EXTENSIONS OF AN AMAZING IDENTITY OF RAMANUJAN

KWANG-WU CHEN

Abstract. To begin with an amazing identity of Ramanujan, we derive an algorithm. Using this algorithm we get a lot of similar identities. Finally, we apply this algorithm to reformulate Ramanujan's 6-10-8 identity.

1. Introduction

Ramanujan [5] recorded the following amazing identity. If the sequences $\left(a_{k}\right),\left(b_{k}\right)$, and $\left(c_{k}\right)$ are defined by

$$
\begin{align*}
& \sum_{k \geq 0} a_{k} x^{k}=\frac{1+53 x+9 x^{2}}{1-82 x-82 x^{2}+x^{3}}, \\
& \sum_{k \geq 0} b_{k} x^{k}=\frac{2-26 x-12 x^{2}}{1-82 x-82 x^{2}+x^{3}}, \tag{1.1}\\
& \sum_{k \geq 0} c_{k} x^{k}=\frac{2+8 x-10 x^{2}}{1-82 x-82 x^{2}+x^{3}},
\end{align*}
$$

then

$$
\begin{equation*}
a_{k}^{3}+b_{k}^{3}=c_{k}^{3}+(-1)^{k}, \quad \text { for all } k \geq 0 . \tag{1.2}
\end{equation*}
$$

Two proofs of this identity and a plausible explanation of how Ramanujan might have discovered it have been given by Hirschhorn [1, 2].

Motivated by Hirschhorn's explanation, McLaughlin [3] gives a similar identity involving eleven sequences.

Example 1.1. (McLaughlin [3]) Let the sequences of integers $\left(a_{k}\right),\left(b_{k}\right),\left(c_{k}\right),\left(d_{k}\right),\left(e_{k}\right),\left(f_{k}\right)$, $\left(p_{k}\right),\left(q_{k}\right),\left(r_{k}\right)$, and $\left(s_{k}\right)$ be defined by

$$
\begin{align*}
& \sum_{k \geq 0} a_{k} x^{k}=\frac{-3-164 x-x^{2}}{1-99 x+99 x^{2}-x^{3}}, \quad \sum_{k \geq 0} b_{k} x^{k}=\frac{-1-134 x+7 x^{2}}{1-99 x+99 x^{2}-x^{3}}, \\
& \sum_{k \geq 0} c_{k} x^{k}=\frac{1-298 x+x^{2}}{1-99 x+99 x^{2}-x^{3}}, \quad \sum_{k \geq 0} d_{k} x^{k}=\frac{7-228 x+5 x^{2}}{1-99 x+99 x^{2}-x^{3}}, \\
& \sum_{k \geq 0} e_{k} x^{k}=\frac{5-258 x-3 x^{2}}{1-99 x+99 x^{2}-x^{3}}, \quad \sum_{k \geq 0} f_{k} x^{k}=\frac{3-94 x+3 x^{2}}{1-99 x+99 x^{2}-x^{3}}, \tag{1.3}\\
& \sum_{k \geq 0} p_{k} x^{k}=\frac{-3-138 x+5 x^{2}}{1-99 x+99 x^{2}-x^{3}}, \quad \sum_{k \geq 0} q_{k} x^{k}=\frac{-1-244 x-3 x^{2}}{1-99 x+99 x^{2}-x^{3}}, \\
& \sum_{k \geq 0} r_{k} x^{k}=\frac{7-254 x-x^{2}}{1-99 x+99 x^{2}-x^{3}}, \quad \sum_{k \geq 0} s_{k} x^{k}=\frac{5-148 x+7 x^{2}}{1-99 x+99 x^{2}-x^{3}} .
\end{align*}
$$

THE FIBONACCI QUARTERLY

Then for each $k \geq 0, n=1,2,3,4,5$, we have

$$
\begin{equation*}
a_{k}^{n}+b_{k}^{n}+c_{k}^{n}+d_{k}^{n}+e_{k}^{n}+f_{k}^{n}=p_{k}^{n}+q_{k}^{n}+r_{k}^{n}+s_{k}^{n}+3^{n}+1 . \tag{1.4}
\end{equation*}
$$

According to these good ideas, we present a systematic approach in Section 3. By this algorithm we could give a lot of identities like those of Ramanujan and McLaughlin.

In Section 4, we apply this algorithm to get a different type of identity, Ramanujan's 6-10-8 identity and Hirschhorn's 3-7-5 identity.

2. Prelimilaries

Let a sequence $\left(h_{k}\right)$ be defined by

$$
\begin{equation*}
h_{0}=0, h_{1}=1, h_{k+2}=a h_{k+1}+b h_{k}, \quad \text { for all } k \geq 0, \tag{2.1}
\end{equation*}
$$

where a and b are nonzero integers.
The solutions of the characteristic equation $x^{2}-a x-b=0$ are

$$
\alpha=\frac{a+\sqrt{a^{2}+4 b}}{2} \quad \text { and } \quad \beta=\frac{a-\sqrt{a^{2}+4 b}}{2} .
$$

Hence,

$$
h_{k}= \begin{cases}\frac{\alpha^{k}-\beta^{k}}{\sqrt{a^{2}+4 b}} & \text { if } a^{2}+4 b \neq 0, \\ n \cdot\left(\frac{a}{2}\right)^{n-1} & \text { if } a^{2}+4 b=0 .\end{cases}
$$

Lemma 2.1. Let a sequence $\left(a_{k}\right)$ be defined by

$$
\begin{equation*}
a_{k}=\alpha_{1} h_{k+1}^{2}+\alpha_{2} h_{k+1} h_{k}+\alpha_{3} h_{k}^{2} \tag{2.2}
\end{equation*}
$$

for some given integers α_{1}, α_{2}, and α_{3}. Then the ordinary generating function of a_{k} is

$$
\begin{equation*}
\sum_{k \geq 0} a_{k} x^{k}=\frac{\alpha_{1}+\left(-b \alpha_{1}+a \alpha_{2}+\alpha_{3}\right) x-b \alpha_{3} x^{2}}{1-\left(a^{2}+b\right) x-\left(b^{2}+a^{2} b\right) x^{2}+b^{3} x^{3}} . \tag{2.3}
\end{equation*}
$$

The above result is easily derived by the generating functions of h_{k}^{2}, h_{k+1}^{2}, and $h_{k} h_{k+1}$.
Lemma 2.2. Let a sequence $\left(a_{k}\right)$ be defined by

$$
\begin{equation*}
a_{k}=h_{k+1}^{2}-a h_{n+1} h_{n}-b h_{n}^{2} . \tag{2.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
a_{k}=(-b)^{k} . \tag{2.5}
\end{equation*}
$$

Proof. We rewrite the sequence $\left(a_{k}\right)$ as

$$
\begin{aligned}
a_{k} & =h_{k+1}^{2}-h_{k}\left(a h_{k+1}+b h_{k}\right) \\
& =h_{k+1}^{2}-h_{k} h_{k+2} \\
& =h_{k+1}\left(a h_{k}+b h_{k-1}\right)-h_{k}\left(a h_{k+1}+b h_{k}\right) \\
& =(-b)\left(h_{k}^{2}-h_{k-1} h_{k+1}\right) .
\end{aligned}
$$

Repeat the above step k times,

$$
a_{k}=(-b)^{k}\left(h_{1}^{2}-h_{0} h_{2}\right)=(-b)^{k} .
$$

Thus we complete the proof.

EXTENSIONS OF AN AMAZING IDENTITY OF RAMANUJAN

3. The Algorithm

The following algorithm says that if we find a special kind of a Diophantine equation then we can get an identity like those of Ramanujan and McLaughlin.

Algorithm:
Step 1: Find a Diophantine equation of the form

$$
\begin{equation*}
x_{1}^{n}+x_{2}^{n}+\cdots+x_{\ell}^{n}=y_{1}^{n}+y_{2}^{n}+\cdots+y_{\ell}^{n}, \tag{3.1}
\end{equation*}
$$

which has a two-parametric quadratic solution

$$
\left\{\begin{array}{l}
x_{i}=\alpha_{i 1} p^{2}+\alpha_{i 2} p q+\alpha_{i 3} q^{2} \tag{3.2}\\
y_{i}=\beta_{i 1} p^{2}+\beta_{i 2} p q+\beta_{i 3} q^{2}
\end{array}\right.
$$

In particular, there exists a y_{j} such that

$$
\begin{equation*}
y_{j}=p^{2}-a p q-b q^{2} . \tag{3.3}
\end{equation*}
$$

We arrange this j to be the last index ℓ.
Step 2: Let a sequence $\left(h_{k}\right)$ be defined by

$$
\begin{equation*}
h_{0}=0, h_{1}=1, h_{k+2}=a h_{k+1}+b h_{k}, \quad \text { for all } k \geq 0, \tag{3.4}
\end{equation*}
$$

where a and b are nonzero integers. Let $p=h_{k+1}, q=h_{k}$. Then the solutions x_{i}, y_{i} become the sequences

$$
\left\{\begin{array}{l}
a_{i, k}=\alpha_{i 1} h_{k+1}^{2}+\alpha_{i 2} h_{k+1} h_{k}+\alpha_{i 3} h_{k}^{2}, \tag{3.5}\\
b_{i, k}=\beta_{i 1} h_{k+1}^{2}+\beta_{i 2} h_{k+1} h_{k}+\beta_{i 3} h_{k}^{2},
\end{array}\right.
$$

which satisfies the identity

$$
\begin{equation*}
a_{1, k}^{n}+a_{2, k}^{n}+\cdots+a_{\ell, k}^{n}=b_{1, k}^{n}+b_{2, k}^{n}+\cdots+b_{\ell, k}^{n} . \tag{3.6}
\end{equation*}
$$

Step 3: By Lemma 2.2 the sequence

$$
b_{\ell, k}=(-b)^{k} .
$$

Therefore, equation (3.6) becomes

$$
\begin{equation*}
a_{1, k}^{n}+a_{2, k}^{n}+\cdots+a_{\ell, k}^{n}=b_{1, k}^{n}+b_{2, k}^{n}+\cdots+b_{\ell-1, k}^{n}+(-b)^{k n} . \tag{3.7}
\end{equation*}
$$

Step 4: Using Lemma 2.1 we get the ordinary generating functions of $a_{i, k}$ and $b_{j, k}$, where $1 \leq i \leq \ell, 1 \leq j \leq \ell-1$.
Further examples of identities like those of Ramanujan and McLaughlin could easily be given, but we turn instead to a different type of identity, Ramanujan's $6-10-8$ identity and Hirschhorn's 3-7-5 identity.

4. Ramanujan's 6-10-8 Identity

Ramanujan's 6-10-8 identity is one of the most remarkable identities. That is

$$
\begin{equation*}
64 F_{6} F_{10}=45 F_{8}^{2}, \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{k}=(a+b+c)^{k}+(b+c+d)^{k}+(a-d)^{k}-(a+c+d)^{k}-(a+b+d)^{k}-(b-c)^{k}, \tag{4.2}
\end{equation*}
$$

and $a d=b c$. On the other hand, Hirschhorn's 3-7-5 identity, which was inspired by Ramanujan, is also very fascinating. It is

$$
\begin{equation*}
25 H_{3} H_{7}=21 H_{5}^{2} \tag{4.3}
\end{equation*}
$$

THE FIBONACCI QUARTERLY

where

$$
\begin{equation*}
H_{k}=(a+b+c)^{k}-(b+c+d)^{k}-(a-d)^{k}+(a+c+d)^{k}-(a+b+d)^{k}+(b-c)^{k}, \tag{4.4}
\end{equation*}
$$

and $a d=b c$. Here we present two new similar identities.
Example 4.1. Let the sequences of integers $\left(a_{k}\right),\left(b_{k}\right),\left(c_{k}\right),\left(d_{k}\right)$, and $\left(e_{k}\right)$ be defined by

$$
\begin{align*}
& \sum_{k \geq 0} a_{k} x^{k}=\frac{2+84 x+2 x^{2}}{1-99 x+99 x^{2}-x^{3}}, \quad \sum_{k \geq 0} b_{k} x^{k}=\frac{3-14 x+3 x^{2}}{1-99 x+99 x^{2}-x^{3}}, \\
& \sum_{k \geq 0} c_{k} x^{k}=\frac{1+102 x+x^{2}}{1-99 x+99 x^{2}-x^{3}}, \quad \sum_{k \geq 0} d_{k} x^{k}=\frac{2-76 x+2 x^{2}}{1-99 x+99 x^{2}-x^{3}}, \tag{4.5}\\
& \sum_{k \geq 0} e_{k} x^{k}=\frac{3+26 x+3 x^{2}}{1-99 x+99 x^{2}-x^{3}} .
\end{align*}
$$

Then we have

$$
\begin{align*}
& 64\left(1+a_{k}^{6}+b_{k}^{6}-c_{k}^{6}-d_{k}^{6}-e_{k}^{6}\right)\left(1+a_{k}^{10}+b_{k}^{10}-c_{k}^{10}-d_{k}^{10}-e_{k}^{10}\right) \\
&=45\left(1+a_{k}^{8}+b_{k}^{8}-c_{k}^{8}-d_{k}^{8}-e_{k}^{8}\right)^{2}, \tag{4.6}\\
& 25\left(1+a_{k}^{3}-b_{k}^{3}-c_{k}^{3}-d_{k}^{3}+e_{k}^{3}\right)\left(1+a_{k}^{7}-b_{k}^{7}-c_{k}^{7}-d_{k}^{7}+e_{k}^{7}\right) \\
&=21\left(1+a_{k}^{5}-b_{k}^{5}-c_{k}^{5}-d_{k}^{5}+e_{k}^{5}\right)^{2} . \tag{4.7}
\end{align*}
$$

Proof. We use the two-parametric quadratic forms for F_{n} and H_{n} (ref. [4]):

$$
\begin{aligned}
F_{n} & =\left(p^{2}-10 p q+q^{2}\right)^{n}+\left(2 p^{2}+8 p q+2 q^{2}\right)^{n}+\left(3 p^{2}-2 p q+3 q^{2}\right)^{n} \\
& -\left(p^{2}+10 p q+q^{2}\right)^{n}-\left(2 p^{2}-8 p q+2 q^{2}\right)^{n}-\left(3 p^{2}+2 p q+3 q^{2}\right)^{n}, \\
H_{n} & =\left(p^{2}-10 p q+q^{2}\right)^{n}+\left(2 p^{2}+8 p q+2 q^{2}\right)^{n}-\left(3 p^{2}-2 p q+3 q^{2}\right)^{n} \\
& -\left(p^{2}+10 p q+q^{2}\right)^{n}-\left(2 p^{2}-8 p q+2 q^{2}\right)^{n}+\left(3 p^{2}+2 p q+3 q^{2}\right)^{n} .
\end{aligned}
$$

The recursive relation of h_{k} is defined by

$$
h_{k+2}=10 h_{k+1}-h_{k} .
$$

We follow the steps in our algorithm and get the results.

References

[1] M. D. Hirschhorn, An amazing identity of Ramanujan, Math. Magazine, 68.3 (1995), 199-201.
[2] M. D. Hirschhorn, A proof in the spirit of Zeilberger of an amazing identity of Ramanujan, Math. Magazine, 69.4 (1996), 267-269.
[3] J. McLaughlin, An identity motivated by an amazing identity of Ramanujan, The Fibonacci Quarterly, 48.1 (2010), 34-38.
[4] T. Piezas III, Ramanujan and the quartic equation $2^{4}+2^{4}+3^{4}+4^{4}+4^{4}=5^{4}$, http://www.oocities.org/titus_piezas/RamQuad.htm, 2005.
[5] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, With an Introduction by George E. Andrews, Springer-Verlag, Berlin; Narosa Publishing House, New Delhi, 1988, xxviii+419pp.

MSC2010: 11A55
Department of Mathematics, Taipei Municipal University of Education, No. 1, Ai-Guo West Road, Taipei 100, Taiwan, R.O.C.

E-mail address: kwchen@tmue.edu.tw

