloor(2 n-1) / 3\rfloor} B(2 n-2 i-1, i)=\sum_{i=0}^{\lfloor(2 n-1) / 3\rfloor} \sum_{j=0}^{i}\binom{i}{j}\binom{2 n-2 i-j-1}{i} . \tag{2.2}
\end{equation*}
$$

We will in fact prove generalized versions of (2.1) and (2.2) in the following section.

## 3. Main Results

Definition 3.1. Let $n \in \mathbb{Z}$. For any non-negative integer $i$, let

$$
T(n, i)=\left\{\begin{array}{cl}
\sum_{j=0}^{i}\binom{i}{j}\binom{n-j}{i} a^{n-2 j} b^{i+j} & ; 0 \leq i \leq n \\
0 & ; \quad \text { otherwise }
\end{array} .\right.
$$

For $0<i<n$, we see that all the terms in the summation of $T(n, i)$ are zero when $j>\min \{n-i, i\}$.
Definition 3.2. The generalized tribonacci triangle is defined as follows:

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | $\cdots$ | $n$ | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $T(0,0)$ |  |  |  |  |  |  |  |  |  |
| 1 | $T(1,0)$ | $T(1,1)$ |  |  |  |  |  |  |  |  |
| 2 | $T(2,0)$ | $T(2,1)$ | $T(2,2)$ |  |  |  |  |  |  |  |
| 3 | $T(3,0)$ | $T(3,1)$ | $T(3,2)$ | $T(3,3)$ |  |  |  |  |  |  |
| 4 | $T(4,0)$ | $T(4,1)$ | $T(4,2)$ | $T(4,3)$ | $T(4,4)$ |  |  |  |  |  |
| 5 | $T(5,0)$ | $T(5,1)$ | $T(5,2)$ | $T(5,3)$ | $T(5,4)$ | $T(5,5)$ |  |  |  |  |
| 6 | $T(6,0)$ | $T(6,1)$ | $T(6,2)$ | $T(6,3)$ | $T(6,4)$ | $T(6,5)$ | $T(6,6)$ |  |  |  |
| $\vdots$ |  |  | $\vdots$ |  |  |  |  |  |  |  |
| $n$ | $T(n, 0)$ | $T(n, 1)$ | $T(n, 2)$ | $\cdots$ |  | $T(n, n)$ |  |  |  |  |
| $\vdots$ |  |  | $\vdots$ |  |  |  |  |  |  |  |
|  |  |  | The generalized tribonacci triangle. |  |  |  |  |  |  |  |

## CONNECTIONS BETWEEN A TRIANGLE AND A FIBONACCI SEQUENCE

It is easy to see that for $a=b=1$, the generalized tribonacci triangle is indeed the tribonacci triangle. Applying the same idea mentioned in Section 2 (i.e. deleting odd- and even-numbered rows) to the generalized tribonacci triangle, we anticipate the following main results, whose proofs will be given in the last section.

Theorem 3.3. For any non-negative integer $n$, we have
(1) $U_{n+1}^{2}=\sum_{i=0}^{\lfloor 2 n / 3\rfloor} T(2 n-2 i, i)=\sum_{i=0}^{\lfloor 2 n / 3\rfloor} \sum_{j=0}^{i}\binom{i}{j}\binom{2 n-2 i-j}{i} a^{2(n-i-j)} b^{i+j}$.
(2) $U_{n} U_{n+1}=\sum_{i=0}^{\lfloor(2 n-1) / 3\rfloor} T(2 n-2 i-1, i)=\sum_{i=0}^{\lfloor(2 n-1) / 3\rfloor} \sum_{j=0}^{i}\binom{i}{j}\left(\begin{array}{c}2 n-2 i-j-1\end{array}\right) a^{2(n-i-j)-1} b^{i+j}$.

## 4. Proof of Theorem 3.3

We first provide two lemmas which will be used in the proof of Theorem 3.3.

Lemma 4.1. Let $n \in \mathbb{N}$. Then
(1) $U_{n+2}^{2}=\left(a^{2}+b\right) U_{n+1}^{2}+\left(a^{2} b+b^{2}\right) U_{n}^{2}-b^{3} U_{n-1}^{2}$.
(2) $U_{n+1} U_{n+2}=\left(a^{2}+b\right) U_{n} U_{n+1}+\left(a^{2} b+b^{2}\right) U_{n-1} U_{n}-b^{3} U_{n-2} U_{n-1}$.

Proof. We only give a proof for the first part as that of the second is similar. By the definition of $U_{n}$, we get

$$
\begin{aligned}
U_{n+2}^{2} & =\left(a U_{n+1}+b U_{n}\right)^{2} \\
& =a^{2} U_{n+1}^{2}+2 a b U_{n+1} U_{n}+b^{2} U_{n}^{2} \\
& =a^{2} U_{n+1}^{2}+a b U_{n}\left(a U_{n}+b U_{n-1}\right)+b U_{n+1}\left(U_{n+1}-b U_{n-1}\right)+b^{2} U_{n}^{2} \\
& =\left(a^{2}+b\right) U_{n+1}^{2}+\left(a^{2} b+b^{2}\right) U_{n}^{2}+b^{2} U_{n-1}\left(a U_{n}-U_{n+1}\right) \\
& =\left(a^{2}+b\right) U_{n+1}^{2}+\left(a^{2} b+b^{2}\right) U_{n}^{2}-b^{3} U_{n-1}^{2},
\end{aligned}
$$

as desired.

Lemma 4.2. Let $n \in \mathbb{N}$. For non-negative integer $i \leq n$, we get that

$$
\begin{equation*}
T(n, i)=a T(n-1, i)+a b T(n-1, i-1)+b^{2} T(n-2, i-1) . \tag{4.1}
\end{equation*}
$$

## THE FIBONACCI QUARTERLY

Proof. We see that (4.1) holds for $i=1$. For $1<i \leq n$. We have

$$
\begin{aligned}
& a T(n-1, i)+a b T(n-1, i-1)+b^{2} T(n-2, i-1) \\
&= a \sum_{j=0}^{i}\binom{i}{j}\binom{n-j-1}{i} a^{n-2 j-1} b^{i+j}+a b \sum_{j=0}^{i-1}\binom{i-1}{j}\binom{n-j-1}{i-1} a^{n-2 j-1} b^{i+j-1} \\
&+b^{2} \sum_{j=0}^{i-1}\binom{i-1}{j}\binom{n-j-2}{i-1} a^{n-2 j-2} b^{i+j-1} \\
&=\binom{n-1}{i} a^{n} b^{i}+a \sum_{j=1}^{i-1}\binom{i}{j}\binom{n-j-1}{i} a^{n-2 j-1} b^{i+j}+\binom{n-i-1}{i} a^{n-2 i} b^{2 i} \\
&+\binom{n-1}{i-1} a^{n} b^{i}+a b \sum_{j=1}^{i-1}\binom{i-1}{j}\binom{n-j-1}{i-1} a^{n-2 j-1} b^{i+j-1} \\
&+b^{2} \sum_{j=0}^{i-2}\binom{i-1}{j}\binom{n-j-2}{i-1} a^{n-2 j-2} b^{i+j-1}+\binom{n-i-1}{i-1} a^{n-2 i} b^{2 i} \\
&=\binom{n}{i} a^{n} b^{i}+\sum_{j=1}^{i-1}\binom{i}{j}\binom{n-j}{i} a^{n-2 j} b^{i+j}+\binom{n-i}{i} a^{n-2 i} b^{2 i} \\
&= \sum_{j=0}^{i}\binom{i}{j}\binom{n-j}{i} a^{n-2 j} b^{i+j} \\
&= T(n, i),
\end{aligned}
$$

so (4.1) is always valid.

Note that if we take $a=b=1$ in the identity (1) of the Lemma 4.1, then we obtain the classical Fibonacci numbers identity, namely

$$
F_{n+2}^{2}=2 F_{n+1}^{2}+2 F_{n}^{2}-F_{n-1}^{2},
$$

which is well-known (see [4] or [3, page 92]). If we take $a=b=1$ in Lemma 4.2, then the identity (4.1) becomes the identity (1.1).

Proof of Theorem 3.3. Since the proofs of both part (1) and part (2) are quite similar, we only give a proof for part (1). We proceed by induction on $n$, noting first that

$$
U_{1}^{2}=1, \quad U_{2}^{2}=a^{2} \quad \text { and } \quad U_{3}^{2}=a^{4}+2 a^{2} b+b^{2}
$$

Now assume the identity (1) of Theorem 3.3 holds for all integers $n=0,1,2, \ldots, k-1$. By Lemma 4.1(1), Lemma 4.2 and the inductive hypothesis, we get

$$
\begin{aligned}
U_{k+1}^{2}= & \left(a^{2}+b\right) U_{k}^{2}+\left(a^{2} b+b^{2}\right) U_{k-1}^{2}-b^{3} U_{k-2}^{2} \\
= & a^{2} T(2 k-2,0)+a^{2} \sum_{i \geq 1} T(2 k-2 i-2, i)+b \sum_{i \geq 0} T(2 k-2 i-2, i) \\
& +\left(a^{2} b+b^{2}\right) \sum_{i \geq 0} T(2 k-2 i-4, i)-b^{3} \sum_{i \geq 0} T(2 k-2 i-6, i) \\
= & T(2 k, 0)+a^{2} \sum_{i \geq 1} T(2 k-2 i-2, i)+b T(2 k-2,0) \\
& +a b \sum_{i \geq 1} T(2 k-2 i-3, i)+a b^{2} \sum_{i \geq 1} T(2 k-2 i-3, i-1) \\
& +b^{3} \sum_{i \geq 1} T(2 k-2 i-4, i-1)-b^{3} \sum_{i \geq 0} T(2 k-2 i-6, i) \\
& +\left(a^{2} b+b^{2}\right) \sum_{i \geq 1} T(2 k-2 i-2, i-1) \\
= & T(2 k, 0)+a^{2} \sum_{i \geq 1} T(2 k-2 i-2, i)+a^{2} b \sum_{i \geq 1} T(2 k-2 i-2, i-1) \\
& +a b^{2} \sum_{i \geq 1} T(2 k-2 i-3, i-1)+a b \sum_{i \geq 1} T(2 k-2 i-1, i-1) \\
& +b^{2} \sum_{i \geq 1} T(2 k-2 i-2, i-1) \\
= & T(2 k, 0)+a \sum_{i \geq 1} T(2 k-2 i-1, i)+a b \sum_{i \geq 1} T(2 k-2 i-1, i-1) \\
& +b^{2} \sum_{i \geq 1} T(2 k-2 i-2, i-1) \\
= & \sum_{i \geq 0} T(2 k-2 i, i) .
\end{aligned}
$$

Thus (1) of Theorem 3.3 holds for $n=k$, thereby proving the theorem.

## 5. Acknowledgment

The author thanks an anonymous referee for their pertinent comments and suggestions.

## References

[1] K. Alladi and V. E. Hoggatt, Jr., On tribonacci numbers and related functions, The Fibonacci Quarterly, 15.1 (1977), 42-45.
[2] P. Barry, On integer-sequence-based constructions of generalized Pascal triangles, Journal of Integer Sequences, 9 (2006), Article 06.2.4.
[3] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.
[4] B. Lewis, More power to Fibonacci, Mathematical Gazette, 87.509 (2003), 194-202.
[5] Z. H. Sun, Expansions and identities concerning Lucas sequences, The Fibonacci Quarterly, 44.2 (2006), 145-153.

THE FIBONACCI QUARTERLY

MSC2010: 11B37, 11B39
Department of Mathematics, Kasetsart University, Bangkok 10900, Thailand
E-mail address: fscikpkk@ku.ac.th


[^0]:    Research supported by Center of Excellence in Mathematics, Bangkok 10400, Thailand.

