# THE ORDER OF APPEARANCE OF PRODUCT OF CONSECUTIVE FIBONACCI NUMBERS 

DIEGO MARQUES


#### Abstract

Let $F_{n}$ be the $n$th Fibonacci number. The order of appearance $z(n)$ of a natural number $n$ is defined as the smallest natural number $k$ such that $n$ divides $F_{k}$. For instance, $z\left(F_{n}\right)=n$, for all $n \geq 3$. In this paper, among other things, we prove that $$
z\left(F_{n} F_{n+1} F_{n+2}\right)=\frac{n(n+1)(n+2)}{2}
$$


for all even positive integers $n$.

## 1. Introduction

Let $\left(F_{n}\right)_{n \geq 0}$ be the Fibonacci sequence given by $F_{n+2}=F_{n+1}+F_{n}$, for $n \geq 0$, where $F_{0}=0$ and $F_{1}=1$. These numbers are well-known for possessing amazing properties (consult [4] together with its very extensive annotated bibliography for additional references and history). In 1963, the Fibonacci Association was created to provide enthusiasts an opportunity to share ideas about these intriguing numbers and their applications. We cannot go very far in the lore of Fibonacci numbers without encountering its companion Lucas sequence $\left(L_{n}\right)_{n \geq 0}$ which follows the same recursive pattern as the Fibonacci numbers, but with initial values $L_{0}=2$ and $L_{1}=1$.

The study of the divisibility properties of Fibonacci numbers has always been a popular area of research. Let $n$ be a positive integer number, the order (or rank) of appearance of $n$ in the Fibonacci sequence, denoted by $z(n)$, is defined as the smallest positive integer $k$, such that $n \mid F_{k}$ (some authors also call it order of apparition, or Fibonacci entry point). There are several results about $z(n)$ in the literature. For instance, $z(n)<\infty$ for all $n \geq 1$. The proof of this fact is an immediate consequence of the Théorème Fondamental of Section XXVI in [10, p. 300]. Indeed, $z(m)<m^{2}-1$, for all $m>2$ (see [15, Theorem, p. 52]) and in the case of a prime number $p$, one has the better upper bound $z(p) \leq p+1$, which is a consequence of the known congruence $F_{p-\left(\frac{p}{5}\right)} \equiv 0(\bmod p)$, for $p \neq 2,5$, where $\left(\frac{a}{q}\right)$ denotes the Legendre symbol of $a$ with respect to a prime $q>2$.

In recent papers, the author $[6,7,8]$ found explicit formulas for the order of appearance of integers related to Fibonacci numbers, such as $F_{m} \pm 1, F_{m k} / F_{k}$ and $F_{n}^{k}$. In particular, it was proved that $z\left(F_{4 m} \pm 1\right)=8 m^{2}-2$, if $m>1$, and $z\left(F_{n}^{k+1}\right)=n F_{n}^{k}$, for all non-negative integers $k$ and $n>3$ with $n \not \equiv 3(\bmod 6)$.

In this paper, we continue this program and study the order of appearance of product of consecutive Fibonacci numbers. Our main results are the following.

Theorem 1.1. We have
(i) For $n \geq 3$,

$$
z\left(F_{n} F_{n+1}\right)=n(n+1)
$$

[^0]
## ORDER OF APPEARANCE OF PRODUCTS OF FIBONACCI NUMBERS

(ii) For $n \geq 2$,

$$
z\left(F_{n} F_{n+1} F_{n+2}\right)=\left\{\begin{aligned}
n(n+1)(n+2), & \text { if } n \equiv 1(\bmod 2), \\
\frac{n(n+1)(n+2)}{2}, & \text { if } n \equiv 0(\bmod 2) .
\end{aligned}\right.
$$

(iii) For $n \geq 1$,

$$
z\left(F_{n} F_{n+1} F_{n+2} F_{n+3}\right)=\left\{\begin{array}{lll}
\frac{n(n+1)(n+2)(n+3)}{2}, & \text { if } n \not \equiv 0(\bmod 3), \\
\frac{n(n+1)(n+2)(n+3)}{3}, & \text { if } n \equiv 0,9(\bmod 12), \\
\frac{n(n+1)(n+2)(n+3)}{6}, & \text { if } n \equiv 3,6(\bmod 12) .
\end{array}\right.
$$

We recall that the Fibonacci factorial of $n$ (also called Fibonorial), denoted by $n_{F}$ !, is defined as the product of the first $n$ nonzero Fibonacci numbers (sequence A003266 in OEIS [13]). In the search for $z\left(n_{F}!\right)$, we found that $n_{F}!\mid F_{n!}$ (and thus $z\left(n_{F}!\right) \mid n!$ ) for $n=1, \ldots, 10$ (see Table 1).

It is therefore reasonable to conjecture that $z\left(n_{F}!\right) \mid n!$ and so $F_{1} \cdots F_{n} \mid F_{n!}$, for all positive integers $n$. However, this is not true, because $z\left(110_{F}!\right) \nmid 110$ ! In fact, $\nu_{11}\left(F_{1} \cdots F_{110}\right)=12>$ $11=\nu_{11}\left(F_{110!}\right)$. Hence, motivated by this fact, we prove that

| $n$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $z\left(n_{F}!\right)$ | $1!$ | $1!$ | $\frac{3!}{2}$ | $\frac{4!}{2}$ | $\frac{5!}{2}$ | $\frac{6!}{12}$ | $\frac{7!}{12}$ | $\frac{8!}{48}$ | $\frac{9!}{144}$ | $\frac{10!}{288}$ |

Table 1. The order of appearance of $n_{F}!$, for $1 \leq n \leq 10$.

Theorem 1.2. For all $p \in\{2,3,5,7\}$ and $n \geq 1$, we have

$$
\nu_{p}\left(F_{1} \cdots F_{n}\right) \leq \nu_{p}\left(F_{n!}\right) .
$$

Here $\nu_{p}(n)$ denotes the $p$-adic order of $n$ which, as usual, is the exponent of the highest power of $p$ dividing $n$.

We organize the paper as follows. In Section 2, we will recall some useful properties of Fibonacci numbers such as d'Ocagne's identity and a result concerning the $p$-adic order of $F_{n}$. The last two sections will be devoted to the proof of theorems.

## 2. Auxiliary Results

Before proceeding further, we recall some facts on Fibonacci numbers for the convenience of the reader.

Lemma 2.1. We have
(a) $F_{n} \mid F_{m}$ if and only if $n \mid m$.
(b) $\operatorname{gcd}\left(F_{n}, F_{m}\right)=F_{\operatorname{gcd}(n, m)}$.
(c) $2 F_{n} \mid F_{2 n}$, for all $n \equiv 0(\bmod 3)$.
(d) (d'Ocagne's identity) $(-1)^{n} F_{m-n}=F_{m} F_{n+1}-F_{n} F_{m+1}$.
(e) $F_{p-\left(\frac{p}{5}\right)} \equiv 0(\bmod p)$, for all primes $p$.

Most of the previous items can be proved by using induction together with the well-known Binet's formula:

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, \text { for } n \geq 0
$$

where $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$. We refer the reader to $[1,3,4,11]$ for more details and additional bibliography.

## THE FIBONACCI QUARTERLY

The second lemma is a consequence of the previous one.
Lemma 2.2. We have
(a) If $F_{n} \mid m$, then $n \mid z(m)$.
(b) If $n \mid F_{m}$, then $z(n) \mid m$.

Proof. For (a), since $F_{n}|m| F_{z(m)}$, by Lemma 2.1 (a), we get $n \mid z(m)$. In order to prove (b), we write $m=z(n) q+r$, where $q$ and $r$ are integers, with $0 \leq r<z(n)$. So, by Lemma 2.1 (d), we obtain

$$
(-1)^{z(n) q} F_{r}=F_{m} F_{z(n) q+1}-F_{z(n) q} F_{m+1} .
$$

Since $n$ divides both $F_{m}$ and $F_{z(n) q}$, then it also divides $F_{r}$ implying $r=0$ (keep in mind the range of $r$ ). Thus, $z(n) \mid m$.

The $p$-adic order of Fibonacci and Lucas numbers was completely characterized, see [2, 9, $12,14]$. For instance, from the main results of Lengyel [9], we extract the following result.

Lemma 2.3. For $n \geq 1$, we have

$$
\left.\begin{array}{c}
\nu_{2}\left(F_{n}\right)=\left\{\begin{aligned}
0, & \text { if } n \equiv 1,2(\bmod 3) ; \\
1, & \text { if } n \equiv 3(\bmod 6) ; \\
3, & \text { if } n \equiv 6(\bmod 12) ; \\
\nu_{2}(n)+2, & \text { if } n \equiv 0(\bmod 12),
\end{aligned}\right. \\
\nu_{5}\left(F_{n}\right)=\nu_{5}(n), \text { and if } p \text { is prime } \neq 2 \text { or } 5, \text { then }
\end{array}\right\} \begin{aligned}
\nu_{p}\left(F_{n}\right)=\left\{\begin{aligned}
\nu_{p}(n)+\nu_{p}\left(F_{z(p)}\right), & \text { if } n \equiv 0(\bmod z(p)) ; \\
0, & \text { if } n \not \equiv 0(\bmod z(p)) .
\end{aligned}\right.
\end{aligned}
$$

A proof of this result can be found in [9].
Lemma 2.4. For any integer $k \geq 1$ and $p$ prime, we have

$$
\begin{equation*}
\frac{k}{p-1}-\left\lfloor\frac{\log k}{\log p}\right\rfloor-1 \leq \nu_{p}(k!) \leq \frac{k-1}{p-1}, \tag{2.1}
\end{equation*}
$$

where, as usual, $\lfloor x\rfloor$ denotes the largest integer less than or equal to $x$.
Proof. Recall the well-known Legendre's formula [5]:

$$
\begin{equation*}
\nu_{p}(k!)=\frac{k-s_{p}(k)}{p-1}, \tag{2.2}
\end{equation*}
$$

where $s_{p}(k)$ is the sum of digits of $k$ in base $p$. Since $k$ has $\lfloor\log k / \log p\rfloor+1$ digits in base $p$, and each digit is at most $p-1$, we get

$$
\begin{equation*}
1 \leq s_{p}(k) \leq(p-1)\left(\left\lfloor\frac{\log k}{\log p}\right\rfloor+1\right) . \tag{2.3}
\end{equation*}
$$

Therefore, the inequality in (2.1) follows from (2.2) and (2.3).
Now, we are ready to deal with the proof of theorems.

## ORDER OF APPEARANCE OF PRODUCTS OF FIBONACCI NUMBERS

## 3. The Proof of Theorem 1.1

3.1. Proof of (i). For $\epsilon \in\{0,1\}$, one has that $F_{n+\epsilon} \mid F_{n} F_{n+1}$ and so Lemma 2.2 (a) yields $n+\epsilon \mid z\left(F_{n} F_{n+1}\right)$. But, $\operatorname{gcd}(n, n+1)=1$ and therefore $n(n+1) \mid z\left(F_{n} F_{n+1}\right)$. On the other hand, $F_{n+\epsilon} \mid F_{n(n+1)}$ (Lemma 2.1 (a)) and hence, $F_{n} F_{n+1} \mid F_{n(n+1)}$, since $\operatorname{gcd}\left(F_{n}, F_{n+1}\right)=1$. Now, by using Lemma 2.2 (b), we conclude that $z\left(F_{n} F_{n+1}\right) \mid n(n+1)$. In conclusion, we have $z\left(F_{n} F_{n+1}\right)=n(n+1)$.

We remark that the same idea can be used to prove that if $m_{1}, \ldots, m_{k}$ are positive integers, such that $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ or 2 , for all $i \neq j$, then

$$
z\left(F_{m_{1}} \cdots F_{m_{k}}\right) \mid m_{1} \cdots m_{k}
$$

If $m_{1}, \ldots, m_{k}$ are pairwise relatively prime, then

$$
z\left(F_{m_{1}} \cdots F_{m_{k}}\right)=m_{1} \cdots m_{k} .
$$

3.2. Proof of (ii). For $\epsilon \in\{0,1,2\}$, we have $F_{n+\epsilon} \mid F_{n(n+1)(n+2)}$. By Lemma 2.1 (b), the numbers $F_{n}, F_{n+1}, F_{n+2}$ are pairwise coprime. In fact, if $\epsilon_{1}, \epsilon_{2} \in\{0,1,2\}$ are distinct, then $\operatorname{gcd}\left(n+\epsilon_{1}, n+\epsilon_{2}\right)=1$ or 2 . In any case, we get

$$
\operatorname{gcd}\left(F_{n+\epsilon_{1}}, F_{n+\epsilon_{2}}\right)=F_{\operatorname{gcd}\left(n+\epsilon_{1}, n+\epsilon_{2}\right)}=1 .
$$

Thus, $F_{n} F_{n+1} F_{n+2} \mid F_{n(n+1)(n+2)}$ and so

$$
\begin{equation*}
z\left(F_{n} F_{n+1} F_{n+2}\right) \mid n(n+1)(n+2) . \tag{3.1}
\end{equation*}
$$

Now, we use $F_{n+\epsilon} \mid F_{n} F_{n+1} F_{n+2}$, to conclude that $n+\epsilon$ divides $z\left(F_{n} F_{n+1} F_{n+2}\right)$. So, the proof splits in two cases:

Case 1: If $n$ is odd, then $n, n+1, n+2$ are pairwise coprime. Therefore, $n(n+1)(n+$ $2) \mid z\left(F_{n} F_{n+1} F_{n+2}\right)$. This fact, together with (3.1), yields the result in this case.

Case 2: For $n$ even, we have that $F_{n} \mid F_{\underline{n(n+1)(n+2)}}$ and so $z\left(F_{n} F_{n+1} F_{n+2}\right)$ divides $n(n+$ 1) $(n+2) / 2$. We already know that $n+\epsilon \mid z\left(F_{n} F_{n+1} F_{n+2}\right)$ and $\operatorname{gcd}(n, n+2)=2$. If $n \equiv 0$ $(\bmod 4)$, then $n, n+1,(n+2) / 2$ are pairwise coprime. In the case of $n \equiv 2(\bmod 4)$, the numbers $n / 2, n+1, n+2$ are pairwise coprime. Thus, in any case, we have $n(n+1)(n+$ 2) $/ 2 \mid z\left(F_{n} F_{n+1} F_{n+2}\right)$ and the desired result is proved.
3.3. Proof of (iii). By the same arguments as before, we conclude that

$$
\begin{equation*}
n+\epsilon \mid z\left(F_{n} F_{n+1} F_{n+2} F_{n+3}\right), \text { for } \epsilon \in\{0,1,2,3\} . \tag{3.2}
\end{equation*}
$$

Assume first that $n \not \equiv 0(\bmod 3)$. Then there exists only one pair among $(n, n+2)$ and $(n+1, n+3)$ whose greatest common divisor is 2 . Without loss of generality, we suppose that $\operatorname{gcd}(n, n+2)=2$. Again, as in the previous item, we can see that $n / 2^{a}, n+1,(n+2) / 2^{b}, n+3$ are pairwise coprime, for distinct $a, b \in\{0,1\}$ suitably chosen depending on the class of $n$ modulo 4. Thus,

$$
\left.\frac{n(n+1)(n+2)(n+3)}{2}=\frac{n(n+1)(n+2)(n+3)}{2^{a+b}} \right\rvert\, z\left(F_{n} F_{n+1} F_{n+2} F_{n+3}\right) .
$$

Since there are two even numbers among $n, n+1, n+2, n+3$, we have that $F_{n+\epsilon} \left\lvert\, F_{\frac{n(n+1)(n+2)(n+3)}{2}}\right.$. However, $\operatorname{gcd}\left(F_{n}, F_{n+3}\right)=F_{\operatorname{gcd}(n, n+3)}=1$, because $3 \nmid n$. Thus, $F_{n}, F_{n+1}, F_{n+2}, F_{n+3}$ are pairwise coprime yielding that $F_{n} F_{n+1} F_{n+2} F_{n+3} \left\lvert\, F_{\frac{n(n+1)(n+2)(n+3)}{2}}\right.$. We apply Lemma 2.2 to get

$$
z\left(F_{n} F_{n+1} F_{n+2} F_{n+3}\right) \left\lvert\, \frac{n(n+1)(n+2)(n+3)}{2} .\right.
$$

## THE FIBONACCI QUARTERLY

This finishes the proof in this case. Now suppose that $n \equiv 0(\bmod 3)$. If $9 \mid n$, then $\operatorname{gcd}(n,(n+$ $3) / 3)=1$, while $\operatorname{gcd}(n / 3, n+3)=1$ when $9 \nmid n$. In any case, for a suitable choice of $a, b, c, d, e, f \in\{0,1\}$, where $a \neq b$ and only one among $c, d, e, f$ is 1 , we obtain that

$$
\frac{n}{2^{c} 3^{a}}, \frac{n+1}{2^{d}}, \frac{n+2}{2^{e}}, \frac{n+3}{2^{f} 3^{b}}
$$

are pairwise coprime. Here the sets $\{a, b\}$ and $\{c, d, e, f\}$ depend on the class of $n$ modulo 4 and 9 , respectively. Hence, by (3.2), we get

$$
\begin{equation*}
\left.\frac{n(n+1)(n+2)(n+3)}{6}=\frac{n(n+1)(n+2)(n+3)}{2^{c+d+e+f} 3^{a+b}} \right\rvert\, z\left(F_{n} F_{n+1} F_{n+2} F_{n+3}\right), \tag{3.3}
\end{equation*}
$$

since $a+b=c+d+e+f=1$.
Note that there are 2 even numbers among $n, n+1, n+2, n+3$ and also 3 divides both $n$ and $n+3$. Thus $F_{n+\epsilon} \mid F_{\underline{n(n+1)(n+2)(n+3)}}$, for $\epsilon \in\{0,1,2,3\}$. Since $\operatorname{gcd}\left(F_{n}, F_{n+3}\right)=2$ and $\operatorname{gcd}\left(F_{n+3}, F_{n+1} F_{n+2}\right)=1$, then $\operatorname{gcd}\left(F_{n} F_{n+1} F_{n+2}, F_{n+3}\right)=2$. Now, we use that $F_{n}, F_{n+1}, F_{n+2}$ are pairwise coprime to ensure that $F_{n} F_{n+1} F_{n+2} \left\lvert\, \frac{F_{n(n+1)(n+2)(n+3)}^{6}}{}\right.$. Since $F_{n+3}$ also divides $F_{\frac{n(n+1)(n+2)(n+3)}{6}}$, we get

$$
F_{n} F_{n+1} F_{n+2} F_{n+3}\left|2 F_{\frac{n(n+1)(n+2)(n+3)}{}}^{6}\right| F_{\frac{n(n+1)(n+2)(n+3)}{}}^{3},
$$

where we used Lemma 2.1 (c). Thus, Lemma 2.2 (b) yields

$$
\begin{equation*}
z\left(F_{n} F_{n+1} F_{n+2} F_{n+3}\right) \left\lvert\, \frac{n(n+1)(n+2)(n+3)}{3} .\right. \tag{3.4}
\end{equation*}
$$

Combining (3.3) and (3.4), we get

$$
\begin{equation*}
z\left(F_{n} F_{n+1} F_{n+2} F_{n+3}\right) \in\left\{\frac{n(n+1)(n+2)(n+3)}{6}, \frac{n(n+1)(n+2)(n+3)}{3}\right\} \tag{3.5}
\end{equation*}
$$

holds for all positive integers $n \equiv 0(\bmod 3)$. In order to complete the proof, it suffices to prove that

$$
\begin{equation*}
F_{n} F_{n+1} F_{n+2} F_{n+3} \nmid F_{\frac{n(n+1)(n+2)(n+3)}{6}} \text {, for all } n \equiv 0,9 \quad(\bmod 12) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{n} F_{n+1} F_{n+2} F_{n+3} \left\lvert\, F_{\frac{n(n+1)(n+2)(n+3)}{6}}\right., \text { for all } n \equiv 3,6 \quad(\bmod 12) . \tag{3.7}
\end{equation*}
$$

We claim that $(3.6)$ is true. In fact, if $n \equiv 0(\bmod 12)$, then $n+3 \equiv 3(\bmod 6)$. On the one hand, by setting $n=12 \ell$ and by Lemma 2.3, we have

$$
\nu_{2}\left(F_{n} F_{n+1} F_{n+2} F_{n+3}\right)=\nu_{2}\left(F_{n}\right)+\nu_{2}\left(F_{n+3}\right)=\nu_{2}(n)+3=\nu_{2}(\ell)+5 .
$$

On the other, $\frac{n(n+1)(n+2)(n+3)}{6}=12 \ell(12 \ell+1)(6 \ell+1)(4 \ell+1)$ and so

$$
\nu_{2}\left(F_{\frac{n(n+1)(n+2)(n+3)}{6}}^{6}\right)=\nu_{2}(12 \ell(12 \ell+1)(6 \ell+1)(4 \ell+1))+2=\nu_{2}(\ell)+4 .
$$

This means that $\nu_{2}\left(F_{n} F_{n+1} F_{n+2} F_{n+3}\right)>\nu_{2}\left(F_{\frac{n(n+1)(n+2)(n+3)}{6}}\right)$ which is enough to prove (3.6). A similar argument holds for the case $n \equiv 9(\bmod 12)$.

Now to prove (3.7), we shall show that

$$
\nu_{p}\left(F_{n} F_{n+1} F_{n+2} F_{n+3}\right) \leq \nu_{p}\left(F_{\frac{n(n+1)(n+2)(n+3)}{}}\right),
$$

for all primes $p$. In fact,

## ORDER OF APPEARANCE OF PRODUCTS OF FIBONACCI NUMBERS

Case 1: If $p=5$, then

$$
\nu_{5}\left(F_{n} F_{n+1} F_{n+2} F_{n+3}\right)=\nu_{5}\left(F_{n+j}\right)=\nu_{5}(n+j)=\nu_{5}\left(F_{\frac{n(n+1)(n+2)(n+3)}{6}}\right) .
$$

Case 2: If $p \neq 2$ or 5 , then $p$ divides at most one among $F_{n}, F_{n+1}, F_{n+2}, F_{n+3}$. Suppose that this is the case (otherwise $\nu_{p}\left(F_{n} F_{n+1} F_{n+2} F_{n+3}\right)=0$ and we are done). Then, let $j$ be the integer belonging to $\{0,1,2,3\}$ such that $p \mid F_{n+j}$. Thus,

$$
\nu_{p}\left(F_{n} F_{n+1} F_{n+2} F_{n+3}\right)=\nu_{p}\left(F_{n+j}\right)=\nu_{p}(n+j)+\nu_{p}\left(F_{z(p)}\right) .
$$

On the other hand,

$$
\nu_{p}\left(F_{\frac{n(n+1)(n+2)(n+3)}{6}}^{6}\right)=\nu_{p}(n(n+1)(n+2)(n+3))-\nu_{p}(6)+\nu_{p}\left(F_{z(p)}\right) .
$$

If $p>3, \nu_{p}(6)=0$ and the desired inequality follows. In the case of $p=3$, we have

$$
\begin{aligned}
\nu_{3}\left(F_{\frac{n(n+1)(n+2)(n+3)}{}}^{6}\right) & =\nu_{3}(n)+\nu_{3}(n+3)-1+\nu_{p}\left(F_{z(p)}\right) \\
& \geq v_{3}(n+j)+\nu_{3}\left(F_{z(p)}\right)=\nu_{3}\left(F_{n} F_{n+1} F_{n+2} F_{n+3}\right) .
\end{aligned}
$$

Case 3: When $p=2$, we use that $n \equiv 3,6(\bmod 12)$. Let us suppose that $n \equiv 3(\bmod 12)$ (the other case can be handled in the same way). Then $n+3 \equiv 6(\bmod 12)$ and by Lemma 2.3, we obtain

$$
\nu_{2}\left(F_{n} F_{n+1} F_{n+2} F_{n+3}\right)=\nu_{2}\left(F_{n}\right)+\nu_{2}\left(F_{n+3}\right)=4 .
$$

However, if $n=12 \ell+3$, then

$$
\begin{aligned}
\nu_{2}\left(F_{\frac{n(n+1)(n+2)(n+3)}{}}\right) & =\nu_{2}\left(F_{12(4 \ell+1)(3 \ell+1)(12 \ell+5)(2 \ell+1)}\right) \\
& =\nu_{2}(12(4 \ell+1)(3 \ell+1)(12 \ell+5)(2 \ell+1))+2=4 .
\end{aligned}
$$

The proof is then complete.

## 4. The Proof of Theorem 1.2

For $p=5$, we have

$$
\nu_{5}\left(F_{1} \cdots F_{n}\right)=\sum_{j=1}^{n} \nu_{5}\left(F_{j}\right)=\sum_{j=1}^{n} \nu_{5}(j)=\nu_{5}(n!)=\nu_{5}\left(F_{n!}\right) .
$$

In the case of $p=2$, we first use Mathematica to see that the result holds for all $1 \leq n \leq 48$. So, we shall assume $n \geq 49$. Now, we note that $\nu_{2}\left(F_{n}\right) \neq 0$ if and only if $3 \mid n$. Thus, the only terms with non-zero 2 -adic order among $F_{1}, \ldots, F_{n}$ are $F_{3}, \ldots, F_{3\lfloor n / 3\rfloor}$ and so

$$
\begin{aligned}
\nu_{2}\left(F_{1} \cdots F_{n}\right) & =\left[\nu_{2}\left(F_{3}\right)+\nu_{2}\left(F_{6}\right)+\nu_{2}\left(F_{9}\right)\right]+\nu_{2}\left(F_{12}\right) \\
& +\left[\nu_{2}\left(F_{15}\right)+\nu_{2}\left(F_{18}\right)+\nu_{2}\left(F_{21}\right)\right]+\nu_{2}\left(F_{24}\right) \\
& +\cdots+\nu_{2}\left(F_{12\lfloor n / 12\rfloor}\right)+\ell
\end{aligned}
$$

where $\ell \in\{0,1,4,5\}$ and depends on the residue class of $n$ modulo 12. By Lemma 2.3, each bracketed term in the above sum is 5 and thus,

$$
\nu_{2}\left(F_{1} \cdots F_{n}\right)=5\left\lfloor\frac{n}{12}\right\rfloor+\sum_{j=1}^{\lfloor n / 12\rfloor} \nu_{2}\left(F_{12 j}\right)+\ell=9\left\lfloor\frac{n}{12}\right\rfloor+\nu_{2}\left(\left\lfloor\frac{n}{12}\right\rfloor!\right)+\ell
$$

We now apply Lemma 2.4 (with $p=2$ ) together with the fact that $\ell \leq 5$, to get the bound

$$
\begin{equation*}
\nu_{2}\left(F_{1} \cdots F_{n}\right) \leq \frac{5 n}{6}+4 \tag{4.1}
\end{equation*}
$$

## THE FIBONACCI QUARTERLY

On other other hand, since $12 \mid n$ ! (because $n>3$ ), Lemma 2.3 yields

$$
\nu_{2}\left(F_{n!}\right)=\nu_{2}(n!)+2 .
$$

Again, we use Lemma 2.4 to obtain

$$
\begin{equation*}
\nu_{2}\left(F_{n!}\right) \geq n-\left\lfloor\frac{\log n}{\log 2}\right\rfloor+1 . \tag{4.2}
\end{equation*}
$$

The proof of this case finishes by noting that the right-hand side of (4.2) is greater than $5 n / 6+4$, for $n \geq 49$.

When $p=3$ or 7 , we again use Lemma 2.3 to get

$$
\begin{aligned}
\nu_{p}\left(F_{1} \cdots F_{n}\right) & =\sum_{j=1}^{\lfloor n / z(p)\rfloor}\left(\nu_{p}(z(p) j)+\nu_{p}\left(F_{z(p)}\right)\right) \\
& =\left\lfloor\frac{n}{z(p)}\right\rfloor \nu_{p}\left(F_{z(p)}\right)+\nu_{p}\left(\left\lfloor\frac{n}{z(p)}\right\rfloor!\right),
\end{aligned}
$$

where we used that $\nu_{p}(z(p))=0$, since by Lemma 2.1 (e), $p \mid F_{p \pm 1}$ and so by Lemma 2.2 (b), one has that $z(p) \mid(p \pm 1)$. Now, we apply Lemma 2.4 to obtain

$$
\begin{equation*}
\nu_{p}\left(F_{1} \cdots F_{n}\right) \leq\left\lfloor\frac{n}{z(p)}\right\rfloor \nu_{p}\left(F_{z(p)}\right)+\frac{\left\lfloor\frac{n}{z(p)}\right\rfloor-1}{p-1} . \tag{4.3}
\end{equation*}
$$

On the other hand, $\nu_{p}\left(F_{n!}\right)=\nu_{p}(n!)+\nu_{p}\left(F_{z(p)}\right)$ and hence, again by Lemma 2.4, we have

$$
\begin{equation*}
\nu_{p}\left(F_{n!}\right) \geq \frac{n}{p-1}-\left\lfloor\frac{\log n}{\log p}\right\rfloor-1+\nu_{p}\left(F_{z(p)}\right) . \tag{4.4}
\end{equation*}
$$

By combining (4.3) and (4.4), it suffices to prove for $p=3$ that

$$
n \geq 3\left\lfloor\frac{n}{4}\right\rfloor+2\left\lfloor\frac{\log n}{\log 3}\right\rfloor
$$

and for $p=7$ that

$$
n \geq 7\left\lfloor\frac{n}{8}\right\rfloor+6\left\lfloor\frac{\log n}{\log 7}\right\rfloor+4
$$

However, both these inequalities hold for all $n \geq 123$. For the remaining cases, we use a simple Mathematica routine to check that $\nu_{p}\left(F_{1} \cdots F_{n}\right) \leq \nu_{p}\left(F_{n!}\right)$ is also valid for $n=1, \ldots, 122$. This completes the proof.

## 5. Acknowledgement

The author is grateful to Pavel Trojovský for nice discussions on the subject.

## References

[1] A. Benjamin and J. Quinn, The Fibonacci numbers-exposed more discretely, Math. Mag., 76.3 (2003), 182-192.
[2] J. H. Halton, On the divisibility properties of Fibonacci numbers, The Fibonacci Quarterly, 4.3 (1966), 217-240.
[3] D. Kalman and R. Mena, The Fibonacci numbers-exposed, Math. Mag., 76.3 (2003), 167-181.
[4] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.
[5] A. M. Legendre, Theorie des Nombres, Firmin Didot Freres, Paris, 1830.
[6] D. Marques, On integer numbers with locally smallest order of appearance in the Fibonacci sequence, Internat. J. Math. Math. Sci., Article ID 407643 (2011), 4 pages.

## ORDER OF APPEARANCE OF PRODUCTS OF FIBONACCI NUMBERS

[7] D. Marques, On the order of appearance of integers at most one away from Fibonacci numbers, (to appear in The Fibonacci Quarterly).
[8] D. Marques, On the order of appearance of powers of Fibonacci and Lucas numbers, Preprint.
[9] T. Lengyel, The order of the Fibonacci and Lucas numbers, The Fibonacci Quarterly, 33.3 (1995), 234-239.
[10] E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math., 1 (1878), 184-240, 289-321.
[11] P. Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory, Springer-Verlag, New York, 2000.
[12] D. W. Robinson, The Fibonacci matrix modulo m, The Fibonacci Quarterly, 1.2 (1963), 29-36.
[13] N. J. A. Sloane (Ed.), The On-Line Encyclopedia of Integer Sequences, 2010. http://www.research.att.com/~njas/sequences/.
[14] J. Vinson, The relation of the period modulo $m$ to the rank of apparition of $m$ in the Fibonacci sequence, The Fibonacci Quarterly, 1.2 (1963), 37-45.
[15] N. N. Vorobiev, Fibonacci Numbers, Birkhäuser, Basel, 2003.
MSC2010: 11B39
Departamento de Matemática, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
E-mail address: diego@mat.unb.br


[^0]:    Research supported in part by FAP-DF, FEMAT-Brazil and CNPq-Brazil.

