ESTIMATING THE APÉRY NUMBERS

MICHAEL D. HIRSCHHORN

Abstract

We use a crude method to find the dominant term in the asymptotic expansion of the nth Apéry number.

1. Introduction

In 1983, Apéry stunned the mathematical world by proving that $\zeta(3)$ is irrational. Alf van der Poorten has given an entertaining account of Apéry's presentation [1].

Apéry's proof involves the eponymous numbers,

$$
A_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}
$$

that satisfy the recurrence

$$
(n+1)^{3} A_{n+1}=\left(34 n^{3}+51 n^{2}+27 n+5\right) A_{n}-n^{3} A_{n-1}
$$

together with $A_{0}=1, A_{1}=5$.
The purpose of this note is to demonstrate how one can use a crude yet effective method to find the dominant term in the asymptotic expansion of A_{n}. Indeed, we will find that

$$
A_{n} \sim \frac{1}{2^{\frac{9}{4}}(\pi n)^{\frac{3}{2}}}(\sqrt{2}+1)^{4 n+2} \text { as } n \rightarrow \infty .
$$

2. The Calculation

Let

$$
u_{k}=\binom{n}{k}^{2}\binom{n+k}{k}^{2}
$$

The maximum u_{k} is found by solving the equation $u_{k}=u_{k+1}$. This yields

$$
\begin{aligned}
\frac{(n-k)^{2}(n+k+1)^{2}}{(k+1)^{2}} & =1 \\
(n-k)(n+k+1) & =(k+1)^{2}
\end{aligned}
$$

or roughly speaking,

$$
\begin{aligned}
n^{2}-k^{2} & =k^{2}, \\
k & =\frac{n}{\sqrt{2}} .
\end{aligned}
$$

THE FIBONACCI QUARTERLY

Let N be the integer closest to $\frac{n}{\sqrt{2}}$. The maximum term, roughly speaking, is

$$
\begin{aligned}
u_{N} & =\binom{n}{N}^{2}\binom{n+N}{N}^{2} \\
& =\frac{(n+N)!^{2}}{N!^{4}(n-N)!^{2}} \\
& \approx \frac{2 \pi n\left(1+\frac{1}{\sqrt{2}}\right)\left(\frac{n(\sqrt{2}+1)}{\sqrt{2} e}\right)^{n(2+\sqrt{2})}}{2 \pi^{2} n^{2}\left(\frac{n}{\sqrt{2} e}\right)^{2 n \sqrt{2}} \cdot 2 \pi n\left(1-\frac{1}{\sqrt{2}}\right)\left(\frac{n(\sqrt{2}-1)}{\sqrt{2} e}\right)^{n(2-\sqrt{2})}} \\
& =\frac{1}{2 \pi^{2} n^{2}} \frac{\sqrt{2}+1}{\sqrt{2}-1} \cdot \frac{(\sqrt{2}+1)^{(2+\sqrt{2}) n}}{(\sqrt{2}+1)^{-(2-\sqrt{2}) n}} \\
& =\frac{1}{2 \pi^{2} n^{2}}(\sqrt{2}+1)^{4 n+2} \\
& =H .
\end{aligned}
$$

Nearby (think of k as up to $n^{\frac{3}{4}}$), we have, again making small approximations,

$$
\begin{aligned}
u_{N+k}= & \frac{(n+N+k)!^{2}}{(N+k)!^{4}(n-N-k)!^{2}} \\
= & \frac{(n+N)!^{2}}{N!^{4}(n-N)!^{2}} \cdot \frac{(n-N)^{2} \cdots(n-N-k+1)^{2}(n+N+1)^{2} \cdots(n+N+k)^{2}}{(N+1)^{4} \cdots(N+k)^{4}} \\
= & H \cdot \frac{(n-N)^{2 k}(n+N)^{2 k}}{N^{4 k}} \\
& \cdot \frac{\left(1-\frac{1}{n-N}\right)^{2} \cdots\left(1-\frac{k-1}{n-N}\right)^{2}\left(1+\frac{1}{n+N}\right)^{2} \cdots\left(1+\frac{k}{n+N}\right)^{2}}{\left(1+\frac{1}{N}\right)^{4} \cdots\left(1+\frac{k}{N}\right)^{4}} \\
\approx & H\left(\frac{n^{2}-N^{2}}{N^{2}}\right)^{2 k} \exp \left\{-2\left(\frac{1}{n-N}+\frac{2}{n-N}+\cdots+\frac{k-1}{n-N}\right)\right. \\
& \quad+2\left(\frac{1}{n+N}+\frac{2}{n+N}+\cdots+\frac{k}{n+N}\right) \\
& \left.-4\left(\frac{1}{N}+\frac{2}{N}+\cdots+\frac{k}{N}\right)\right\} \\
= & H \exp \left\{-k^{2}\left(\frac{1}{n-N}-\frac{1}{n+N}\right)-2 k^{2} \cdot \frac{1}{N}\right\} \\
\approx & \exp \left\{-k^{2}\left(\frac{2 N}{n^{2}-N^{2}}+\frac{2}{N}\right)\right\} \\
\approx & H \exp \left\{-k^{2}\left(\frac{n \sqrt{2}}{\frac{1}{2} n^{2}}+\frac{2 \sqrt{2}}{n}\right)\right\} \\
= & H \exp \left\{-\frac{4 \sqrt{2}}{n} k^{2}\right\} .
\end{aligned}
$$

This calculation was carried out for k positive, but a similar calculation works for k negative.

Figure 1. $n=200-$ Values of terms in the sum for the 200th Apéry number and approximating function.

It follows that

$$
A_{n}=\sum u_{k} \approx H \int_{-\infty}^{\infty} \exp \left\{-\frac{4 \sqrt{2}}{n} k^{2}\right\} d k=H \cdot \sigma \sqrt{2 \pi},
$$

where

$$
2 \sigma^{2}=\frac{n}{4 \sqrt{2}}
$$

Finally,

$$
\sigma=\frac{\sqrt{n}}{2^{\frac{7}{4}}}, \quad \sigma \sqrt{2 \pi}=\frac{\sqrt{\pi n}}{2^{\frac{5}{4}}},
$$

and

$$
A_{n} \sim \frac{1}{2^{\frac{9}{4}}(\pi n)^{\frac{3}{2}}}(\sqrt{2}+1)^{4 n+2} .
$$

References

[1] A. van der Poorten, A proof the Euler missed ..., The Mathematical Intelligencer, 1.4 (1979), 195-203.
MSC2010: 41A60
School of Mathematics and Statistics, UNSW, Sydney, Australia 2052
E-mail address: m.hirschhorn@unsw.edu.au

