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Abstract. The Fibonacci–like 4 × 4 magic square of Herta Freitag is analyzed from the
standpoint of orthogonal diagonal latin squares and generalized to similar squares of higher
dimension. Construction of such arrays are investigated and several examples are presented.
The special case of 3×3 is constructed by other means leaving as the only unknown construc-
tions of Fibonacci–like magic squares the 6× 6 case.

1. INTRODUCTION

In [5], Brown showed that for n ≥ 2 there do not exist any n×n magic squares with distinct
entries chosen from a set of Fibonacci numbers. In [12, Array 5], Freitag discovered a 4 × 4
magic square and an algorithm for constructing an infinite family of such magic squares, [Fa]4,
having magic constant Fa+8,

[Fa]4 =









Fa+2 Fa+6 Fa+1 + Fa+6 Fa+4

Fa+3 + Fa+6 Fa+3 Fa+1 + Fa+5 Fa + Fa+4

Fa+2 + Fa+5 Fa + Fa+6 Fa+5 2Fa+1

Fa+1 + Fa+4 Fa+1 + Fa+3 Fa + Fa+2 Fa+7









, (1.1)

and provided the example

[F5]4 =









13 89 97 34
110 21 63 39
68 94 55 16
42 29 18 144









.

We note that the entry 2Fa+1 = Fa−1 + Fa+2 so if a > 2 Zeckendorf’s Theorem guarantees
that the entries in (1.1) are unique. The entries in (1.1) are the sum of at most two Fibonacci
numbers. Such squares will be referred to as Fibonacci–like magic squares.

Except for the case of n = 3, our construction of Fibonacci–like magic squares uses matrices
known as orthogonal or graeco–latin squares. Using latin squares to construct magic squares
is not original with this paper. Indeed, the first reference using this technique was presented
by Euler [10] to the St. Petersburg Academy in 1776. However, whereas magic squares
are categorized as recreational mathematics, latin squares have significant applications. For
example, they are used in coding theory, statistical design, combinatorial group theory, biology,
marketing, etc., and so, in general, material on latin squares can be obtained from a variety of
sources. See, for example [8, 16, 24] and the extensive bibliography in [8]. It will be informative
if we present various definitions and properties of latin squares, most of which are found in
[8, 9].

MAY 2012 119



THE FIBONACCI QUARTERLY

Definition 1.1. A latin square, L = [aij] of order or dimension n is an n × n matrix with
entries from a set S of n elements, where none of the entries occur more than once in the same
row or column.

Definition 1.2. A latin square L is diagonal if the entries on the main diagonal are distinct
and the entries on the counter diagonal are distinct. L is called pandiagonal if L is diagonal
and the entries on each of the broken diagonals are distinct.

Definition 1.3. Two order-n latin squares, L1 = [aij ] with entries from a set S and L2 = [bij]
with entries from a set T , are orthogonal, if the set of ordered pairs {(aij , bij)} = S × T, are
distinct.

Definition 1.4. A latin square that is orthogonal to its transpose is called self-orthogonal.

Definition 1.5. A magic square is an n×n array with distinct whole number entries whose
sum, in any row, column, main diagonal, and counter diagonal is a constant. The constant
is called the magic number or the magic constant. If the n2 entries are 1, . . . , n2 (or
0, . . . , n2 − 1) then the magic square is called an ordinary magic square.

Definition 1.6. A magic square is called Fibonacci–like if each entry is at most the sum of
two Fibonacci numbers.

On a historical note, Euler [11] used the first n Latin letters and the first n Graeco–Roman
letters for S and T and hence the names latin and graeco–latin squares. As an aside we invite
the reader to visit The Euler Archive, an e-library, at www.math.dartmouth.edu/∼euler to
peruse the complete works (866 articles!) that are available.

In Section 3, we generalize (1.1). To facilitate understanding, we point out the following
easily proven properties of latin squares. Assume L,L1 and L2 are latin squares of order
n on {0, . . . , n − 1}. If L = [aij ] and σ ∈ Sn, the permutation group on n letters, then
σ(L) = [σ(aij)] is a latin square. If L1, L2 are orthogonal (diagonal) latin squares and σ, γ ∈ Sn,
then σ(L1), γ(L2) are orthogonal (diagonal) latin squares. Given a diagonal latin square
L = [aij ], let σ(aii) = i. Then σ(L) has the additional property that 0, 1, 2 . . . , n − 1 are
sequential on the main diagonal.

We will show that given two orthogonal diagonal latin squares it will always be possible
to construct a Fibonacci–like magic square. However, for what values of n is it possible to
construct two diagonal orthogonal latin squares? In the case of n odd not divisible by 3 it is
easy to construct self-orthogonal diagonal latin squares by the following theorem.

Theorem 1.7. [8, p 109] If n is odd not divisible by 3 then the n× n matrix L = [aij] where
0 ≤ i, j ≤ n− 1 and

aij = 2i+ j (mod n)

is a self-orthogonal, pan-diagonal, latin square.

For n = 1, obviously the array [0] is a self-orthogonal diagonal latin square. No magic
square of order 2 exists and the two latin squares of order 2 are not orthogonal. None of the
twelve latin squares for n = 3 are diagonal [24] and no orthogonal latin squares exist for n = 6
[19]. For a historical account of orthogonal latin squares of order 4n+ 2 see [2, 3, 11, 18, 19].
For all other values of n, orthogonal diagonal latin squares exist and the solutions/techniques
used can be found in [1, 8, 9, 14, 20, 21, 22, 23]. We summarize these results in the following
theorem.
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Theorem 1.8. If n /∈ {2, 3, 6} then self-orthogonal pairs of diagonal latin squares of order n
exist. If n ∈ {2, 3, 6} then orthogonal pairs of diagonal latin squares do not exist.

Our extension of Frietag’s Fibonacci–like magic squares to higher dimensions is a specific
application of the basic method by which one constructs a general magic square by means of
orthogonal latin squares. See, for example [8, 10] or less formally [16].

Construction 1.9. Let L1 = [bij ], L2 = [cij ] be orthogonal diagonal latin squares of order n
on {0, . . . , n − 1}. Let S = {si|i = 0, . . . , n − 1} and T = {ti|i = 0, . . . , n − 1} be sets each
containing n distinct values. If {s+ t|s ∈ S, t ∈ T} contains n2 distinct values then

[sbij ] + [tcij ]

is a magic square with magic constant MN =
∑n−1

i=0 (si + ti).

The proof of this follows directly from Definitions 1.1, 1.2, 1.3 and the hypothesis that
{s+ t|s ∈ S, t ∈ T} contains n2 distinct values.

By this method, an ordinary n × n magic square [O]n with entries 0, . . . , n2 − 1 can be
constructed using orthogonal diagonal latin squares [bij], [cij ] of order n where

Oij = bij + n · cij , 0 ≤ i, j ≤ n− 1.

For example,








0 3 1 2
2 1 3 0
3 0 2 1
1 2 0 3









+ 4









0 2 3 1
3 1 0 2
1 3 2 0
2 0 1 3









=









0 11 13 6
14 5 3 8
7 12 10 1
9 2 4 15









is an ordinary magic square of order 4, with magic number MN = 30.

2. FREITAG’S FIBONACCI MAGIC SQUARE REVISITED

Freitag’s procedure involved constructing three magic squares. This first array [12, Array
3]









Fa0 + Fa4 Fa3 + Fa6 Fa1 + Fa7 Fa2 + Fa5

Fa2 + Fa7 Fa1 + Fa5 Fa3 + Fa4 Fa0 + Fa6

Fa3 + Fa5 Fa0 + Fa7 Fa2 + Fa6 Fa1 + Fa4

Fa1 + Fa6 Fa2 + Fa4 Fa0 + Fa5 Fa3 + Fa7









, (2.1)

where Fa0 , . . . , Fa7 are arbitrary Fibonacci numbers, generates an infinite family of Fibonacci–
like magic squares. If Fa0 , . . . , Fa3 are distinct and Fa4 , . . . , Fa7 are distinct then this magic
square can be written as









Fa0 Fa3 Fa1 Fa2

Fa2 Fa1 Fa3 Fa0

Fa3 Fa0 Fa2 Fa1

Fa1 Fa2 Fa0 Fa3









+









Fa4 Fa6 Fa7 Fa5

Fa7 Fa5 Fa4 Fa6

Fa5 Fa7 Fa6 Fa4

Fa6 Fa4 Fa5 Fa7









(2.2)

which by Definitions 1.2 and 1.3 is the sum of two orthogonal diagonal latin squares. How-
ever,

∑7
i=0 Fai is not in general a Fibonacci number. By using a variation on the identity

MAY 2012 121



THE FIBONACCI QUARTERLY

∑n
i=1 F2i−1 = F2n [17, Theorem 5.2, p.71] and imposing restrictions on the Fai , her second

array [12, Array 4], which can be written as








Fa Fa+5 Fa+1 Fa+3

Fa+3 Fa+1 Fa+5 Fa

Fa+5 Fa Fa+3 Fa+1

Fa+1 Fa+3 Fa Fa+5









+









Fa+7 Fa+11 Fa+13 Fa+9

Fa+13 Fa+9 Fa+7 Fa+11

Fa+9 Fa+13 Fa+11 Fa+7

Fa+11 Fa+7 Fa+9 Fa+13









, (2.3)

corrects this so that the magic number MN = Fa+4(4)−2 = Fa+14. By imposing different
restrictions on the Fai , her last array (1.1) has magic number MN = Fa+8 and displays the
main diagonal as single Fibonacci numbers.

Using the observations above, in the following section, we extend (1.1), (2.1), and (2.3) to
higher dimensional magic squares for sequences arising from second order recurrence relations.

3. HIGHER DIMENSIONAL FREITAG–TYPE MAGIC SQUARES

In this section, we extend the results of Freitag to higher dimensions. Since the extensions
are by Construction 1.9, Theorem 1.8 applies and so excludes the dimensions 2,3,6 for these
constructions. We will need the following two technical results.

Proposition 3.1. Let S and T be two sets of Fibonacci numbers with |S| = m, |T | = n and
S ∩ T = { }. Then the set {s + t|s ∈ S, t ∈ T} contains mn distinct sums.

Proof. Suppose s, s′ ∈ S, t, t′ ∈ T , and s+ t = s′ + t′. First note that since S ∩ T = { }, then
{s, t} = {s′, t′} implies s = s′ and t = t′. Suppose both s + t and s′ + t′ are the Zeckendorf
representation [4, 13] of the sum of two nonconsecutive Fibonacci numbers. Then by the
Zeckendorf Theorem it follows {s, t} = {s′, t′} and so s = s′ and t = t′. Now suppose at least
one of s + t or s′ + t′ is not a Zeckendorf representation of the sum of two nonconsecutive
Fibonacci numbers. Without loss of generality, we can assume s+ t is not written as the sum
of two nonconsecutive Fibonacci numbers. Then by the Zeckendorf Theorem it follows that
either s = t or s, t are consecutive Fibonacci numbers. Since S ∩ T = { } s 6= t, and so s, t
are consecutive Fibonacci numbers. It follows that s′, t′ are the same consecutive Fibonacci
numbers and thus {s, t} = {s′, t′} and so s = s′, t = t′. Hence, {s + t|s ∈ S, t ∈ T} contains
mn distinct sums. �

Proposition 3.2. Let a > 2, S = {Fa} ∪ {Fa+2i−1|i = 1, . . . , n − 1} and T = {Fa+1} ∪
{Fa+2i|i = 1, . . . , n− 1}. Then the set {s+ t|s ∈ S, t ∈ T} contains n2 distinct sums.

Proof. Since a > 2, Fa−1, Fa, and Fa+1 are distinct Fibonacci numbers. Let S′ = S −{Fa+1}.
Then by Proposition 3.1 the set {s′+ t|s ∈ S′, t ∈ T} contains n2−n distinct sums. The sums
s′+ t written with the minimal number of summands of Fibonacci numbers are given by (3.1)
and (3.2). We have the 2n− 3 sums of consecutive Fibonacci numbers











Fa + Fa+1 = Fa+2

Fa+2i−1 + Fa+2i = Fa+2i+1, i = 2, . . . , n− 1

Fa+2(i+1)−1 + Fa+2i = Fa+2i+2, i = 1, . . . , n− 2,

(3.1)

and the n2 − 3n+ 3 minimal sums of two non-consecutive Fibonacci numbers










Fa + Fa+2i, i = 1, . . . , n− 1

Fa+2i−1 + Fa+1, i = 2, . . . , n− 1

Fa+2j−1 + Fa+2i, j = 2, . . . , n− 1, i = 1, . . . , n − 1, i 6= j, i 6= j − 1.

(3.2)
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The remaining sums of {s+ t|s ∈ S, t ∈ T} are the sums {Fa+1 + t|t ∈ T} and are










Fa+1 + Fa+1 = Fa−1 + Fa+2

Fa+1 + Fa+2 = Fa+3

Fa+1 + Fa+2i, i = 2, . . . , n− 1

. (3.3)

Since a > 2, none of the sums of (3.3) are listed in (3.1) or (3.2) and so {s + t|s ∈ S, t ∈ T}
has n2 distinct sums. �

The higher dimensional extension of (2.2) is now a direct consequence of Proposition 3.1
and Construction 1.9. Let n be given with the restrictions of Theorem 1.8 and Fa0 , . . ., Fan−1

,
Fan , . . ., Fa2n−1

be a sequence of 2n distinct Fibonacci numbers. Let S = {si|si = Fai , i =
0, . . . , n − 1}, T = {ti|ti = Fan+i

, i = 0, . . . , n − 1} and L1 = [bij ], L2 = [cij ] be orthogonal
diagonal latin squares of order n on the set {0, . . . , n − 1}. Let [Fa]n be the matrix from
Construction 1.9, i.e.,

[Fa]n = [Fabij
] + [Fan+cij

]. (3.4)

Then by Proposition 3.1 the sums {s + t|s ∈ S, t ∈ T} are distinct and so [Fa]n is a magic

square with magic constant MN =
∑2n−1

i=0 Fai and with entries that are the sum of at most
two Fibonacci numbers.

Similar to Frietag’s construction, for each n, (3.4) is a prescription for generating an infinite
family of Fibonacci–like magic squares.

Example 3.3. For n = 5, use Theorem 1.7 to generate the pandiagonal orthogonal latin
squares

L =













0 1 2 3 4
2 3 4 0 1
4 0 1 2 3
1 2 3 4 0
3 4 0 1 2













, LT =













0 2 4 1 3
1 3 0 2 4
2 4 1 3 0
3 0 2 4 1
4 1 3 0 2













.

The matrix [Fa]5 in this case is

[Fa]5 =













Fa0 Fa1 Fa2 Fa3 Fa4

Fa2 Fa3 Fa4 Fa0 Fa1

Fa4 Fa0 Fa1 Fa2 Fa3

Fa1 Fa2 Fa3 Fa4 Fa0

Fa3 Fa4 Fa0 Fa1 Fa2













+













Fa5 Fa7 Fa9 Fa6 Fa8

Fa6 Fa8 Fa5 Fa7 Fa9

Fa7 Fa9 Fa6 Fa8 Fa5

Fa8 Fa5 Fa7 Fa9 Fa6

Fa9 Fa6 Fa8 Fa5 Fa7













, (3.5)

and is a panmagic square with magic constant MN =
∑9

i=0 Fai .

Example 3.4. If we let Fai = Fi+2 for i = 0, . . . , 9 in the preceding example then

[Fa]5 =













14 36 92 26 63
24 60 21 35 91
42 90 23 58 18
57 16 39 97 22
94 29 56 15 37













,

is panmagic with magic constant 231, which is not a Fibonacci number.
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We now place restrictions on the Fibonacci numbers Fa0 , . . . , Fan−1
, Fan , . . . , Fa2n−1

to gen-
eralize (2.3) and (1.1). We use the extension of [17, Theorem 5.2, p.71]:

Fa +

k
∑

i=1

Fa+2i−1 = Fa+2k, (3.6)

which is easily proven by induction.
First, we extend (2.3) so that the entries of [Fa]n are at most the sum of two Fibonacci

numbers and the magic number is a prescribed Fibonacci number.
Let a > 1, Fa0 = Fa, and Fai = Fa+2i−1, i = 1 . . . , 2n − 1. Since a > 1, the set F =

{Fa}∪ {Fa+2i−1|i = 1, . . . , 2n − 1} has 2n distinct Fibonacci numbers. Let [Fa]n be the magic
square of (3.4). Then the magic constant of [Fa]n is now

MN =

2n−1
∑

i=0

Fai = Fa +

2n−1
∑

i=1

Fa+2i−1 = Fa+2(2n−1) = Fa+4n−2.

Example 3.5. In (3.5), let Fa0 = Fa and Fai = Fa+2i−1 for i = 1, . . . n− 1. Then

[Fa]5 =













Fa Fa+1 Fa+3 Fa+5 Fa+7

Fa+3 Fa+5 Fa+7 Fa Fa+1

Fa+7 Fa Fa+1 Fa+3 Fa+5

Fa+1 Fa+3 Fa+5 Fa+7 Fa

Fa+5 Fa+7 Fa Fa+1 Fa+3













+













Fa+9 Fa+13 Fa+17 Fa+11 Fa+15

Fa+11 Fa+15 Fa+9 Fa+13 Fa+17

Fa+13 Fa+17 Fa+11 Fa+15 Fa+9

Fa+15 Fa+9 Fa+13 Fa+17 Fa+11

Fa+17 Fa+11 Fa+15 Fa+9 Fa+13













,

is a panmagic square with magic constant Fa+4(5)−2 = Fa+18.

Example 3.6. If a = 2 in the previous example, then

[F2]5 =













90 612 4186 246 1631
238 1610 123 611 4183
644 4182 235 1602 102
1599 94 623 4215 234
4194 267 1598 91 615













,

is a panmagic square with magic number F20 = 6765.

We now generalize (1.1) to higher dimensions. Let a > 2 and let L1 = [bij ] and L2 = [cij ] be
orthogonal, diagonal latin squares on {0, . . . , n− 1}. We can assume that 0, 1, 2, . . . , n− 1 are
sequential on the main diagonals of L1 and L2, i.e., bii = cii = i for i = 0, . . . , n− 1. Let S =
{si|s0 = Fa, si = Fa+2i−1, i = 1, . . . n − 1} and T = {ti|t0 = Fa+1, ti = Fa+2i, i = 1, . . . n − 1}.
S contains n distinct values, T contains n distinct values, and by Proposition 3.2 the set
{s + t|s ∈ S, t ∈ T} contains n2 distinct sums. Let [Fa]n be the magic square derived from
Construction 1.9. The diagonal entries of [Fa]n are sb00 + tc00 = s0 + t0 = Fa + Fa+1 = Fa+2

and for i = 1, . . . , n− 1, sbii + tcii = si + ti = Fa+2i−1 + Fa+2i = Fa+2i+1.
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The magic number is given by the sum along the main diagonal which by (3.6) is

n−1
∑

i=0

(si + ti) = (Fa + Fa+1) +
n−1
∑

i=1

Fa+2i+1

= (Fa + Fa+1) +
n
∑

i=2

Fa+2i−1

= Fa +

n
∑

i=1

Fa+2i−1 = Fa+2n.

Hence, [Fa]n is magic with main diagonal entries Fibonacci numbers and magic constant
MN = Fa+2n.

We note in passing that it follows from Proposition 3.2 that all the Fibonacci numbers
Fa+2, Fa+3, . . . , Fa+2n−1 occur as entries in [Fa]n.

It will be informative to present a complete example as to how this construction is done.

Example 3.7. Using Theorem 1.7 with n = 5 begin with the self orthogonal array

L =













0 1 2 3 4
2 3 4 0 1
4 0 1 2 3
1 2 3 4 0
3 4 0 1 2













.

Let σ(0) = 0, σ(3) = 1, σ(1) = 2, σ(4) = 3, σ(2) = 4. Then

σ(L) =













0 2 4 1 3
4 1 3 0 2
3 0 2 4 1
2 4 1 3 0
1 3 0 2 4













, (σ(L))T =













0 4 3 2 1
2 1 0 4 3
4 3 2 1 0
1 0 4 3 2
3 2 1 0 4













.

Our L1, L2 are L1 = σ(L), L2 = (σL)T . Let s0 = Fa, s1 = Fa+1, s2 = Fa+3, s3 = Fa+5, s4 =
Fa+7 and t0 = Fa+1, t1 = Fa+2, t2 = Fa+4, t3 = Fa+6, t4 = Fa+8. Construct [Fa]n using
Construction 1.9. The (pan)magic square [Fa]5 is now













Fa Fa+3 Fa+7 Fa+1 Fa+5

Fa+7 Fa+1 Fa+5 Fa Fa+3

Fa+5 Fa Fa+3 Fa+7 Fa+1

Fa+3 Fa+7 Fa+1 Fa+5 Fa

Fa+1 Fa+5 Fa Fa+3 Fa+7













+













Fa+1 Fa+8 Fa+6 Fa+4 Fa+2

Fa+4 Fa+2 Fa+1 Fa+8 Fa+6

Fa+8 Fa+6 Fa+4 Fa+2 Fa+1

Fa+2 Fa+1 Fa+8 Fa+6 Fa+4

Fa+6 Fa+4 Fa+2 Fa+1 Fa+8













and equals












Fa+2 Fa+3 + Fa+8 Fa+8 Fa+1 + Fa+4 Fa+2 + Fa+5

Fa+4 + Fa+7 Fa+3 Fa+1 + Fa+5 Fa + Fa+8 Fa+3 + Fa+6

Fa+5 + Fa+8 Fa + Fa+6 Fa+5 Fa+2 + Fa+7 Fa−1 + Fa+2

Fa+4 Fa+1 + Fa+7 Fa+1 + Fa+8 Fa+7 Fa + Fa+4

Fa+1 + Fa+6 Fa+6 Fa + Fa+2 Fa+1 + Fa+3 Fa+9













, (3.7)

with magic constant Fa+10.
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Example 3.8. If a = 3 then (3.7) is

[F3]5 =













5 97 89 16 26
68 8 24 91 42
110 36 21 60 6
13 58 92 55 15
37 34 7 11 144













which is panmagic with magic constant F13 = 233.

4. CONCLUDING REMARKS

In conclusion, Section 3 provides a way to construct an infinite family of Fibonacci–like
magic squares for each n ≥ 4, except n = 6. The obvious Fibonacci-like magic square for
n = 1 is [Fa]1 = [Fa] where Fa is any Fibonacci number. No order 2 magic squares exist.
Using Chernick’s [6] special form for 3 × 3 magic squares it can be shown that any 3 × 3
Fibonacci–like magic square has a magic constant of one of five different types. None of these
magic constants are Fibonacci numbers. Thus no 3× 3 Fibonacci–like magic square can have
a Fibonacci number as a magic number. One such type is





Fa+5 Fa Fa+1 + Fa+4

Fa+3 Fa+4 Fa+2 + Fa+4

Fa + Fa+3 Fa+1 + Fa+5 Fa+2





which has magic constant Fa+2 + Fa+6 and so 3 × 3 Fibonacci–like magic squares can be
constructed. It is our belief that 6 × 6 Fibonacci–like magic squares can be constructed,
however at this time we have yet to find any specific 6 × 6 Fibonacci-like magic squares. For
example, since a 6× 6 magic square cannot be obtained by means of orthogonal latin squares
the example [8, p. 212]

















35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11

















can be written uniquely by Zeckendorf’s theorem as






F9+F2 F2 F5+F2 F8+F5 F7+F5+F2 F8+F4

F4 F8+F6+F4 F5+F3 F8 F8+F3 F8+F4+F2

F8+F6+F3 F6+F2 F3 F8+F2 F8+F5+F2 F7+F5+F3

F6 F8+F5+F3 F8+F6+F4+F2 F7+F4+F2 F6+F3 F7+F3

F8+F6+F2 F5 F9 F6+F4+F2 F7+F2 F7+F4

F4+F2 F9+F3 F8+F6 F7 F7+F5 F6+F4






,

which, though magic, is not Fibonacci–like.
We have used Construction 1.9 to extend (2.1), (2.3), and (1.1) to higher dimensions for

general Fibonacci numbers u1 = a, u2 = b, un+2 = Aun+1 + Bun for constants a, b,A,B. In
particular we have constructed the higher dimensional analogues for the Jacobsthal numbers
and generalized the Pell-like magic square, [Pa], that was presented in [7]. However for the
Pell, Jacobsthal, and general second order recurrence relations, problems about uniqueness
of sums occur and the forms of the extensions depend upon A and B. These results will be
presented at a later date.
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