SOME CONNECTIONS BETWEEN A GENERALIZED TRIBONACCI TRIANGLE AND A GENERALIZED FIBONACCI SEQUENCE

KANTAPHON KUHAPATANAKUL

ABSTRACT. In this paper we consider a generalized Fibonacci type second order linear recurrence $\{U_n\}$. We derive explicit formulas for the squares of generalized Fibonacci numbers, U_n^2 , and the products of consecutive generalized Fibonacci numbers, U_nU_{n+1} , by using some properties of the generalized tribonacci triangle.

1. INTRODUCTION

For real numbers a and b, the generalized Fibonacci sequence $\{U_n\}$ is defined by

$$U_0 = 0$$
, $U_1 = 1$ and $U_{n+1} = aU_n + bU_{n-1}$ $(n \ge 1)$

If a = b = 1, then $U_n = F_n$ is the classical Fibonacci number. It is well-known that the Fibonacci numbers can be derived by summing elements on the rising diagonal lines in Pascal's triangle

$$F_{n+1} = \sum_{i=1}^{\lfloor n/2 \rfloor} \binom{n-i}{i} \quad (n \ge 0),$$

where $\lfloor x \rfloor$ is the largest integer not exceeding x, see [3, chapter 12]. For the generalized Fibonacci number U_n , we have the following well-known expansion, see [5],

$$U_{n+1} = \sum_{i=0}^{\lfloor n/2 \rfloor} \binom{n-i}{i} a^{n-2i} b^i \quad (n \ge 0).$$

In 1977, Alladi and Hoggatt [1] constructed the tribonacci triangle, see Figure 1, to derive the expansion of the tribonacci numbers.

	0	1	2	3	4	5	6	7	•••			
0	1											
1	1	1										
2	1	3	1									
3	1	5	5	1								
4	1	7	13	7	1							
5	1	9	25	25	9	1						
6	1	11	41	63	41	11	1					
7	1	13	61	129	129	61	13	1				
:			:									
-	Figure 1 : Tribonacci triangle.											

Research supported by Center of Excellence in Mathematics, Bangkok 10400, Thailand.

CONNECTIONS BETWEEN A TRIANGLE AND A FIBONACCI SEQUENCE

If we use B(n,i) to denote the element in the *n*th row and *i*th column of the tribonacci triangle, then we may obtain:

$$B(n+1,i) = B(n,i) + B(n,i-1) + B(n-1,i-1),$$
(1.1)

where B(n,0) = B(n,n) = 1. Alladi and Hoggatt showed that the sum of elements on the rising diagonal lines in the tribonacci triangle is the tribonacci number t_n , that is,

$$t_{n+1} = \sum_{i=0}^{\lfloor n/2 \rfloor} B(n-i,i),$$
(1.2)

where $t_0 = 0, t_1 = t_2 = 1$ and $t_{n+2} = t_{n+1} + t_n + t_{n-1}$.

P. Barry [2, Example 16] proved that

$$B(n,i) = \sum_{j=0}^{i} {\binom{i}{j} \binom{n-j}{i}}.$$
(1.3)

By using the identity (1.3), the identity (1.2) can be written as

$$t_{n+1} = \sum_{i=0}^{\lfloor n/2 \rfloor} \sum_{j=0}^{i} \binom{i}{j} \binom{n-i-j}{i}.$$

The objective here is to find connections between a generalized tribonacci triangle and a generalized Fibonacci sequence. First, we state some formulas for the numbers F_n^2 and F_nF_{n+1} suggested from the tribonacci triangle. Next, we define a generalized tribonacci triangle and derive the formulas of the numbers U_n^2 and U_nU_{n+1} . Their proofs will be given in the last section.

2. Skipping Rows in the Tribonacci Triangle

We delete the odd-numbered rows in the tribonacci triangle to obtain Figure 2 as follows:

	0	1	2	3	4	5	6	7	8	9	10	•••
0	1											
2	1	3	1									
4	1	7	13	7	1							
6	1	11	41	63	41	11	1					
8	1	15	85	231	321	231	85	15	1			
10	1	19	145	575	1289	1683	1289	575	145	19	1	
12	1	23	221	1159	3649	7183						
÷			÷									
						Figure 2	2.					

Observe that the sums of elements on each rising diagonal line in Figure 2 give the squared Fibonacci numbers, F_n^2 , namely

$$F_1^2 = 1, F_2^2 = 1, F_3^2 = 1 + 3 = 2^2, F_4^2 = 1 + 7 + 1 = 3^2, F_5^2 = 1 + 11 + 13 = 5^2,$$

$$F_6^2 = 1 + 15 + 41 + 7 = 8^2, F_7^2 = 1 + 19 + 85 + 63 + 1 = 13^2, \dots$$

FEBRUARY 2012

THE FIBONACCI QUARTERLY

Using the identity (1.3), we conjecture the following expansion

$$F_{n+1}^2 = \sum_{i=0}^{\lfloor 2n/3 \rfloor} B(2n-2i,i) = \sum_{i=0}^{\lfloor 2n/3 \rfloor} \sum_{j=0}^{i} \binom{i}{j} \binom{2n-2i-j}{i}.$$
 (2.1)

Next, we delete the even-numbered rows in the tribonacci triangle to obtain Figure 3.

	0	1	2	3	4	5	6	7	8	9	10	11	
1	1	1											
3	1	5	5	1									
5	1	9	25	25	9	1							
7	1	13	61	129	129	61	13						
9	1	17	113	377	681	681	377	113	17	1			
11	1	21	181	833	2241	3653	3653	2241	833	181	21	1	
13	1	25	265	1561	5641	13073							
:			:										
•													

Similarly, sums of elements on each rising diagonal line in Figure 3 would appear to give the products of the consecutive Fibonacci numbers, F_nF_{n+1} , leading to the conjecture:

$$F_n F_{n+1} = \sum_{i=0}^{\lfloor (2n-1)/3 \rfloor} B(2n-2i-1,i) = \sum_{i=0}^{\lfloor (2n-1)/3 \rfloor} \sum_{j=0}^{i} \binom{i}{j} \binom{2n-2i-j-1}{i}.$$
 (2.2)

We will in fact prove generalized versions of (2.1) and (2.2) in the following section.

3. Main Results

Definition 3.1. Let $n \in \mathbb{Z}$. For any non-negative integer *i*, let

$$T(n,i) = \begin{cases} \sum_{j=0}^{i} {i \choose j} {n-j \choose i} a^{n-2j} b^{i+j} & ; & 0 \le i \le n \\ 0 & ; & otherwise \end{cases}$$

For 0 < i < n, we see that all the terms in the summation of T(n,i) are zero when $j > \min\{n-i,i\}$.

Definition 3.2. The generalized tribonacci triangle is defined as follows:

	0	1	2	3	4	5	6	• • •	n	• • •
0	T(0,0)									
1	T(1, 0)	T(1, 1)								
2	T(2, 0)	T(2, 1)	T(2, 2)							
3	T(3,0)	T(3,1)	T(3,2)	T(3,3)						
4	T(4, 0)	T(4, 1)	T(4, 2)	T(4, 3)	T(4, 4)					
5	T(5, 0)	T(5, 1)	T(5, 2)	T(5, 3)	T(5, 4)	T(5, 5)				
6	T(6,0)	T(6,1)	T(6,2)	T(6,3)	T(6, 4)	T(6,5)	T(6,6)			
÷			:							
n	T(n,0)	T(n,1)	T(n,2)						T(n,n)	
÷			÷							
	-		The	aeneraliz	ed trihona	cci triana	le			

The generalized tribonacci triangle.

.

CONNECTIONS BETWEEN A TRIANGLE AND A FIBONACCI SEQUENCE

It is easy to see that for a = b = 1, the generalized tribonacci triangle is indeed the tribonacci triangle. Applying the same idea mentioned in Section 2 (i.e. deleting odd- and even-numbered rows) to the generalized tribonacci triangle, we anticipate the following main results, whose proofs will be given in the last section.

Theorem 3.3. For any non-negative integer n, we have

(1)
$$U_{n+1}^2 = \sum_{i=0}^{\lfloor 2n/3 \rfloor} T(2n-2i,i) = \sum_{i=0}^{\lfloor 2n/3 \rfloor} \sum_{j=0}^{i} {i \choose j} {2n-2i-j \choose i} a^{2(n-i-j)} b^{i+j}.$$

(2) $U_n U_{n+1} = \sum_{i=0}^{\lfloor (2n-1)/3 \rfloor} T(2n-2i-1,i) = \sum_{i=0}^{\lfloor (2n-1)/3 \rfloor} \sum_{j=0}^{i} {i \choose j} {2n-2i-j-1 \choose i} a^{2(n-i-j)-1} b^{i+j}.$

4. Proof of Theorem 3.3

We first provide two lemmas which will be used in the proof of Theorem 3.3.

Lemma 4.1. Let $n \in \mathbb{N}$. Then

(1)
$$U_{n+2}^2 = (a^2 + b)U_{n+1}^2 + (a^2b + b^2)U_n^2 - b^3U_{n-1}^2.$$

(2) $U_{n+1}U_{n+2} = (a^2 + b)U_nU_{n+1} + (a^2b + b^2)U_{n-1}U_n - b^3U_{n-2}U_{n-1}.$

Proof. We only give a proof for the first part as that of the second is similar. By the definition of U_n , we get

$$\begin{aligned} U_{n+2}^2 &= (aU_{n+1} + bU_n)^2 \\ &= a^2 U_{n+1}^2 + 2abU_{n+1}U_n + b^2 U_n^2 \\ &= a^2 U_{n+1}^2 + abU_n (aU_n + bU_{n-1}) + bU_{n+1} (U_{n+1} - bU_{n-1}) + b^2 U_n^2 \\ &= (a^2 + b)U_{n+1}^2 + (a^2b + b^2)U_n^2 + b^2 U_{n-1} (aU_n - U_{n+1}) \\ &= (a^2 + b)U_{n+1}^2 + (a^2b + b^2)U_n^2 - b^3 U_{n-1}^2, \end{aligned}$$

as desired.

Lemma 4.2. Let $n \in \mathbb{N}$. For non-negative integer $i \leq n$, we get that

$$T(n,i) = aT(n-1,i) + abT(n-1,i-1) + b^2T(n-2,i-1).$$
(4.1)

FEBRUARY 2012

47

THE FIBONACCI QUARTERLY

Proof. We see that (4.1) holds for i = 1. For $1 < i \le n$. We have

$$\begin{split} aT(n-1,i) + abT(n-1,i-1) + b^2T(n-2,i-1) \\ &= a\sum_{j=0}^{i} {i \choose j} {n-j-1 \choose i} a^{n-2j-1} b^{i+j} + ab\sum_{j=0}^{i-1} {i-1 \choose j} {n-j-1 \choose i-1} a^{n-2j-1} b^{i+j-1} \\ &+ b^2\sum_{j=0}^{i-1} {i-j \choose j} {n-j-2 \choose i-1} a^{n-2j-2} b^{i+j-1} \\ &= {n-1 \choose i} a^n b^i + a\sum_{j=1}^{i-1} {i \choose j} {n-j-1 \choose i} a^{n-2j-1} b^{i+j} + {n-i-1 \choose i} a^{n-2i} b^{2i} \\ &+ {n-1 \choose i-1} a^n b^i + ab\sum_{j=1}^{i-1} {i-1 \choose j} {n-j-1 \choose i-1} a^{n-2j-1} b^{i+j-1} \\ &+ b^2\sum_{j=0}^{i-2} {i-1 \choose j} {n-j-2 \choose i-1} a^{n-2j-2} b^{i+j-1} + {n-i-1 \choose i-1} a^{n-2i} b^{2i} \\ &= {n \choose i} a^n b^i + \sum_{j=1}^{i-1} {i \choose j} {n-j \choose i} a^{n-2j} b^{i+j} + {n-i-1 \choose i} a^{n-2i} b^{2i} \\ &= {n \choose i} a^n b^i + \sum_{j=1}^{i-1} {i \choose j} {n-j \choose i} a^{n-2j} b^{i+j} + {n-i-1 \choose i} a^{n-2i} b^{2i} \\ &= \sum_{j=0}^{i} {i \choose j} {n-j \choose i} a^{n-2j} b^{i+j} \\ &= \sum_{j=0}^{i} {i \choose j} {n-j \choose i} a^{n-2j} b^{i+j} \\ &= T(n,i), \end{split}$$

so (4.1) is always valid.

Note that if we take a = b = 1 in the identity (1) of the Lemma 4.1, then we obtain the classical Fibonacci numbers identity, namely

$$F_{n+2}^2 = 2F_{n+1}^2 + 2F_n^2 - F_{n-1}^2,$$

which is well-known (see [4] or [3, page 92]). If we take a = b = 1 in Lemma 4.2, then the identity (4.1) becomes the identity (1.1).

Proof of Theorem 3.3. Since the proofs of both part (1) and part (2) are quite similar, we only give a proof for part (1). We proceed by induction on n, noting first that

$$U_1^2 = 1$$
, $U_2^2 = a^2$ and $U_3^2 = a^4 + 2a^2b + b^2$.

Now assume the identity (1) of Theorem 3.3 holds for all integers n = 0, 1, 2, ..., k - 1. By Lemma 4.1(1), Lemma 4.2 and the inductive hypothesis, we get

$$\begin{split} U_{k+1}^2 &= (a^2+b)U_k^2 + (a^2b+b^2)U_{k-1}^2 - b^3U_{k-2}^2 \\ &= a^2T(2k-2,0) + a^2\sum_{i\geq 1}T(2k-2i-2,i) + b\sum_{i\geq 0}T(2k-2i-2,i) \\ &+ (a^2b+b^2)\sum_{i\geq 0}T(2k-2i-4,i) - b^3\sum_{i\geq 0}T(2k-2i-6,i) \\ &= T(2k,0) + a^2\sum_{i\geq 1}T(2k-2i-2,i) + bT(2k-2,0) \\ &+ ab\sum_{i\geq 1}T(2k-2i-3,i) + ab^2\sum_{i\geq 1}T(2k-2i-3,i-1) \\ &+ b^3\sum_{i\geq 1}T(2k-2i-4,i-1) - b^3\sum_{i\geq 0}T(2k-2i-6,i) \\ &+ (a^2b+b^2)\sum_{i\geq 1}T(2k-2i-2,i-1) \\ &= T(2k,0) + a^2\sum_{i\geq 1}T(2k-2i-2,i) + a^2b\sum_{i\geq 1}T(2k-2i-2,i-1) \\ &+ ab^2\sum_{i\geq 1}T(2k-2i-3,i-1) + ab\sum_{i\geq 1}T(2k-2i-1,i-1) \\ &+ b^2\sum_{i\geq 1}T(2k-2i-2,i-1) \\ &= T(2k,0) + a\sum_{i\geq 1}T(2k-2i-2,i-1) \\ &= T(2k-2i-2,i-1) \\ &= \sum_{i\geq 0}T(2k-2i,i). \end{split}$$

Thus (1) of Theorem 3.3 holds for n = k, thereby proving the theorem.

5. Acknowledgment

The author thanks an anonymous referee for their pertinent comments and suggestions.

References

- K. Alladi and V. E. Hoggatt, Jr., On tribonacci numbers and related functions, The Fibonacci Quarterly, 15.1 (1977), 42–45.
- [2] P. Barry, On integer-sequence-based constructions of generalized Pascal triangles, Journal of Integer Sequences, 9 (2006), Article 06.2.4.
- [3] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.
- [4] B. Lewis, More power to Fibonacci, Mathematical Gazette, 87.509 (2003), 194–202.
- [5] Z. H. Sun, Expansions and identities concerning Lucas sequences, The Fibonacci Quarterly, 44.2 (2006), 145–153.

FEBRUARY 2012

THE FIBONACCI QUARTERLY

MSC2010: 11B37, 11B39

Department of Mathematics, Kasetsart University, Bangkok 10900, Thailand *E-mail address:* fscikpkk@ku.ac.th