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Abstract. If n is an odd perfect number with Euler’s prime q, we show that if 3 - n and
q ≤ 148 207 (resp. if 3 | n and q ≤ 223), then

√
n ≥ rad(n). We also show the non-existence

of odd perfect numbers of certain forms.

1. Introduction

Let n be a positive integer and let n =
∏

pαi

i be its prime factorization. Then rad(n) :=∏
pi. The integer n is perfect if σ(n) = 2n, where σ is the sum of divisors function. In [4] Luca

and Pomerance prove that if n is an odd perfect number, then rad(n) ≤ 2n17/26. By a result of

Euler, an odd perfect number (if there exist any) is of the form: n = q4b+1.
∏

p2aii , with q ≡ 1
(mod 4), the prime q is called the Euler’s prime of n. Clearly if b > 0, then

√
n ≥ rad(n). Here

we show that if 3 - n and if q is small (q ≤ 148 207), then this inequality holds (Proposition
3.1). We also show a similar result when 3 | n, but with a much weaker bound (q ≤ 223).
Computations are very limited and there is no doubt that with more computational power
these results can be improved. By the way, we also prove (Proposition 2.3, Proposition 2.5,
Lemma 4.1) the non-existence of odd perfect numbers of certain types.

2. Perfect Numbers of Given Types.

Following Brauer [1], we will use the following result.

Lemma 2.1. Let p be a positive prime. The Diophantine equation p2 + p + 1 = ym has no
solution for m > 1.

Proof. See [1]. �

Remark 2.2. (a) By the way, observe that (−19)2 − 19 + 1 = 73.
(b) We also have the following well-known fact (p a positive prime): 3m | p2+p+1 ⇔ m = 1

and p ≡ 1 (mod 3). If q > 3 is a prime such that qm | p2 + p+1, then q ≡ 1 (mod 3).

Proposition 2.3. Let n = qr21r
2
2 · · · r2l s2a, q ≡ 1 (mod 4) be the prime factorization of the

positive integer n. If 3 - n or if r1 = 3, then n is not perfect.

Proof. Assume n is perfect, then σ(n) = 2n and:

n = q · s2a ·
l∏

i=1

r2i =
q + 1

2
· σ(s2a) ·

l∏

i=1

(r2i + ri + 1) (1)

(1) Assume 3 - n. In this case ri ≡ 2 (mod 3), for all i and by (b) of Remark 2.2: (
∏l r2i ,

∏l(r2i+
ri + 1)) = 1. It follows from (1) that:

l∏

i=1

(r2i + ri + 1) | qs2a (2)
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• If q - r2i + ri + 1, then r2i + ri + 1 | s2a and Lemma 2.1 implies r2i + ri + 1 = s.
• It may happen, but just for one index t, that q | r2t + rt + 1. In this case, by the
previous step, r2i + ri + 1 = s, if i 6= t.

Since l = ω(n) − 2 (ω(n) the number of prime factors of n) and since ω(n) ≥ 9 [5], we get
r2i + ri + 1 = s = r2j + rj + 1 with i 6= j, which is impossible. (2) Assume r1 = 3. In this

case, for i > 1, there are at most two ri’s with ri ≡ 1 (mod 3). So we may assume that
l∏

i=4

(r2i + ri + 1) | qs2a. Since l − 3 = ω(n)− 5 ≥ 3, we conclude as above. �

Remark 2.4. It is known that no odd perfect number of the form q4b+1r21r
2
2 · · · r2l s2a exist if

a = 1 [6] and a = 2 [1, 3].

In the same vein we have the following proposition.

Proposition 2.5. Let n = q · r21 · r22 · · · r2l · p2a11
· p2a2

2
, q ≡ 1 (mod 4), 1 ≤ a1 ≤ a2, q, ri, pj

distinct positive primes. If n is an odd perfect number and if 3 - n, then a1 ≥ 3 and a2 ≥ 9.

Proof. By Proposition 2.3 we know that a2 ≥ a1 ≥ 2. We have ri ≡ 2 (mod 3), for all i, it
follows, as in the previous proof, that

l∏

i=1

(r2i + ri + 1) | qp2a1
1

p2a2
2

. (3)

It may happen that for one index i, say i = 1, q | (r21 + r1 + 1). In any case we may assume

that

l∏

i=2

(r2i + ri + 1) | p2a1
1

p2a2
2

.

If (r2i + ri + 1, pt) = 1, then by Lemma 2.1, r2i + ri + 1 = pj, {t, j} = {1, 2}. So we may

assume that for i = 4, . . . , l: r2i + ri + 1 = pαi

1
pβi

2
, with αi ≥ 1, βi ≥ 1. It follows that

l − 3 ≤ ∑l
4
αi ≤ 2a1. Since l − 3 = ω(n) − 6 and since ω(n) ≥ 12 (see [5]), we get a1 ≥ 3.

On the other hand, by [2], Ω(n) = 2l + 2a1 + 2a2 + 1, the total number of primes dividing n,
satisfies Ω(n) ≥ 75. It follows that l− 3 ≥ 34− a1 − a2. Hence, 34− a1 − a2 ≤ l− 3 ≤ 2a1, so
34 ≤ a2 + 3a1 ≤ 4a2 and a2 ≥ 9. �

3. On the Radical of Odd Perfect Numbers Relatively Prime to 3.

We use the results of the previous section to investigate the radical of odd perfect numbers
not divisible by 3. Our result is the following proposition.

Proposition 3.1. Let n = q4b+1 · ∏ p2aii be an odd perfect number. Assume 3 - n and
q ≤ 148 207, then

√
n ≥ rad(n).

Proof. The conclusion is clear if b > 0, so let’s assume b = 0.
Assume there are at least three indices i such that ai ≥ 2, say a3 ≥ a2 ≥ a1 ≥ 2. Then

n ≥ q · p41 · p42 · p43 ·
∏

i>3
p2i , hence,

√
n ≥ √

q · p21 · p22 · p23 ·
∏

i>3
pi. We have to show that

under our assumptions p21 · p22 · p23 ≥ q. Since 3 - n, we have p1 ≥ 5, p2 ≥ 7, p3 ≥ 11 and since
52 · 72 · 112 = 148 225, we are done.

If there are less than three indices i such that ai ≥ 2, then by Proposition 2.5 a1 ≥ 3 and

a2 ≥ 9 and n ≥ q ·p61 ·p182 ·
∏

i>2

p2i and it is enough to check p41 ·p162 ≥ q. Since p41 ·p162 ≥ 74 ·516 >

148 207, we are done. �
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4. The Case 3 | n.
If n = q · 32a · p21 · p22 · · · p2l is an odd perfect number, we know by [1], that a ≥ 3.

Lemma 4.1. If n = q · 36 ·
∏t p2i , where q, pi are distinct primes > 3, then n is not perfect.

Proof. Assume n is perfect and write it as: n = q · 36 ·∏k p2j ·
∏l r2i , where pj ≡ 1 (mod 3),

ri ≡ 2 (mod 3) (and q ≡ 1 (mod 4)). From σ(n) = 2n we obtain

n = q · 36 ·
k∏

p2j ·
l∏
r2i =

q + 1

2
·

k∏
(p2j + pj + 1) ·

l∏
(r2i + ri + 1) · 1 093, (4)

where 1 093 = σ(36) is a prime ≡ 1 (mod 12). Since pj ≡ 1 (mod 3), σ(p2j ) = 3.cj where

(3, cj) = 1 (see Remark 2.2). It follows that 3k | 36, so k ≤ 6 and we have:

q · 36−k ·
k∏

p2j ·
l∏
r2i =

q + 1

2
·

k∏
cj ·

l∏
σ(r2i ) · 1 093. (5)

If 6−k > 0, since (3, cj) = 1, ri ≡ 2 (mod 3) and 1 093 ≡ 1 (mod 3), 36−k ‖ (q+1)/2. This
implies q ≡ 2 (mod 3). But then (σ(r2i ), q) = (cj , q) = 1 (see Remark 2.2) and q 6= 1093, so q
cannot divide the LHS of (5) contradiction.

This shows k = 6, q ≡ 1 (mod 12), moreover:

l∏
r2i | q + 1

2
. (6)

We have q 6= 1093. Indeed otherwise (q + 1)/2 = 547 which is a prime ≡ 1 (mod 3), so
p1 = 547. Then σ(5472) = 3×163×613, so p2 = 163, p3 = 613. Since σ(6132) = 3×7×17 923,
σ(1632) = 3× 7× 19× 67, we get too many pj’s (p4 = 7, p5 = 17923, p6 = 19, p7 = 67).

So we may assume p1 = 1093. We have σ(p21) = 3 × 398 581, so c1 = 398 581 which is
a prime ≡ 1 (mod 12). If c1 = q, then (q + 1)/2 = 17 × 19 × 617. Since 17 ≡ 2 (mod 3),
l > 0 and we get a contradiction with (6). We conclude that p2 = 398 581. Now σ(p22) =
3 × 52 955 737 381 = 3 × 1 621 × 32 668 561. Both 1 621 and s2 := 32 668 561 are primes ≡ 1
(mod 12).

If q = 1621, then p3 = s2 and (q + 1)/2 = 811 which is prime, so p4 = 811. Now
σ(8112) = 3× 31× 73× 97 too many pj’s again.

So we may assume p3 = 1621. We have σ(p23) = 3 × 7 × 13 × 9 631. Since q 6= 7, p4 = 7.
Then σ(72) = 3 × 19, p5 = 19 too many pj’s again (one at most among s2, 13 and 9 631 is
q). �

To conclude we have the following proposition.

Proposition 4.2. Let n = q4b+1 ·
∏

p2aii be an odd perfect number. If q ≤ 223, then
√
n ≥

rad(n).

Proof. If 3 - n use Proposition 3.1. Assume 3 | n and b = 0. Let n = q · 32a · ∏k
i=1

p2aii . If
a2 ≥ a1 ≥ 2, then n ≥ q · 32 · p41 · p42 ·

∏
p2i . We conclude since p21 · p22 ≥ 52 · 72 > 223 ≥ q.

If a1 ≥ 2, ai = 1 for i > 1, then n = q · 32a · p2a1
1

· ∏ p2i . By Proposition 2.3, a ≥ 2. We
conclude since 9 · p21 ≥ 9 · 52 = 225 > q.

Finally if ai = 1, for all i, then by Lemma 4.1, a ≥ 8 and since 36 > 223, we are done. �

These results leave open the following problems: (i) improve these bounds, especially when
3 | n (feasible with some computational power); (ii) does the inequality

√
n ≥ rad(n) hold for

every odd perfect number?
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