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Abstract. The van der Corput sequence in base b indexed by the Fibonacci numbers Fn is
known to be uniformly distributed modulo one if and only if b is a power of 5. In this paper
we show that the discrepancy of this sequence is at most of order 1/

√

N .

1. Introduction

A sequence (yn) in the unit-interval [0, 1) is said to be uniformly distributed modulo one if
for all intervals [a, b) ⊆ [0, 1) we have

lim
N→∞

#{n : 0 ≤ n < N, yn ∈ [a, b)}
N

= b− a. (1.1)

A quantitative version of (1.1) can be stated in terms of discrepancy. For a sequence (yn) in
[0, 1) the discrepancy is defined by

DN (yn) = sup
a≤b

∣

∣

∣

∣

#{n : 0 ≤ n < N, yn ∈ [a, b)}
N

− (b− a)

∣

∣

∣

∣

,

where the supremum is extended over all subintervals [a, b) of [0, 1). A sequence is uniformly
distributed modulo one if and only if its discrepancy tends to zero as N goes to infinity.

Schmidt [10] showed that for any sequence (yn) in [0, 1) we have NDN (yn) ≥ logN
66 log 4 for

infinitely many values of N ∈ N. An excellent introduction into this topic can be found in the
book of Kuipers and Niederreiter [7] (see also [2]).

A prototype for many uniformly distributed sequences is the van der Corput sequence in
base b. Throughout the paper let b ≥ 2 be an integer. The van der Corput sequence (xn) in

base b is defined by xn = ϕb(n), where for n ∈ N0 with base b expansion n = a0+a1b+a2b
2+· · ·

the so-called radical inverse function ϕb : N0 → [0, 1) is defined by

ϕb(n) =
a0
b

+
a1
b2

+
a2
b3

+ · · · .

It is well-known that for any base b ≥ 2 the van der Corput sequence is uniformly distributed
modulo one and that NDN (xn) = O(logN), see, for example, [1].

In recent years the distribution properties of subsequences of the van der Corput sequence
have been studied, see, for example [6, 5]. In [6, Example 4.8] and in [5, Example 5.1] it has
been shown that the subsequence (xFn) of the van der Corput sequence in base b indexed by
the Fibonacci numbers Fn is uniformly distributed modulo one if and only if b is a power of
5. Both proofs are based on the fact that the Fibonacci numbers are uniformly distributed
modulo b if and only if b is a power of 5 (see [8, 9]).
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2. The Result

In this paper we give a quantitative result for the uniform distribution of (xFn) for b = 5`

for ` ∈ N, in terms of discrepancy.

Theorem 2.1. Let b = 5`, let (xn) be the van der Corput sequence in base b and let (Fn) be

the sequence of Fibonacci numbers. Then for any N ∈ N we have

DN (xFn) <
Cb√
N

,

where Cb = 2b+ 8
b−1

∑b−1
κ=1

1
sin(πκ/b) = O(b).

For the proof of this result we need some preparation. The following definitions go back to
[3, 4, 5]. We refer to these references for more detailed information.

For an integer b ≥ 2 let Zb = {z =
∑∞

r=0 zrb
r : zr ∈ {0, . . . , b− 1}} be the set of b-adic

numbers. Zb together with the addition forms an abelian group. The set N0 of non-negative
integers is a subset of Zb. The Monna map φb : Zb → [0, 1) is defined by

φb(z) =

∞
∑

r=0

zr
br+1

(mod 1).

Note that the radical inverse function ϕb is just φb restricted to N0. We also define the inverse
φ+
b : [0, 1) → Zb by

φ+
b

(

∞
∑

r=0

xr
br+1

)

=

∞
∑

r=0

xrb
r,

where we always use the finite b-adic representation for b-adic rationals in [0, 1).
For k ∈ N0 we can define characters χk : Zb → {c ∈ C : |c| = 1} of Zb by

χk(z) = exp(2πiφb(k)z),

where i =
√
−1. Finally, let γk : [0, 1) → {c ∈ C : |c| = 1} where γk(x) = χk(φ

+
b (x)).

We have the following general discrepancy bound which is based on the functions γk.

Lemma 2.2. Let g ∈ N. For any sequence (yn) in [0, 1) we have

DN (yn) ≤
2

bg
+

bg−1
∑

k=1

ρb(k)

∣

∣

∣

∣

∣

1

N

N−1
∑

n=0

γk(yn)

∣

∣

∣

∣

∣

,

where ρb(0) = 1 and ρb(k) = 2
br+1 sin(πκr/b)

for k ∈ N with base b expansion k = κ0 + κ1b +

· · ·+ κrb
r, κr 6= 0.

For prime numbers b this result is a special case of [3, Theorem 3.6]. Using results from [5]
it follows easily that it also holds true for general bases b ≥ 2.

Lemma 2.3. Let b = 5` and let k ∈ N with base b expansion k = κ0 + κ1b+ · · ·+ κrb
r where

κr 6= 0. Let (xn) denote the van der Corput sequence in base b. Then for any N ∈ N we have
∣

∣

∣

∣

∣

N−1
∑

n=0

γk(xFn)

∣

∣

∣

∣

∣

< 4br+1.
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Proof. Let e(x) := exp(2πix). Since k = κ0+κ1b+ · · ·+κrb
r it follows that ϕb(k) =

Ak

br+1 with

Ak ∈ {1, . . . , br+1 − 1}. Hence we have,

N−1
∑

n=0

γk(xFn) =

N−1
∑

n=0

e (Fnφb(k)) =

N−1
∑

n=0

e
(

FnAk/b
r+1
)

.

The Fibonacci sequence (Fn), considered modulo br+1, has period 4br+1 (see [11]) and for
each integer a there are exactly 4 solutions of Fn ≡ a (mod br+1) per period (see [9]).

Write N = 4br+1M + q with M ∈ N0 and q ∈ {0, . . . , 4br+1 − 1}. Then we obtain

N−1
∑

n=0

γk(xFn) =
M−1
∑

i=0

(i+1)4br+1−1
∑

n=i4br+1

e
(

FnAk/b
r+1
)

+

M4br+1+q−1
∑

n=M4br+1

e
(

FnAk/b
r+1
)

= M

4br+1−1
∑

n=0

e
(

FnAk/b
r+1
)

+

q−1
∑

n=0

e
(

FnAk/b
r+1
)

= 4M

br+1−1
∑

a=0

e
(

aAk/b
r+1
)

+

q−1
∑

n=0

e
(

FnAk/b
r+1
)

= 0 +

q−1
∑

n=0

e
(

FnAk/b
r+1
)

and the result follows. �

Now we give the proof of Theorem 2.1.

Proof. Using Lemma 2.2 and 2.3 we have

DN (xFn) ≤
2

bg
+

bg−1
∑

k=1

ρb(k)

∣

∣

∣

∣

∣

1

N

N−1
∑

n=0

γk(xFn)

∣

∣

∣

∣

∣

<
2

bg
+

8

N

g−1
∑

r=0

br+1−1
∑

k=br

1

sin(πκr/b)

=
2

bg
+

8

N

g−1
∑

r=0

br
b−1
∑

κ=1

1

sin(πκ/b)

≤ 2

bg
+

bg

N

8

b− 1

b−1
∑

κ=1

1

sin(πκ/b)
.

The result follows by choosing g = blogb
√
Nc. �
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