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Abstract. Most of the work published on Ducci sequences is concerned with finding the
behavior of the iterates of the Ducci map. Here we are interested in roughly the opposite.
More precisely if T is the Ducci map and ~x0 ∈ Nk for some k ∈ N, we seek ~x1 such that
T (~x1) = ~x0 and more generally a sequence (xn)n∈N of distinct vectors such that T (~xn) = ~xn−1

for every n ≥ 1. We prove that when k is odd, the existence of ~x1 implies the existence of
(xn)n∈N and when k = 2l no vector in Nk has this property. Some other related results are
deduced.

1. Introduction and Notation

Let k ∈ N and let ~x = (a0, a1, . . . , ak−1) ∈ Nk. We define a map T : Nk → Nk by

T (~x) = T (a0, a1, . . . , ak−1) = (|a0 − a1|, |a1 − a2|, . . . , |ak−1 − a0|).

We call the map T the Ducci map. The sequence (T n(~x))n∈N of the iterations of T is called
the Ducci sequence generated by ~x. Ducci sequences were first discovered by Enrico Ducci
and have been rediscovered by many authors since. The reference section lists some of many
interesting articles on the subject.

In order to simplify the notation, the indices of the components of any vector ~x ∈ Nk will
be written modulo k so that, for example, ak = a0 and ak+1 = a1. Note that we could define
the map T over Zk, Qk or Rk in exactly the same way. In this paper, we consider T over Nk.
However we will encounter in the proofs vectors with components in Zk and Qk. Whenever
this is the case we will take T to be the natural extension over Zk or Qk.

2. Ancestors

For every n ∈ N, we say that a vector ~yn ∈ Nk is an n-ancestor of the vector ~x ∈ Nk if

T n(~yn) = ~x and all the ~T i(yn), 0 ≤ i ≤ n, are distinct. A 1-ancestor will simply be called an
ancestor. The next result gives a simple characterization of the existence of an ancestor. It
was first proved in [9].

Lemma 2.1. Fix k ∈ N and ~x ∈ Nk. The vector ~x = {a0, a1, . . . , ak−1} has an ancestor if and

only if there exist ε0, ε1, . . . , εk−1 ∈ {−1,+1} such that:

k−1
∑

i=0

εiai = 0.

Proof. Suppose (b0, b1, . . . , bk−1) is an ancestor of (a0, a1, . . . , ak−1). Then for every 0 ≤ i ≤
k − 1, ai = |bi − bi+1| and we choose εi ∈ {−1, 1} such that εiai = bi − bi+1. For this choice,

k−1
∑

i=0

εiai =
k−1
∑

i=0

bi − bi+1 = 0.
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Conversely suppose ~x = (a0, a1, . . . , ak−1) is in Nk and Σk−1

i=0
εiai = 0 for some εi ∈ {−1, 1},

0 ≤ i ≤ k − 1. For every 0 ≤ n ≤ k − 1 define bn =
∑n

i=0
εiai.

Note that

T (bk−1, b0, b1, . . . , bk−2) = (|bk−1 − b0|, |b0 − b1|, . . . , |bk−2 − bk−1|)

= (|ε0a0|, |ε1a1|, . . . , |εk−1ak−1|)

= (a0, a1, . . . , ak−1).

However the vector ~y = (bk−1, b0, . . . , bk−2) does not necessarily belongs to Nk as it may
have negative components. To correct that, let M = max{|b0|, |b1|, . . . , |bk−1|} and define
~y′ = (bk−1 +M, b0 +M, . . . , bk−2 +M). We now have ~y′ ∈ Nk and

T (~y′) = T (bk−1 +M, b0 +M, . . . , bk−2 +M)

= (|bk−1 − b0|, |b0 − b1|, . . . , |bk−2 − bk−1|)

= (|ε0a0|, |ε1a1|, . . . , |εk−1ak−1|) = (a0, a1, . . . , ak−1).

�

A vector with no ancestor will be called an original vector. A vector with an n-ancestor
for every n ∈ N will be said to be ageless. A sequence (~xn)n≤N of distinct vectors such that
~x = ~x0 and T (~xn) = ~xn−1 for every 0 < n ≤ N will be called an N-ascendance of ~x. A
sequence (~xn)n∈N of distinct vectors such that ~x = ~x0 and T (~xn) = ~xn−1 for every n > 0 will
be called an ∞-ascendance of ~x. A vector ~x which admits an ∞-ascendance will be called
eternal. Let ~x = (a0, a1, . . . ak−1) ∈ Nk. If there exists a ∈ N such that for every 0 ≤ i ≤ k,
ai ∈ {0, a}, we will say that ~x is a simple vector. The following is a well-known result (see for
example [6]).

Theorem 2.2. For every integer k and every ~x ∈ Nk, there exists n ∈ N such that T n(~x) is

simple.

3. When k is Odd

Proposition 3.1. Let k ∈ N. If k is odd then every nonzero ~x ∈ Nk is either original or

eternal.

Proof. Let k ∈ N be an odd number and ~x0 ∈ Nk a nonzero vector which is not original.
Our goal is to construct inductively a sequence of distinct vectors (~xn)n∈N in Nk such that
T (~xn) = ~xn−1 for every n ≥ 1.

When ~x0 is not a simple vector, it is sufficient to construct an ancestor ~x1 of ~x0 which itself
is not original and iterate the process. Indeed since only a simple vector can belong to a cycle,
we are guaranteed that all the ~xn constructed this way will be distinct. We finish the proof in
this case and will return to the simple vector case later on.

Let ~y1 be any ancestor of ~x0. If ~y1 is not original, we simply set ~x1 = ~y1. In case ~y1 =
(b0, b1, . . . , bk−1) does not have an ancestor we proceed as follows. Let m = min{bi : 0 ≤ i ≤
k− 1}. The vector ~z1 = (b0 −m, b1 −m, . . . , bk−1 −m) = (a0, a1, . . . , ak−1) is also an ancestor
of ~x0 and at least one of its coordinates is 0. In order to simplify the notation we will assume
that a0 = 0. The reader can check that the proof below can easily be adapted to the other
cases.
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In case ~z1 has itself an ancestor, we can again simply set ~x1 = ~z1. If ~z1 does not have an
ancestor Lemma 2.1 implies

k−1

2
∑

i=0

ai 6=
k−1
∑

i= k+1

2

ai

and since a0 = 0 this means either
k−1

2
∑

i=1

ai >

k−1
∑

i= k+1

2

ai or

k−1

2
∑

i=1

ai <

k−1
∑

i= k+1

2

ai.

In the first case we define d =
∑

k−1

2

i=1
ai −

∑k−1

i= k+1

2

ai > 0. Using the fact that a0 = 0 we

obtain:






k−1
∑

i= k+1

2

ai






+ d =

k−1

2
∑

i=1

ai







k−1
∑

i= k+1

2

(ai + d)






+ (a0 + d) =

k−1

2
∑

i=1

(ai + d).

The last equality implies
k−1
∑

i=0

εi(ai + d) = 0

for the choice of εi = 1 if k+1

2
≤ i ≤ k − 1 or i = 0 and εi = −1 if 1 ≤ i ≤ k−1

2
. By

Lemma 2.1 the vector (a0 + d, a1 + d, . . . , ak−1 + d) has an ancestor. Since we also have
T (a0 + d, a1 + d, . . . , ak−1 + d) = ~x0, we can set ~x1 = (a0 + d, a1 + d, . . . , ak−1 + d).

The second case is similar. We define d =
∑k−1

i= k+1

2

ai −
∑

k−1

2

i=1
ai > 0. Using the fact that

a0 = 0 we obtain:




k−1

2
∑

i=1

ai



+ d =

k−1
∑

i= k+1

2

ai





k−1

2
∑

i=1

(ai + d)



+ (a0 + d) =

k−1
∑

i= k+1

2

(ai + d).

The last equality implies
k−1
∑

i=0

εi(ai + d) = 0

for the choice of εi = 1 if 0 ≤ i ≤ k−1

2
and εi = −1 if k+1

2
≤ i ≤ k−1. By Lemma 2.1 the vector

(a0+d, a1+d, . . . , ak−1+d) has an ancestor. Since it also satisfies T (a0+d, a1+d, . . . , ak−1+d) =
~x0, we set ~x1 = (a0+d, a1+d, . . . , ak−1+d) and the proof is complete when ~x0 is not a simple
vector.

We now consider the case when ~x0 is a simple vector. First notice that we can assume that
the components of ~x0 are in {0, 1}. Indeed if the components of ~x0 are in {0, a} we define
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~x′0 =
1

a
· ~x0. The components of ~x′0 are all in {0, 1} and if we can find a sequence ~x′n satisfying

T n(~x′n) = ~x′0 then the sequence a · ~xn satisfies T n(a · ~x′n) = a · ~x′0 = ~x0.
Let ~x0 = (a0, a1, . . . , ak−1) be a simple vector with components in {0, 1}. Our goal is

to find an ancestor of ~x0 which is neither simple nor original. Since we assumed ~x0 is not
original, Lemma 2.1 implies it cannot be (1, 1, . . . , 1) and since we assumed it is a nonzero
vector it cannot be (0, 0, . . . , 0). In particular, there must be an index j for which aj = 1

and aj+1 = 0. Consider now the vector ~X0 obtained from ~x0 by replacing aj+1 by 2, i.e,
~X0 = (A0, A1, . . . , Ak−1) where Ai = ai if i 6= j + 1 and Ai = ai + 2 if i = j + 1. For every
0 ≤ i ≤ k − 1 we have Ai ≡ ai (mod 2) and it follows easily that for every n ∈ N,

T n(~x0) = T n( ~X0) (mod 2). (3.1)

By Theorem 2.2, there exists n0 ∈ N such that the vector T n0( ~X0) is simple. We claim

that the components of T n0( ~X0) are in {0, 1}. Indeed, up to a rotation the vector ~X0 is of the
following form: (with possibly no 0 between 2 and the next 1)

(. . . , 1, 2, 0, . . . , 0, 1 . . .).

Note that the 2 will not propagate due to the presence of a 1 to its left. It is also easy to see
that the “gap” between the unique 2 and next closest 1 on its right will only decrease and that
eventually the 2 will disappear, leaving only 1 and 0’s.

Using (3.1), we obtain that the vector ~X0 is a non-simple vector which eventually reaches

the cycle in which ~x0 belongs. It only remains to show that ~X0 is not original itself. Since ~x0
is not original, Theorem 2.1 implies that it has an even number of 1’s. Since it is not ~0, the

number of 1’s is even and at least two. In particular ~X0 satisfies the condition of Theorem 2.1
and therefore is not original itself, concluding the proof. �

Combining Lemma 2.1 and Proposition 3.1 we obtain the following corollary.

Corollary 3.2. Given k ∈ N odd and ~x = (a0, a1, . . . , ak−1) ∈ Nk, the vector ~x is eternal if

and only if there exist ε0, ε1, . . . , εk−1 ∈ {−1,+1} such that:

k−1
∑

i=0

εiai = 0.

Otherwise ~x is original.

The proof of Proposition 3.1 was based on finding an ancestor for ~x which has an ancestor
itself and iterating the process. As it turns out, at any step in this process we could have
picked an ancestor which is itself original, thus showing the following result.

Corollary 3.3. If k is odd and n ∈ N, any eternal vector in Nk has an n-ancestor which is

original.

Proof. Let k and ~x be as in the statement of the Corollary. By the Proposition 3.1, there
exists an n-ancestor ~y = (y0, y1, . . . , yk−1) of ~x. Set

L =

k−1
∑

i=0

yi

and define ~y′ = (y0 + L, y1 + L, . . . , yk−1 + L). Clearly T n(~y′) = ~x and we claim that ~y′ has

no ancestor. If ~y′ has an ancestor, then by Lemma 2.1 there exists εi ∈ {−1, 1}, 0 ≤ i ≤ k− 1
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such that
k−1
∑

i=0

εi(yi + L) = 0.

Consequently,

0 =

∣

∣

∣

∣

∣

k−1
∑

i=0

εi(yi + L)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k−1
∑

i=0

εiyi +
k−1
∑

i=0

εiL

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

|
k−1
∑

i=0

εiL| − |
k−1
∑

i=0

εiyi|

∣

∣

∣

∣

∣

. (3.2)

However, since k is odd we also have
∣

∣

∣

∣

∣

k−1
∑

i=0

εiL

∣

∣

∣

∣

∣

≥ |L| >

∣

∣

∣

∣

∣

k−1
∑

i=0

εiyi

∣

∣

∣

∣

∣

,

making the last term of (3.2) positive, a contradiction. �

As a final remark, note that we could replace L in the previous proof by L + m for any
m ∈ N. Consequently we can strengthen the previous result.

Corollary 3.4. If k is odd and n ∈ N, then any eternal vector in Nk has infinitely many

n-ancestors which are original.

4. When k is a Power of Two

If there exists n ∈ N such that T n(~x) = ~0, we say that ~x is nilpotent. We will use the
following well-known result (see for example [8, 1] or [2] for an extension over Z2).

Theorem 4.1. If k = 2l for some l ∈ N, then every vector in Nk is nilpotent.

Theorem 4.1 implies the following useful lemma. A strengthening of this lemma can be
found in [1], where the authors showed that all the components of T k(~x) are even.

Lemma 4.2. For every l ∈ N if k = 2l and ~x ∈ Nk, the components of T 2k(~x) are all even.

Proof. For any ~x = (a0, a1, . . . , ak−1) ∈ Nk, consider e(~x) = (b0, b1, . . . , bk−1) ∈ {1, 0}k defined
by bi = ai (mod 2). It is easy to see that

e(T (~x)) = T (e(~x)). (4.1)

Since there are only 2k vectors with components in {0, 1}, Theorem 4.1 implies that T 2k(e(~x))

= ~0. Using 4.1, we obtain e(T 2k(~x)) = ~0 which implies that the components of T 2k(~x) are all
even. �

The next proposition shows that the case k = 2l differs dramatically from the case when k
is odd.

Proposition 4.3. Let l ≥ 2 and k = 2l. No vector in Nk is eternal and the only ageless vector

is ~0.

Proof. Let k = 2l for some integer l ≥ 2 and suppose ~x0 6= ~0 is ageless or eternal. Define m to
be the largest integer such that 2m divides each of the components of ~x0 and N = 2k · (m+1).
Consider (~xn)n≤N an N -ascendance of ~x0.

By Lemma 4.2, each of the ~xn for n ≤ N − 2k must have all their components even. It is
easy to check that (~xn/2)n≤N−2k is an (N − 2k)-ascendance for ~x0/2 and all components of

~xn/2, n ≤ N − 2k, are integers. We can repeat the argument with ~x0/2 and (~xn/2)n≤N−2k to

AUGUST 2012 269



THE FIBONACCI QUARTERLY

show that all the components of ~xn/4, n ≤ N −2 ·2k, are integers. Iterating the process m+1
times shows that the components of ~x0/2

m+1 are all integers, in contradiction with our choice
of m.

Therefore if an eternal or ageless vector exists, it has to be ~0. However if (xn)n∈N is an

∞-ascendance of ~0, ~x1 is a nonzero eternal vector, contradicting the result from the previous
paragraph. Consequently, ~0 is not eternal.

It remains to show that ~0 is ageless. We will prove it for k = 4. The general statement
follows by concatenation of vectors of length 4. By Theorem 4.1, it is sufficient to show that
there exists for every n ≥ 0 a vector ~x ∈ N4 such that T n(~xn) 6= ~0. This follows directly from
[12] or [3] but we include here a different proof.

Let a, b, c ∈ N satisfying the following conditions:

(1) a 6= 0.
(2) a < b < c.
(3) a+ b < c.

Let ~v0 = (0, a, b, c) and θ = c−a−b
2

. By (3) the constant θ is positive. Note that

|a+ 2θ − (c+ θ)| = |a+ θ − c| = |a+
c− a− b

2
− c|

= |a/2− b/2− c/2| = | − b+ a/2 + b/2− c/2|

= | − b− θ| = b+ θ.

This implies

T (0, θ, a+ 2θ, c+ θ) = (θ, a+ θ, b+ θ, c+ θ).

By construction T 2(0, θ, a + 2θ, c+ θ) = T (0, a, b, c) 6= (0, 0, 0, 0). Notice that

(1) θ 6= 0.
(2) θ < a+ 2θ < c+ θ.
(3) θ + 2θ + a < c+ θ.

Consequently the vector ~v1 = (0, θ, a+2θ, c+ θ) ∈ Q4 satisfies the same three conditions as
~v0 and the process can be iterated. This allows us to construct a sequence ~vn ∈ Q4 satisfying
T n(~vn) 6= ~0. To complete the proof, define d to be the least common denominator of the
fractions occurring as components of ~vn. Define ~xn = d · ~vn, where the multiplication is
component wise. The vector ~xn lies in N4 and satisfies T n(~vn) 6= ~0, concluding the proof. �

5. Conclusion and Future Directions

Beside Lemma 2.1 which is true for any k, the results of this paper can be adapted to a
certain extent to k even. Consider for example the vector ~x = (1, 3, 2, 1, 3, 2) in N6. It is the
concatenation of two copies of ~y = (1, 3, 2) and it is easy to see that if (a0, a1, a2) is an n-
ancestor of ~y, then (a0, a1, a2, a0, a1, a2) is an n-ancestor of ~x. Since 1−3+2 = 0, Corollary 3.2
shows that ~y, and thus ~x is eternal. This simple example can be generalized to show that for
any k which is not a power of 2, there are eternal vectors in Nk.

In general it would be interesting to determine what is the “oldest” ancestor of a given
vector ~x. More precisely consider the following question.

Question 1. Given ~x ∈ Nk, if it exists, what is the largest integer n such that there exist ~xn
satisfying T n(~xn) = ~x? If such an integer does not exist, is ~x ageless or eternal?

270 VOLUME 50, NUMBER 3



REVERSING DUCCI SEQUENCES

6. Acknowledgements

I would like to thank Nicolas Ayache who introduced Ducci Sequences to me, Florian Breuer
who kindly took the time to answer my questions, and the referee who greatly contributed to
improve this paper.

References

[1] O. Andriychenko and M. Chamberland, Iterated strings and cellular automata, Mathematical Intelligencer,
22.4 (2000), 33–36.

[2] C. Avart, A characterization of converging Ducci sequences over Z2, The Fibonacci Quarterly, 49.2 (2011),
155–157.

[3] E. R. Berlekamp, The design of slowly shrinking squares, Mathematics of Computation, 29 (1975), 25–27.
[4] F. Breuer, Ducci sequences in higher dimensions, Integers: Electronic Journal of Combinatorial Number

Theory, (2007), no. A24.
[5] R. Brown and J. L. Merzel, The number of Ducci sequences with given period, The Fibonacci Quarterly,

45.2 (2007), 115–121.
[6] R. Brown and J. L. Merzel, Limiting behaviour in Ducci sequences, Periodica. Math. Hungarica., 47 (2003),

45–50.
[7] A. Ehrlich, Periods in Ducci’s n-number game of differences, The Fibonacci Quarterly, 28.4 (1990), 302–

305.
[8] B. Freedman, The four number game, Scripta Math, 14, (1948), 35–47.
[9] A. L. Furno, Cycles of differences of integers, J. Number Theory, 13 (1981), 155–61.

[10] H. Glaser and G. Schoffl, Ducci sequences and Pascal’s triangle, The Fibonacci Quarterly, 33.4 (1995),
313–324.

[11] A. Ludington-Young, Length of the n-number game, The Fibonacci Quarterly, 28.3 (1990), 259–265.
[12] W. Webb, The length of the four-number game, The Fibonacci Quarterly, 20.1 (1982), 33–35.

MSC2010: 11B02

Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia 30303

E-mail address: cavart@gsu.edu

AUGUST 2012 271


