A REMARK ON THE RADICAL OF ODD PERFECT NUMBERS

PH. ELLIA

Abstract

If n is an odd perfect number with Euler's prime q, we show that if $3 \nmid n$ and $q \leq 148207$ (resp. if $3 \mid n$ and $q \leq 223$), then $\sqrt{n} \geq \operatorname{rad}(n)$. We also show the non-existence of odd perfect numbers of certain forms.

1. Introduction

Let n be a positive integer and let $n=\prod p_{i}^{\alpha_{i}}$ be its prime factorization. Then $\operatorname{rad}(n):=$ $\prod p_{i}$. The integer n is perfect if $\sigma(n)=2 n$, where σ is the sum of divisors function. In [4] Luca and Pomerance prove that if n is an odd perfect number, then $\operatorname{rad}(n) \leq 2 n^{17 / 26}$. By a result of Euler, an odd perfect number (if there exist any) is of the form: $n=q^{4 b+1}$. $\prod p_{i}^{2 a_{i}}$, with $q \equiv 1$ $(\bmod 4)$, the prime q is called the Euler's prime of n. Clearly if $b>0$, then $\sqrt{n} \geq \operatorname{rad}(n)$. Here we show that if $3 \nmid n$ and if q is small ($q \leq 148$ 207), then this inequality holds (Proposition 3.1). We also show a similar result when $3 \mid n$, but with a much weaker bound ($q \leq 223$). Computations are very limited and there is no doubt that with more computational power these results can be improved. By the way, we also prove (Proposition 2.3, Proposition 2.5, Lemma 4.1) the non-existence of odd perfect numbers of certain types.

2. Perfect Numbers of Given Types.

Following Brauer [1], we will use the following result.
Lemma 2.1. Let p be a positive prime. The Diophantine equation $p^{2}+p+1=y^{m}$ has no solution for $m>1$.

Proof. See [1].
Remark 2.2. (a) By the way, observe that $(-19)^{2}-19+1=7^{3}$.
(b) We also have the following well-known fact (p a positive prime): $3^{m} \mid p^{2}+p+1 \Leftrightarrow m=1$ and $p \equiv 1(\bmod 3)$. If $q>3$ is a prime such that $q^{m} \mid p^{2}+p+1$, then $q \equiv 1(\bmod 3)$.
Proposition 2.3. Let $n=q r_{1}^{2} r_{2}^{2} \cdots r_{l}^{2} s^{2 a}, q \equiv 1(\bmod 4)$ be the prime factorization of the positive integer n. If $3 \nmid n$ or if $r_{1}=3$, then n is not perfect.

Proof. Assume n is perfect, then $\sigma(n)=2 n$ and:

$$
\begin{equation*}
n=q \cdot s^{2 a} \cdot \prod_{i=1}^{l} r_{i}^{2}=\frac{q+1}{2} \cdot \sigma\left(s^{2 a}\right) \cdot \prod_{i=1}^{l}\left(r_{i}^{2}+r_{i}+1\right) \tag{1}
\end{equation*}
$$

(1) Assume $3 \nmid n$. In this case $r_{i} \equiv 2(\bmod 3)$, for all i and by (b) of Remark 2.2: $\left(\prod^{l} r_{i}^{2}, \prod^{l}\left(r_{i}^{2}+\right.\right.$ $\left.\left.r_{i}+1\right)\right)=1$. It follows from (1) that:

$$
\begin{equation*}
\prod_{i=1}^{l}\left(r_{i}^{2}+r_{i}+1\right) \mid q s^{2 a} \tag{2}
\end{equation*}
$$

THE FIBONACCI QUARTERLY

- If $q \nmid r_{i}^{2}+r_{i}+1$, then $r_{i}^{2}+r_{i}+1 \mid s^{2 a}$ and Lemma 2.1 implies $r_{i}^{2}+r_{i}+1=s$.
- It may happen, but just for one index t, that $q \mid r_{t}^{2}+r_{t}+1$. In this case, by the previous step, $r_{i}^{2}+r_{i}+1=s$, if $i \neq t$.
Since $l=\omega(n)-2(\omega(n)$ the number of prime factors of $n)$ and since $\omega(n) \geq 9$ [5], we get $r_{i}^{2}+r_{i}+1=s=r_{j}^{2}+r_{j}+1$ with $i \neq j$, which is impossible. (2) Assume $r_{1}=3$. In this case, for $i>1$, there are at most two r_{i} 's with $r_{i} \equiv 1(\bmod 3)$. So we may assume that $\prod_{i=4}^{l}\left(r_{i}^{2}+r_{i}+1\right) \mid q s^{2 a}$. Since $l-3=\omega(n)-5 \geq 3$, we conclude as above.
Remark 2.4. It is known that no odd perfect number of the form $q^{4 b+1} r_{1}^{2} r_{2}^{2} \cdots r_{l}^{2} s^{2 a}$ exist if $a=1[6]$ and $a=2[1,3]$.

In the same vein we have the following proposition.
Proposition 2.5. Let $n=q \cdot r_{1}^{2} \cdot r_{2}^{2} \cdots r_{l}^{2} \cdot p_{1}^{2 a_{1}} \cdot p_{2}^{2 a_{2}}, q \equiv 1(\bmod 4), 1 \leq a_{1} \leq a_{2}, q, r_{i}, p_{j}$ distinct positive primes. If n is an odd perfect number and if $3 \nmid n$, then $a_{1} \geq 3$ and $a_{2} \geq 9$.

Proof. By Proposition 2.3 we know that $a_{2} \geq a_{1} \geq 2$. We have $r_{i} \equiv 2(\bmod 3)$, for all i, it follows, as in the previous proof, that

$$
\begin{equation*}
\prod_{i=1}^{l}\left(r_{i}^{2}+r_{i}+1\right) \mid q p_{1}^{2 a_{1}} p_{2}^{2 a_{2}} \tag{3}
\end{equation*}
$$

It may happen that for one index i, say $i=1, q \mid\left(r_{1}^{2}+r_{1}+1\right)$. In any case we may assume that $\prod_{i=2}^{l}\left(r_{i}^{2}+r_{i}+1\right) \mid p_{1}^{2 a_{1}} p_{2}^{2 a_{2}}$.

If $\left(r_{i}^{2}+r_{i}+1, p_{t}\right)=1$, then by Lemma 2.1, $r_{i}^{2}+r_{i}+1=p_{j},\{t, j\}=\{1,2\}$. So we may assume that for $i=4, \ldots, l$: $r_{i}^{2}+r_{i}+1=p_{1}^{\alpha_{i}} p_{2}^{\beta_{i}}$, with $\alpha_{i} \geq 1, \beta_{i} \geq 1$. It follows that $l-3 \leq \sum_{4}^{l} \alpha_{i} \leq 2 a_{1}$. Since $l-3=\omega(n)-6$ and since $\omega(n) \geq 12$ (see [5]), we get $a_{1} \geq 3$. On the other hand, by [2], $\Omega(n)=2 l+2 a_{1}+2 a_{2}+1$, the total number of primes dividing n, satisfies $\Omega(n) \geq 75$. It follows that $l-3 \geq 34-a_{1}-a_{2}$. Hence, $34-a_{1}-a_{2} \leq l-3 \leq 2 a_{1}$, so $34 \leq a_{2}+3 a_{1} \leq 4 a_{2}$ and $a_{2} \geq 9$.

3. On the Radical of Odd Perfect Numbers Relatively Prime to 3.

We use the results of the previous section to investigate the radical of odd perfect numbers not divisible by 3 . Our result is the following proposition.

Proposition 3.1. Let $n=q^{4 b+1} \cdot \prod p_{i}^{2 a_{i}}$ be an odd perfect number. Assume $3 \nmid n$ and $q \leq 148$ 207, then $\sqrt{n} \geq \operatorname{rad}(n)$.
Proof. The conclusion is clear if $b>0$, so let's assume $b=0$.
Assume there are at least three indices i such that $a_{i} \geq 2$, say $a_{3} \geq a_{2} \geq a_{1} \geq 2$. Then $n \geq q \cdot p_{1}^{4} \cdot p_{2}^{4} \cdot p_{3}^{4} \cdot \prod_{i>3} p_{i}^{2}$, hence, $\sqrt{n} \geq \sqrt{q} \cdot p_{1}^{2} \cdot p_{2}^{2} \cdot p_{3}^{2} \cdot \prod_{i>3} p_{i}$. We have to show that under our assumptions $p_{1}^{2} \cdot p_{2}^{2} \cdot p_{3}^{2} \geq q$. Since $3 \nmid n$, we have $p_{1} \geq 5, p_{2} \geq 7, p_{3} \geq 11$ and since $5^{2} \cdot 7^{2} \cdot 11^{2}=148225$, we are done.

If there are less than three indices i such that $a_{i} \geq 2$, then by Proposition $2.5 a_{1} \geq 3$ and $a_{2} \geq 9$ and $n \geq q \cdot p_{1}^{6} \cdot p_{2}^{18} \cdot \prod_{i>2} p_{i}^{2}$ and it is enough to check $p_{1}^{4} \cdot p_{2}^{16} \geq q$. Since $p_{1}^{4} \cdot p_{2}^{16} \geq 7^{4} \cdot 5^{16}>$ 148 207, we are done.

A REMARK ON THE RADICAL OF ODD PERFECT NUMBERS

4. The Case $3 \mid n$.

If $n=q \cdot 3^{2 a} \cdot p_{1}^{2} \cdot p_{2}^{2} \cdots p_{l}^{2}$ is an odd perfect number, we know by [1], that $a \geq 3$.
Lemma 4.1. If $n=q \cdot 3^{6} \cdot \prod^{t} p_{i}^{2}$, where q, p_{i} are distinct primes >3, then n is not perfect.
Proof. Assume n is perfect and write it as: $n=q \cdot 3^{6} \cdot \prod^{k} p_{j}^{2} \cdot \prod^{l} r_{i}^{2}$, where $p_{j} \equiv 1(\bmod 3)$, $r_{i} \equiv 2(\bmod 3)($ and $q \equiv 1(\bmod 4))$. From $\sigma(n)=2 n$ we obtain

$$
\begin{equation*}
n=q \cdot 3^{6} \cdot \prod^{k} p_{j}^{2} \cdot \prod^{l} r_{i}^{2}=\frac{q+1}{2} \cdot \prod^{k}\left(p_{j}^{2}+p_{j}+1\right) \cdot \prod^{l}\left(r_{i}^{2}+r_{i}+1\right) \cdot 1093, \tag{4}
\end{equation*}
$$

where $1093=\sigma\left(3^{6}\right)$ is a prime $\equiv 1(\bmod 12)$. Since $p_{j} \equiv 1(\bmod 3), \sigma\left(p_{j}^{2}\right)=3 . c_{j}$ where $\left(3, c_{j}\right)=1$ (see Remark 2.2). It follows that $3^{k} \mid 3^{6}$, so $k \leq 6$ and we have:

$$
\begin{equation*}
q \cdot 3^{6-k} \cdot \prod^{k} p_{j}^{2} \cdot \prod^{l} r_{i}^{2}=\frac{q+1}{2} \cdot \prod^{k} c_{j} \cdot \prod^{l} \sigma\left(r_{i}^{2}\right) \cdot 1093 . \tag{5}
\end{equation*}
$$

If $6-k>0$, since $\left(3, c_{j}\right)=1, r_{i} \equiv 2(\bmod 3)$ and $1093 \equiv 1(\bmod 3), 3^{6-k} \|(q+1) / 2$. This implies $q \equiv 2(\bmod 3)$. But then $\left(\sigma\left(r_{i}^{2}\right), q\right)=\left(c_{j}, q\right)=1($ see Remark 2.2) and $q \neq 1093$, so q cannot divide the LHS of (5) contradiction.

This shows $k=6, q \equiv 1(\bmod 12)$, moreover:

$$
\begin{equation*}
\prod^{l} r_{i}^{2} \left\lvert\, \frac{q+1}{2}\right. \tag{6}
\end{equation*}
$$

We have $q \neq 1093$. Indeed otherwise $(q+1) / 2=547$ which is a prime $\equiv 1(\bmod 3)$, so $p_{1}=547$. Then $\sigma\left(547^{2}\right)=3 \times 163 \times 613$, so $p_{2}=163, p_{3}=613$. Since $\sigma\left(613^{2}\right)=3 \times 7 \times 17923$, $\sigma\left(163^{2}\right)=3 \times 7 \times 19 \times 67$, we get too many p_{j} 's $\left(p_{4}=7, p_{5}=17923, p_{6}=19, p_{7}=67\right)$.

So we may assume $p_{1}=1093$. We have $\sigma\left(p_{1}^{2}\right)=3 \times 398581$, so $c_{1}=398581$ which is a prime $\equiv 1(\bmod 12)$. If $c_{1}=q$, then $(q+1) / 2=17 \times 19 \times 617$. Since $17 \equiv 2(\bmod 3)$, $l>0$ and we get a contradiction with (6). We conclude that $p_{2}=398581$. Now $\sigma\left(p_{2}^{2}\right)=$ $3 \times 52955737381=3 \times 1621 \times 32668561$. Both 1621 and $s_{2}:=32668561$ are primes $\equiv 1$ $(\bmod 12)$.

If $q=1621$, then $p_{3}=s_{2}$ and $(q+1) / 2=811$ which is prime, so $p_{4}=811$. Now $\sigma\left(811^{2}\right)=3 \times 31 \times 73 \times 97$ too many p_{j} 's again.

So we may assume $p_{3}=1621$. We have $\sigma\left(p_{3}^{2}\right)=3 \times 7 \times 13 \times 9631$. Since $q \neq 7, p_{4}=7$. Then $\sigma\left(7^{2}\right)=3 \times 19, p_{5}=19$ too many p_{j} 's again (one at most among $s_{2}, 13$ and 9631 is q).

To conclude we have the following proposition.
Proposition 4.2. Let $n=q^{4 b+1} \cdot \prod p_{i}^{2 a_{i}}$ be an odd perfect number. If $q \leq 223$, then $\sqrt{n} \geq$ $\operatorname{rad}(n)$.
Proof. If $3 \nmid n$ use Proposition 3.1. Assume $3 \mid n$ and $b=0$. Let $n=q \cdot 3^{2 a} \cdot \prod_{i=1}^{k} p_{i}^{2 a_{i}}$. If $a_{2} \geq a_{1} \geq 2$, then $n \geq q \cdot 3^{2} \cdot p_{1}^{4} \cdot p_{2}^{4} \cdot \prod p_{i}^{2}$. We conclude since $p_{1}^{2} \cdot p_{2}^{2} \geq 5^{2} \cdot 7^{2}>223 \geq q$.

If $a_{1} \geq 2, a_{i}=1$ for $i>1$, then $n=q \cdot 3^{2 a} \cdot p_{1}^{2 a_{1}} \cdot \Pi p_{i}^{2}$. By Proposition 2.3, $a \geq 2$. We conclude since $9 \cdot p_{1}^{2} \geq 9 \cdot 5^{2}=225>q$.

Finally if $a_{i}=1$, for all i, then by Lemma 4.1, $a \geq 8$ and since $3^{6}>223$, we are done.
These results leave open the following problems: (i) improve these bounds, especially when $3 \mid n$ (feasible with some computational power); (ii) does the inequality $\sqrt{n} \geq \operatorname{rad}(n)$ hold for every odd perfect number?

5. Acknowledgement

I thank the referee for suggesting the use of [2] and pointing to me the reference [5].

References

[1] A. Brauer, On the non-existence of odd perfect numbers of form $p^{\alpha} q_{1}^{2} q_{2}^{2} \cdots q_{t-1}^{2} q_{t}^{4}$, Bull. Amer. Math. Soc., 49 (1943), 712-718.
[2] K. G. Hare, New techniques for bounds on the total number of primes factors of an odd perfect number, Math. Comp., 76 (2007), 2241-2248.
[3] H. J. Kanold, Verschärfung einer notwendigen Bedingung für die Existenz einer ungeraden vollkommenen Zahl, J. Reine Angew. Math., 184 (1942), 116-124.
[4] F. Luca and C. Pomerance, On the radical of a perfect number, New York J. Math., 16 (2010), 23-30.
[5] P. Nielsen, Odd perfect numbers have at least nine distinct prime factors, Math. Comp., 76 (2007), 21092126.
[6] R. Steuerwald, Verschärfung einen notwendigen Bedingung für die Existenz einen ungeraden vollkommenen Zahl, S-B Math.-Nat. Abt. Bayer. Akad. Wiss., 1937, pp. 68-72.
MSC2010: 11A99
Dipartimento di Matematica, 35 via Machiavelli, 44100 Ferrara
E-mail address: phe@unife.it

