THE NUMBER OF SEQUENCES OF n TOSSES OF A COIN WITH k PAIRS OF CONSECUTIVE HEADS

MICHAEL D. HIRSCHHORN

Abstract

We solve the problem of finding the number of sequences of n tosses of a coin with k pairs of consecutive heads.

1. Introduction

The problem of finding the number, $U(n, k)$, of sequences of n tosses of a coin with k pairs of consecutive heads has been tackled at least twice recently [1, 2]. In [1], a recurrence was obtained, while in [2], the exponential generating function was used to find $U(n, k)$ for $k=1,2,3$, and an indication given as to how to proceed to find further formulas. In this note, I follow the prescription I gave in [4] in my comments on [1] (completely overlooked by the author of [2]), for finding $U(n, k)$ from the ordinary generating function.

I found [4, p. 152], that

$$
\sum_{n \geq k+1} U(n, k) x^{n}=\frac{x^{k+1}(1-x)^{k-1}}{\left(1-x-x^{2}\right)^{k+1}}
$$

and then [4, p. 153], said
"It can be shown via partial fractions that

$$
U(n, 1)=\frac{(n-1) L_{n}+2 F_{n-1}}{5}
$$

where the $\left\{L_{n}\right\}$ are the Lucas numbers, $L_{n}=F_{n+1}+F_{n-1}$.
Also,

$$
U(n, 2)=\frac{1}{5}\binom{n-3}{2} F_{n-2}+\frac{3}{25}\binom{n-4}{1} L_{n-3}+\frac{6}{25} F_{n-4}+\frac{1}{5}\binom{n-2}{1} L_{n-1}+\frac{2}{5} F_{n-2}
$$

and there is a similar formula for $U(n, k)$ for each value of k.
In order to find these formulas, write $1-x=x^{2}+\left(1-x-x^{2}\right)$ in the generating function, expand by the binomial theorem, write $1-x-x^{2}=-(x+\alpha)(x+\beta)$, and use the formula

$$
\frac{1}{u^{n} v^{n}}=(-1)^{n} \sum_{k=0}^{n-1} \frac{\left(\begin{array}{c}
n-1+k \\
c^{n+k}
\end{array} u^{n-k}\right.}{c^{n-1}}+\sum_{k=0}^{n}(-1)^{k} \frac{\left(\begin{array}{c}
n-1+k
\end{array}\right)}{c^{n+k} v^{n-k}}
$$

with $u=x+\alpha, v=x+\beta, c=u-v=\alpha-\beta=\sqrt{5}$. (See Hirschhorn [3] for a proof of this formula.) Then write $\frac{1}{x+\alpha}=\frac{-\beta}{1-\beta x}, \frac{1}{x+\beta}=\frac{-\alpha}{1-\alpha x}$. The rest is fairly straightforward."

Following this recipe, I find that

$$
\begin{aligned}
U(n, k)= & \sum_{t=0}^{k} \sum_{l=0}^{t}\binom{n-2 k-t+2 l+1}{k-t}\binom{k-1}{l}\binom{k+t-2 l}{t-l} \\
& \times \frac{1}{\sqrt{5}^{k+t-2 l+1}}\left(\alpha^{n-2 k-t+2 l+2}-(-1)^{k+t-2 l} \beta^{n-2 k-t+2 l+2}\right) .
\end{aligned}
$$

2. The Calculations

For $k \geq 1$,

$$
\begin{aligned}
& \sum_{n \geq 0} U(n, k) x^{n}=\frac{x^{k+1}(1-x)^{k-1}}{\left(1-x-x^{2}\right)^{k+1}} \\
&= \frac{x^{k+1}\left(x^{2}+\left(1-x-x^{2}\right)\right)^{k-1}}{\left(1-x-x^{2}\right)^{k+1}} \\
&= x^{k+1} \frac{\sum_{l=0}^{k-1}\binom{k-1}{l}\left(x^{2}\right)^{k-1-l}\left(1-x-x^{2}\right)^{l}}{\left(1-x-x^{2}\right)^{k+1}} \\
&= x^{k+1} \sum_{l=0}^{k-1}\binom{k-1}{l} \frac{x^{2 k-2 l-2}}{\left(1-x-x^{2}\right)^{k-l+1}} \\
&= x^{k+1} \sum_{l=0}^{k-1}\binom{k-1}{l} \frac{x^{2 k-2 l-2}}{(-(x+\alpha)(x+\beta))^{k-l+1}} \\
&= x^{k+1} \sum_{l=0}^{k-1}\binom{k-1}{l}(-1)^{k-l+1} x^{2 k-2 l-2} \cdot \frac{1}{((x+\alpha)(x+\beta))^{k-l+1}} \\
&= x^{k+1} \sum_{l=0}^{k-1}\binom{k-1}{l}(-1)^{k-l+1} x^{2 k-2 l-2} \\
& \quad \times\left((-1)^{k-l+1} \sum_{m=0}^{k-l} \frac{\left(\sqrt{5}^{k-l+1+m}(x+\alpha)^{k-l+1-m}\right.}{k-l+m}\right) \\
&\left.\quad+\sum_{m=0}^{k-l}(-1)^{m} \frac{\left({ }^{k-l+m}\right)}{\sqrt{5}^{k-l+1+m}(x+\beta)^{k-l+1-m}}\right) \\
&= x^{k+1} \sum_{l=0}^{k-1} \sum_{m=0}^{k-l} x^{2 k-2 l-2}\binom{k-1}{l}\binom{k-l+m}{m} \frac{1}{\sqrt{5}^{k-l+1+m}} \\
& \quad \times\left(\frac{1}{(x+\alpha)^{k-l+1-m}-(-1)^{k-l+m} \frac{1}{\left.(x+\beta)^{k-l+1-m}\right)}}\right.
\end{aligned}
$$

THE FIBONACCI QUARTERLY

$$
\begin{aligned}
& =x^{k+1} \sum_{l=0}^{k-1} \sum_{m=0}^{k-l} x^{2 k-2 l-2}\binom{k-1}{l}\binom{k-l+m}{m} \frac{1}{\sqrt{5}^{k-l+1+m}} \\
& \times\left(\left(\frac{-\beta}{1-\beta x}\right)^{k-l-m+1}-(-1)^{k-l+m}\left(\frac{-\alpha}{1-\alpha x}\right)^{k-l-m+1}\right) \\
& =x^{k+1} \sum_{l=0}^{k-1} \sum_{m=0}^{k-l} x^{2 k-2 l-2}\binom{k-1}{l}\binom{k-l+m}{m} \frac{1}{\sqrt{5}^{k-l+1+m}} \\
& \times\left(\left(\frac{\alpha}{1-\alpha x}\right)^{k-l-m+1}-(-1)^{k-l+m}\left(\frac{\beta}{1-\beta x}\right)^{k-l-m+1}\right) \\
& =x^{k+1} \sum_{l=0}^{k-1} \sum_{m=0}^{k-l} x^{2 k-2 l-2}\binom{k-1}{l}\binom{k-l+m}{m} \frac{1}{\sqrt{5}^{k-l+1+m}} \\
& \times\left(\alpha^{k-l-m+1} \sum_{N \geq 0}\binom{k-l-m+N}{N} \alpha^{N} x^{N}\right. \\
& \left.-(-1)^{k-l+m} \beta^{k-l-m+1} \sum_{N \geq 0}\binom{k-l-m+N}{N} \beta^{N} x^{N}\right) \\
& =\sum_{N \geq 0} \sum_{l=0}^{k-1} \sum_{m=0}^{k-l} x^{N+3 k-2 l-1}\binom{N+k-l-m}{N}\binom{k-1}{l}\binom{k-l+m}{m} \\
& \times \frac{1}{\sqrt{5}^{k-l+m+1}}\left(\alpha^{N+k-l-m+1}-(-1)^{k-l+m} \beta^{N+k-l-m+1}\right) .
\end{aligned}
$$

With $N+3 k-2 l-1=n$, this yields

$$
\begin{aligned}
& U(n, k)=\sum_{l=0}^{k-1} \sum_{m=0}^{k-l}\binom{n-2 k+l-m+1}{k-l-m}\binom{k-1}{l}\binom{k-l+m}{m} \\
& \times \frac{1}{\sqrt{5}^{k-l+m+1}}\left(\alpha^{n-2 k+l-m+2}-(-1)^{k-l+m} \beta^{n-2 k+l-m+2}\right) .
\end{aligned}
$$

If we now write $l+m=t$,

$$
\begin{aligned}
& U(n, k)=\sum_{t=0}^{k} \sum_{l=0}^{t}\binom{n-2 k-t+2 l+1}{k-t}\binom{k-1}{l}\binom{k+t-2 l}{t-l} \\
& \times \frac{1}{\sqrt{5}^{k+t-2 l+1}}\left(\alpha^{n-2 k-t+2 l+2}-(-1)^{k+t-2 l} \beta^{n-2 k-t+2 l+2}\right) .
\end{aligned}
$$

COIN TOSSING AND PAIRS OF CONSECUTIVE HEADS

References

[1] M. N. Despande and J. P. Shiwalkar, The number of HH's in a coin-tossing experiment and the Fibonacci sequence, Mathematical Gazette, 92 (2008), 147-150.
[2] M. Griffiths, Fibonacci expressions arising from a coin-tossing scenario involving pairs of consecutive heads, The Fibonacci Quarterly, 49.3 (2011), 249-254.
[3] M. D. Hirschhorn, A note on partial fractions, Australian Mathematical Society Gazette, 30 (2003), 81.
[4] M. D. Hirschhorn, On 92.27, Mathematical Gazette, 93 (2009), 151-154.
MSC2010: 97H20, 97 K 50
School of Mathematics and Statistics, UNSW, Sydney, Australia 2052
E-mail address: m.hirschhorn@unsw.edu.au

