ON THE DISCREPANCY OF THE VAN DER CORPUT SEQUENCE INDEXED BY FIBONACCI NUMBERS

FRIEDRICH PILLICHSHAMMER

Abstract

The van der Corput sequence in base b indexed by the Fibonacci numbers F_{n} is known to be uniformly distributed modulo one if and only if b is a power of 5 . In this paper we show that the discrepancy of this sequence is at most of order $1 / \sqrt{N}$.

1. Introduction

A sequence $\left(y_{n}\right)$ in the unit-interval $[0,1)$ is said to be uniformly distributed modulo one if for all intervals $[a, b) \subseteq[0,1)$ we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{\#\left\{n: 0 \leq n<N, y_{n} \in[a, b)\right\}}{N}=b-a . \tag{1.1}
\end{equation*}
$$

A quantitative version of (1.1) can be stated in terms of discrepancy. For a sequence $\left(y_{n}\right)$ in $[0,1)$ the discrepancy is defined by

$$
D_{N}\left(y_{n}\right)=\sup _{a \leq b}\left|\frac{\#\left\{n: 0 \leq n<N, y_{n} \in[a, b)\right\}}{N}-(b-a)\right|,
$$

where the supremum is extended over all subintervals $[a, b)$ of $[0,1)$. A sequence is uniformly distributed modulo one if and only if its discrepancy tends to zero as N goes to infinity. Schmidt [10] showed that for any sequence $\left(y_{n}\right)$ in $[0,1)$ we have $N D_{N}\left(y_{n}\right) \geq \frac{\log N}{66 \log 4}$ for infinitely many values of $N \in \mathbb{N}$. An excellent introduction into this topic can be found in the book of Kuipers and Niederreiter [7] (see also [2]).

A prototype for many uniformly distributed sequences is the van der Corput sequence in base b. Throughout the paper let $b \geq 2$ be an integer. The van der Corput sequence $\left(x_{n}\right)$ in base b is defined by $x_{n}=\varphi_{b}(n)$, where for $n \in \mathbb{N}_{0}$ with base b expansion $n=a_{0}+a_{1} b+a_{2} b^{2}+\cdots$ the so-called radical inverse function $\varphi_{b}: \mathbb{N}_{0} \rightarrow[0,1)$ is defined by

$$
\varphi_{b}(n)=\frac{a_{0}}{b}+\frac{a_{1}}{b^{2}}+\frac{a_{2}}{b^{3}}+\cdots .
$$

It is well-known that for any base $b \geq 2$ the van der Corput sequence is uniformly distributed modulo one and that $N D_{N}\left(x_{n}\right)=O(\log N)$, see, for example, [1].

In recent years the distribution properties of subsequences of the van der Corput sequence have been studied, see, for example [6, 5]. In [6, Example 4.8] and in [5, Example 5.1] it has been shown that the subsequence $\left(x_{F_{n}}\right)$ of the van der Corput sequence in base b indexed by the Fibonacci numbers F_{n} is uniformly distributed modulo one if and only if b is a power of 5. Both proofs are based on the fact that the Fibonacci numbers are uniformly distributed modulo b if and only if b is a power of 5 (see $[8,9]$).

The author is partially supported by the Austrian Science Foundation (FWF), Project S9609, that is part of the Austrian National Research Network "Analytic Combinatorics and Probabilistic Number Theory".

2. The Result

In this paper we give a quantitative result for the uniform distribution of $\left(x_{F_{n}}\right)$ for $b=5^{\ell}$ for $\ell \in \mathbb{N}$, in terms of discrepancy.

Theorem 2.1. Let $b=5^{\ell}$, let $\left(x_{n}\right)$ be the van der Corput sequence in base b and let $\left(F_{n}\right)$ be the sequence of Fibonacci numbers. Then for any $N \in \mathbb{N}$ we have

$$
D_{N}\left(x_{F_{n}}\right)<\frac{C_{b}}{\sqrt{N}},
$$

where $C_{b}=2 b+\frac{8}{b-1} \sum_{\kappa=1}^{b-1} \frac{1}{\sin (\pi \kappa / b)}=O(b)$.
For the proof of this result we need some preparation. The following definitions go back to $[3,4,5]$. We refer to these references for more detailed information.

For an integer $b \geq 2$ let $\mathbb{Z}_{b}=\left\{z=\sum_{r=0}^{\infty} z_{r} b^{r}: z_{r} \in\{0, \ldots, b-1\}\right\}$ be the set of b-adic numbers. \mathbb{Z}_{b} together with the addition forms an abelian group. The set \mathbb{N}_{0} of non-negative integers is a subset of \mathbb{Z}_{b}. The Monna map $\phi_{b}: \mathbb{Z}_{b} \rightarrow[0,1)$ is defined by

$$
\phi_{b}(z)=\sum_{r=0}^{\infty} \frac{z_{r}}{b^{r+1}} \quad(\bmod 1) .
$$

Note that the radical inverse function φ_{b} is just ϕ_{b} restricted to \mathbb{N}_{0}. We also define the inverse $\phi_{b}^{+}:[0,1) \rightarrow \mathbb{Z}_{b}$ by

$$
\phi_{b}^{+}\left(\sum_{r=0}^{\infty} \frac{x_{r}}{b^{r+1}}\right)=\sum_{r=0}^{\infty} x_{r} b^{r},
$$

where we always use the finite b-adic representation for b-adic rationals in $[0,1)$.
For $k \in \mathbb{N}_{0}$ we can define characters $\chi_{k}: \mathbb{Z}_{b} \rightarrow\{c \in \mathbb{C}:|c|=1\}$ of \mathbb{Z}_{b} by

$$
\chi_{k}(z)=\exp \left(2 \pi i \phi_{b}(k) z\right),
$$

where $i=\sqrt{-1}$. Finally, let $\gamma_{k}:[0,1) \rightarrow\{c \in \mathbb{C}:|c|=1\}$ where $\gamma_{k}(x)=\chi_{k}\left(\phi_{b}^{+}(x)\right)$.
We have the following general discrepancy bound which is based on the functions γ_{k}.
Lemma 2.2. Let $g \in \mathbb{N}$. For any sequence $\left(y_{n}\right)$ in $[0,1)$ we have

$$
D_{N}\left(y_{n}\right) \leq \frac{2}{b^{g}}+\sum_{k=1}^{b^{g}-1} \rho_{b}(k)\left|\frac{1}{N} \sum_{n=0}^{N-1} \gamma_{k}\left(y_{n}\right)\right|,
$$

where $\rho_{b}(0)=1$ and $\rho_{b}(k)=\frac{2}{b^{r+1} \sin \left(\pi \kappa_{r} / b\right)}$ for $k \in \mathbb{N}$ with base b expansion $k=\kappa_{0}+\kappa_{1} b+$ $\cdots+\kappa_{r} b^{r}, \kappa_{r} \neq 0$.

For prime numbers b this result is a special case of [3, Theorem 3.6]. Using results from [5] it follows easily that it also holds true for general bases $b \geq 2$.

Lemma 2.3. Let $b=5^{\ell}$ and let $k \in \mathbb{N}$ with base b expansion $k=\kappa_{0}+\kappa_{1} b+\cdots+\kappa_{r} b^{r}$ where $\kappa_{r} \neq 0$. Let (x_{n}) denote the van der Corput sequence in base b. Then for any $N \in \mathbb{N}$ we have

$$
\left|\sum_{n=0}^{N-1} \gamma_{k}\left(x_{F_{n}}\right)\right|<4 b^{r+1}
$$

Proof. Let $\mathrm{e}(x):=\exp (2 \pi i x)$. Since $k=\kappa_{0}+\kappa_{1} b+\cdots+\kappa_{r} b^{r}$ it follows that $\varphi_{b}(k)=\frac{A_{k}}{b^{r+1}}$ with $A_{k} \in\left\{1, \ldots, b^{r+1}-1\right\}$. Hence we have,

$$
\sum_{n=0}^{N-1} \gamma_{k}\left(x_{F_{n}}\right)=\sum_{n=0}^{N-1} \mathrm{e}\left(F_{n} \phi_{b}(k)\right)=\sum_{n=0}^{N-1} \mathrm{e}\left(F_{n} A_{k} / b^{r+1}\right)
$$

The Fibonacci sequence $\left(F_{n}\right)$, considered modulo b^{r+1}, has period $4 b^{r+1}$ (see [11]) and for each integer a there are exactly 4 solutions of $F_{n} \equiv a\left(\bmod b^{r+1}\right)$ per period (see [9]).

Write $N=4 b^{r+1} M+q$ with $M \in \mathbb{N}_{0}$ and $q \in\left\{0, \ldots, 4 b^{r+1}-1\right\}$. Then we obtain

$$
\begin{aligned}
\sum_{n=0}^{N-1} \gamma_{k}\left(x_{F_{n}}\right) & =\sum_{i=0}^{M-1} \sum_{n=i 4 b^{r+1}}^{(i+1) 4 b^{r+1}-1} \mathrm{e}\left(F_{n} A_{k} / b^{r+1}\right)+\sum_{n=M 4 b^{r+1}}^{M 4 b^{r+1}+q-1} \mathrm{e}\left(F_{n} A_{k} / b^{r+1}\right) \\
& =M \sum_{n=0}^{4 b^{r+1}-1} \mathrm{e}\left(F_{n} A_{k} / b^{r+1}\right)+\sum_{n=0}^{q-1} \mathrm{e}\left(F_{n} A_{k} / b^{r+1}\right) \\
& =4 M \sum_{a=0}^{b^{r+1}-1} \mathrm{e}\left(a A_{k} / b^{r+1}\right)+\sum_{n=0}^{q-1} \mathrm{e}\left(F_{n} A_{k} / b^{r+1}\right) \\
& =0+\sum_{n=0}^{q-1} \mathrm{e}\left(F_{n} A_{k} / b^{r+1}\right)
\end{aligned}
$$

and the result follows.
Now we give the proof of Theorem 2.1.
Proof. Using Lemma 2.2 and 2.3 we have

$$
\begin{aligned}
D_{N}\left(x_{F_{n}}\right) & \leq \frac{2}{b^{g}}+\sum_{k=1}^{b^{g}-1} \rho_{b}(k)\left|\frac{1}{N} \sum_{n=0}^{N-1} \gamma_{k}\left(x_{F_{n}}\right)\right| \\
& <\frac{2}{b^{g}}+\frac{8}{N} \sum_{r=0}^{g-1} \sum_{k=b^{r}}^{b^{r+1}-1} \frac{1}{\sin \left(\pi \kappa_{r} / b\right)} \\
& =\frac{2}{b^{g}}+\frac{8}{N} \sum_{r=0}^{g-1} b^{r} \sum_{\kappa=1}^{b-1} \frac{1}{\sin (\pi \kappa / b)} \\
& \leq \frac{2}{b^{g}}+\frac{b^{g}}{N} \frac{8}{b-1} \sum_{\kappa=1}^{b-1} \frac{1}{\sin (\pi \kappa / b)} .
\end{aligned}
$$

The result follows by choosing $g=\left\lfloor\log _{b} \sqrt{N}\right\rfloor$.

References

[1] R. Béjian and H. Faure, Discrépance de la suite de van der Corput, C. R. Acad. Sci., Paris, A Sér, 285 (1977), 313-316.
[2] M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Mathematics 1651, Springer-Verlag, Berlin, 1997.
[3] P. Hellekalek, A general discrepancy estimate based on p-adic arithmetics, Acta Arith., 139 (2009), 117129.

THE FIBONACCI QUARTERLY

[4] P. Hellekalek, A notion of diaphony based on p-adic arithmetic, Acta Arith., 145 (2010), 273-284.
[5] P. Hellekalek and H. Niederreiter, Constructions of uniformly distributed sequences using the b-adic method, Uniform Distribution Theory, 6 (2011), 185-200.
[6] R. Hofer, P. Kritzer, G. Larcher, and F. Pillichshammer, Distribution properties of generalized van der Corput-Halton sequences and their subsequences, Int. J. Number Theory, 5 (2009), 719-746.
[7] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, John Wiley, New York, 1974; reprint, Dover Publications, Mineola, NY, 2006.
[8] L. Kuipers, and J.-S. Shiue, A distribution property of the sequence of Fibonacci numbers, The Fibonacci Quarterly, 10.3 (1972), 375-376 and 392.
[9] H. Niederreiter, Distribution of Fibonacci numbers $\bmod 5^{k}$, The Fibonacci Quarterly, 10.3 (1972), 373374.
[10] W. M. Schmidt, Irregularities of distribution VII, Acta Arith, 21 (1972), 45-50.
[11] D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly, 67 (1960), 525-532.
MSC2010: 11K06, 11K31, 11K38
Department of Financial Mathematics, University of Linz, Altenbergerstrasse 69, 4040 Linz, Austria

E-mail address: friedrich.pillichshammer@jku.at

