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Abstract. A classical Ducci sequence of integers is a sequence of n-tuples of integers obtained
by iterating the map (a1, . . . , an) 7→ (|a1−a2|, |a2−a3|, . . . , |an−a1|). In this paper, we study
a natural analogue of the Ducci sequences defined over function fields that are motivated by
the number field-function field analogy. Results that are analogous to the classical case have
been found, and differences between the two cases are also explored.

1. Introduction

Let d ≥ 3 be an integer. A classical Ducci sequence of integers is a sequence of d-tuples
u, D̃(u), D̃2(u) = D̃(D̃(u)), . . ., obtained by iterating the map D̃ : Zd → Zd, where

D̃(u0, u1, . . . , ud−1) = (|u0 − u1| , |u1 − u2| , . . . , |ud−1 − u0|). (1.1)

The origin of this sequence dates back to E. Ducci, who is credited in [12] for discovering the
fact that every Ducci sequence will eventually stabilize at the zero vector when d = 4. In fact,
the same property holds if and only if d is a power of 2. For any positive integer d, the dynamic
system induced byD always forms a cycle. Having relations to the cyclotomic polynomials, the
Wieferich primes [4] and also the well-known conjecture of Gilbreath [15, 16, 18], these cycles
have many interesting properties and are a popular object to study [4, 5, 8, 9, 13, 14, 17]. It
turns out that any d-tuples in a cycle are constant multiples of binary tuples, i.e. tuples with
entries in {0, 1}. In this case, the Ducci map is essentially the following linear transformation
in the vector space Fd

2:

D̃(u0, . . . , ud−1) = (u0 + u1, . . . , ud−1 + u0). (1.2)

In the realm of number fields, the study of Ducci sequences have been generalized to the
algebraic numbers [10] and the real numbers [6, 7]. For other generalizations, see for example
[1, 2, 3, 11, 21, 22].

There is a well-known analogy between number fields and function fields of one variable
over finite fields. Motivated by this analogy, in this paper we initiate a study of a natural
analogue of the Ducci sequences over function fields based on equation (1.1) (see Definition
3.1 in Section 3).

As in the number field case, the dynamics induced in our case will always form cycles. How-
ever, we will see that those cycles need not be constant multiples of binary tuples. Therefore
the standard strategy of studying Ducci sequences using cyclotomic polynomials is not appli-
cable. Nevertheless, we are able to show that our Ducci sequences exhibit similar behavior as
their counterpart in the number field case. In particular, the famous property that a Ducci
sequence of d-tuples always ends in the zero cycle if and only if d is a power of 2 is also true in
our case. On the other hand, when we extend our consideration to Ducci sequences over the
power series ring, they behave quite differently from the classical Ducci sequences over R. We
will also consider periods of the cycles. One striking difference from the number field case is
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that the characteristic of the constant field plays an important role on the length of the cycles,
which makes such cycles more mysterious than the ones over number fields.

It is hardly surprising that Ducci sequences over function fields are intimately related to
the one over number fields. In fact, one of our main ideas is to transfer the questions in
the function field case to the corresponding questions in the number field case, which are
studied more extensively. We remark that there are other generalizations that work in the
case of polynomial rings (see for example [1, 2]), but their generalizations are based on the
homomorphism (1.2) and are therefore different from our generalization.

The paper is organized as follows. In Section 2 we recall some basics of the theory of
function fields that are needed to define our Ducci sequences. In Section 3 we define our
Ducci sequences and show that they form cycles just like the usual Ducci sequence over Z.
In Section 4 and Section 5, function field analogues of the results in [7, 12] are obtained. In
particular, we prove that all d-tuples are vanishing if and only if d is a power of 2. In Section
4, we also study other vanishing sequences and obtain a bound on the vanishing time. We end
with a discussion on the cycles generated by the Ducci sequences in Section 6. Some possible
directions for further research are also discussed throughout the paper.

2. Function Fields

Let q be a power of a prime p. By a function field we mean a function field of one variable
over a finite field, or equivalently a finite extension of some Fq(x). In this section we collect
some facts about function fields which we will use later, with the number field-function field
analogy in mind. The main references are the books [19] and [20].

Let K be a function field with field of constants Fq. Fix an arbitrary degree one prime
P∞ of K (which serves the purpose of an “infinity prime”), and let v∞ be its corresponding
(normalized) valuation. Suppose S is a finite set of primes in K containing P∞, the ring of
S-integers is defined by

OS = {x ∈ K : vP (x) ≥ 0 for all P /∈ S}.

This is the ring analogous to the ring of S-integers in a number field. To simplify notations,
when S = {P∞}, we will write

AK := {x ∈ K : vP (x) ≥ 0 for all P 6= P∞}.

Next, we need an analogue of R in the function field case. This can be done by completion.
Let K∞ be the completion of K at P∞ (i.e. with respect to v∞). If π is any uniformizer at
P∞ (i.e. v∞(π) = 1), since P∞ has degree one, we have that K∞ is isomorphic to Fq((π)),
the field of formal Laurent series in T . The following example is one which the readers should
bear in mind as we will frequently return to this case for illustrating our results concretely.

Example 2.1. The simplest and most concrete example of a function field is the field K =
Fq(x). Let P∞ be the prime corresponding to the pole of x, and S = {P∞}. The valuation v∞
corresponding to P∞ can be characterized as follows: if f and g are polynomials and f/g ∈ K,
then v∞(f/g) = deg g − deg f . The ring of integers AK is the polynomial ring Fq[x], which is
an analogue of Z in the number field case. Choose the uniformizer π = 1/x at P∞, then the
field K∞ = Fq((π)) is an analogue of R.

Remark 2.2. Unlike the number field case for which we have to isolate the archimedean
primes, in the function field case we are free to choose any degree one prime P∞ to serve as
the “infinity prime”. As far as the chosen prime is of degree one, different choices of P∞ will
give us isomorphic rings, and therefore the same theory.
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By a small modification, it is also possible to extend our consideration to allow the case
when P∞ can be of arbitrary degree, but we will only consider the case of degP∞ = 1 here for
the sake of simplicity.

Now we have the rings that we intend to work on. To define the analogue of the Ducci
sequence using (1.1), we will also need an analogue of the (archimedean) absolute value.
Before we can define such an analogue, the first thing we need is the notion of positivity in
function fields.

Fix a uniformizer π at the prime P∞, then K∗
∞ has the decomposition

K∗
∞

∼= Fq × πZ × U1,π,

where U1,π is the group of 1-units modulo π:

U1,π = {x ∈ K∞ : x ≡ 1 (mod π)}.

Thus, every element x ∈ K∗
∞ has a unique decomposition

x = sgn(x)πv∞(x)u(x) (2.1)

for some sgn(x) ∈ Fq and u(x) ∈ U1,π. Note that the decomposition depends on the choice
of uniformizer π, but it is good enough for our purpose. For any x ∈ K∗

∞, we define the sign
of x to be sgn(x), and say that x is positive if sgn(x) = 1. In particular, we get a notion of
positivity in K∗ by restriction as K ⊆ K∞. It is worth noting that there are two signs in the
number field case, namely +1 and −1. They are also the only units in Z∗. In the function
field case, the units in Fq[x]

∗ are elements of F∗
q, which are exactly the q − 1 possible signs in

this case. We are now ready to define our absolute value.

Definition 2.3. Let K be a function field and K∞ be as above. For any x ∈ K∗
∞, write

x = sgn(x)πv∞(x)u(x) as in (2.1). Then the absolute value of x is defined by

|x| = πv∞(x)u(x).

We extend our definition of the absolute value to the whole K∞ by setting |0| = 0.

This is to say that we multiply x with a suitable sign element to make it sign 1, which
is exactly what the absolute value in the number field case does. Note that this definition
actually depends on the choice of π, but different choices of π will give isomorphic theories.

Example 2.4. We return to the case of K = Fq(x), P∞ is the pole of x, S = {P∞} and
π = 1/x. The field K∞ is isomorphic to the field of Laurent series Fq((π)). For an element
f =

∑∞
i=−m aiπ

i ∈ K∗
∞ with a−m 6= 0, it is not difficult to see that f is positive if and only if

a−m = 1. In particular, a polynomial f(x) ∈ K is positive if and only if it is monic.
The absolute value in K is to multiply a suitable element in F∗

q to make the polynomial
monic. For example, if q is odd, then

∣

∣2x2 + x+ 3
∣

∣ = x2 +
q + 1

2
x+

3(q + 1)

2
.

The last thing we need is some preliminaries on divisors. The group of divisors ofK, denoted
by DK , is the free abelian group generated by the primes. Thus a divisor of K can be written
as a finite formal sum D =

∑

P aPP . Here the sum runs through all the primes P in K, but
only finitely many aP can be nonzero. The degree of D is degD =

∑

P aP degP . The divisor
D is effective if all aP ≥ 0, and we write D ≥ 0 in this case. For a function f ∈ K∗, we can
associate to it the divisor (f) =

∑

P vP (f)P . Thus the divisor (f) keeps track of the orders
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of zeros and poles of f . One can show that deg((f)) = 0 for any f ∈ K∗. Likewise, the zero
divisor and pole divisor of f is defined by

(f)0 =
∑

P,vP (f)>0

vP (f)P, (f)∞ = −
∑

P,vP (f)<0

vP (f)P.

Given two divisors D =
∑

P aPP , E =
∑

P bPP , we define the GCD and LCM of them to be

GCD(D,E) =
∑

P

min{aP , bP }P, LCM(D,E) =
∑

P

max{aP , bP }P.

Let D be a divisor. Define the set

L(D) = {x ∈ K∗ : (x) +D ≥ 0.}. (2.2)

Thus, L(D) is the set containing all functions in K such that the pole order at each prime
does not exceed (or zero order is not less than) a certain number prescribed in the coefficients
of D. The fact about L(D) that we need in this paper is the following.

Lemma 2.5. The set L(D) is a finite dimensional vector space over Fq. In particular, it is a
finite set. In addition, the set L(D) is nonempty if degD is sufficiently large.

Remark 2.6. It is possible to calculate the exact dimension `(D) of the space L(D) over Fq

using the famous Riemann-Roch Theorem (see for example [19, Theorem 5.4]) and a little bit
more algebraic geometry, but we will not need it in our paper.

3. Ducci Sequences in Function Fields

We now define our analogue of the Ducci sequences over function fields.

Definition 3.1. Let K be a function field and P∞ be a prime of degree one. Let K∞ be the
completion of K at P∞, and fix a uniformizer π at P∞. A Ducci sequence over K∞ is a
sequence of d-tuples u,D(u),D2(u) = D(D(u)), . . . obtained by iterating the map D : Kd

∞ →
Kd

∞, where
D(u0, u1, . . . , ud−1) = (|u0 − u1| , |u1 − u2| , . . . , |ud−1 − u0|). (3.1)

Here the absolute value is as in Definition 2.3.

Remark 3.2. It is easy to see that every Ducci sequence over K can be regarded as a Ducci
sequence over OS for some suitable S since there are only finitely many coordinates. In fact,
we can do better. Suppose we start with the vector u = (u0, u1, . . . , ud−1). By Lemma 2.5,
we can find a function f that has only a pole (of some very high order) at P∞ and prescribed
zeros so that fui has no poles except at P∞. We can also make f positive by multiplying it
with an appropriate scalar. It is clear that the properties of u can be deduced from that of
fu, and so we reduce to considering the case of Ducci sequences over AK . This is analogous
to the fact that we can reduce Ducci sequences over Q to those over the integers by clearing
denominators.

Example 3.3. Again we return to the case of K = Fq(x), P∞ is the pole of x and π = 1/x.
Suppose we start with the vector u = (0, 1, x, x2). If q is not of characteristic 2, the Ducci
sequence generated by u is

(0, 1, x, x2), (1, x − 1, x2 − x, x2), (x− 2, x2 − 2x+ 1, x, x2 − 1),

(x2 − 3x+ 3, x2 − 3x+ 1, x2 − x− 1, x2 − x+ 1), (1, x − 1, 1, x − 1),

(x− 2, x− 2, x− 2, x− 2), (0, 0, 0, 0), (0, 0, 0, 0), . . . .
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If K is of characteristic 2, the Ducci sequence generated by u is slightly different:

(0, 1, x, x2), (1, x − 1, x2 − x, x2), (x, x2 + 1, x, x2 − 1),

(x2 − x+ 1, x2 − x+ 1, x2 − x− 1, x2 − x+ 1), (1, 0, 1, 0),

(1, 1, 1, 1), (0, 0, 0, 0), (0, 0, 0, 0), . . . .

Note that the sequence vanishes (i.e. ends in the zero cycle). This is true in general when the
number of coordinates is a power of 2 (see Theorem 4.1 in the next section).

Example 3.4. The above example is a vanishing one. Now we look at a non-vanishing exam-
ple. Let K = Fq(x), P∞ be the pole of x and u = (0, 1, x). The Ducci sequence generated by
u reads

(0, 1, x), (1, x − 1, x), (x − 2, 1, x − 1), (x− 3, x− 2, 1), (1, x − 4, x− 3), . . . .

Thus, D4(u) = D(u)− (0, 3, 3) and more generally D3n+1(u) = D(u)− (0, 3n, 3n). Therefore
the sequence eventually forms a cycle. However, unlike the number field case, the cycle is not
binary.

Another important observation is that the period of this cycle depends on the characteristic:
in characteristic 3 this sequence has period 3, but in any other characteristic p 6= 3, the
sequence has period 3p. For example, the period of u is LCM(3, p). We will have a more
detailed discussion on the cycles and their periods in Section 6.

From now on, by saying “Ducci sequences” without a specific domain we mean the one in
the function field case. The first thing we will prove about the Ducci sequences is that over
K they always form cycles. This is analogous to the fact that Ducci sequences over Q always
form cycles.

Proposition 3.5. Every Ducci sequence over K eventually forms a cycle. For example, for
any u ∈ Kd, there exists positive integers n0, k such that Dn(u) = Dn+k(u) for all n ≥ n0.

Proof. Suppose we start with the vector u = (u0, . . . , ud−1). Since vP (f) = vP (|f |) and
vP (f − g) ≥ min{vP (f), vP (g)}, the valuations of the entries appearing in the Ducci se-
quence generated by u are bounded below by that of u. In particular, if we set D =
GCD((u0)∞, (u1)∞, . . . , (ud−1)∞), then every entry appearing in the Ducci sequence is in
L(D). By Lemma 2.5, L(D) is a finite set. Therefore there are only finitely many possible
vectors in the Ducci sequence, which means that it must eventually form a cycle. �

4. Vanishing Ducci Sequences

In this section we investigate vanishing tuples, i.e. tuples for which their generated Ducci
sequences stabilize at the zero vector. Our first result is the function field analogue of the
celebrated theorem that every Ducci sequence of d-tuples vanishes if and only if d is a power
of 2.

Theorem 4.1. Let D be the Ducci map as in Definition 3.1. The following are equivalent:

(1) d is a power of 2,
(2) For all x ∈ Kd, Dn(x) = (0, 0, . . . , 0) for all sufficiently large n.

Proof. By Remark 3.2, we may assume the Ducci sequence is over AK . Suppose we start with
the vector u = (u0, u1, . . . , ud−1), where by our assumption, all ui’s only have poles at P∞.
We also assume that all ui’s are positive (if not, then apply D once and all entries will be
positive).
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Letmi ≥ 0 be such that v∞(ui) = −mi (andmi = −∞ if ui = 0). Letm = max0≤i≤d−1{mi}.
We proceed by induction on m. The case m = −∞ is trivial. If m = 0, then all entries of u
are constants, so after applying D once we end up with zeros and ones. The theory of Ducci
sequences in the classical case then gives the desired result.

Suppose now m > 0. Define φ : K → Z to be the following map:

φ(ui) =

{

1, if mi = m,

0, otherwise.
(4.1)

We extend φ to φ : Kd → Zd in the natural way.
Since all ui are positive, if ui and uj have the same valuation at P∞, say they have the

decomposition (see (2.1))

ui = π−mixi and uj = π−mixj.

Then |ui − uj | = π−mi(xi − xj) has a less negative valuation since both xi and xj are 1-units,
meaning that π divides their difference. Thus we have

u′ = D(u) ⇒ φ(u′) = D̃(φ(u)). (4.2)

Here D is the Ducci map over K, and D̃ is the one over the integers. By the theory in
the classical case, if d is a power of 2, the Ducci sequence generated by φ(u) will vanish.
This means at that point the corresponding Ducci sequence over K has entries with valuation
strictly larger than −m. This completes the induction when d is a power of 2.

If d is not a power of 2, there are non-vanishing Ducci sequences over F2. Those sequences
can be regarded as non-vanishing sequences inK with valuation zero. Non-vanishing sequences
with higher valuation can be easily constructed via φ. This completes the proof of our theorem.

�

We continue our investigation on vanishing d-tuples. Now we look at the case when d is
not a power of 2. First we need some preliminaries on cyclotomic polynomials, which is an
important tool for studying the classical Ducci sequences. We will confine ourselves to the
case of Ducci sequences over F2 since this is what we need.

We identify the d-tuple u = (u0, . . . , ud−1) with the polynomial fu(x) = u0x
d−1 + u1x

d−2 +
. . . + ud−1 in the ring Rd = F2[x]/(x

d − 1). The Ducci map (1.2) can then be identified with
the multiplication by 1 + x. Write d = 2st for t odd, over F2 we have the factorization

xd − 1 = (x2
s

)t − 1 =
∏

l|t

Φl(x
2s) =

∏

l|t

Φl(x
2s).

Here Φl(x) is the lth cyclotomic polynomial. Factorize Φl(x) =
∏rl

i=1Φl,i(x) into a product of
irreducible polynomials. By the Chinese Remainder Theorem, we have

Rd =
F2[x]

(

∏

l|tΦl(x2
s)
) =

∏

l|t

rl
∏

i=1

F2[x]

(Φl,i(x))2
s =:

∏

l|t

rl
∏

i=1

Rl,i. (4.3)

Each Rl,i is a local ring with maximal ideal generated by Φl,i(x). We also have r1 = 1,

R1,1 = F2[x]/(x + 1)2
s

and (x+ 1) is not a factor of Φl,i for any l 6= 1.
The following lemma is a slight generalization of [4, Theorem 3.2(1)] in the case of F2.

Lemma 4.2. Let d = 2st with t odd. Let u = (u0, . . . , ud−1) ∈ Fd
2, then u vanishes if and only

if ui = ui+2s for all i (here the index is taken modulo d).
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Proof. We will follow the idea of the proof in [4, Theorem 3.2]. Since all Rl,i are local, every
element in Rl,i is either invertible or nilpotent. The tuple u vanishes if and only if fu(x) = 0
in those Rl,i in which x+1 is invertible. In our case, x+1 is nilpotent in R1,1 = F2[x]/(x+1)2

s

and is invertible in all other Rl,i (since x + 1 does not divide other Φl,i(x)). So u vanishes

if and only if fu(x) is a multiple of (xd − 1)/(x + 1)2
s

= 1 + x2
s

+ . . . + x2
s(t−1). The result

follows. �

Now we are able to give some criterion for a d-tuple to vanish (or non-vanish).

Proposition 4.3. Let d = 2st with t odd, and u = (u0, . . . , ud−1) ∈ Kd.

(1) Let φ be as in (4.1). If φ(u) is non-vanishing (in F2), then u is non-vanishing.
(2) If ui = ui+2s for all i, then it is vanishing.

Proof. Using Remark 3.2 we can reduce to the case of Ducci sequences over AK . Part (1) is
then trivial in view of the definition of φ and the equation (4.2). For part (2), let Dn(u) =
(un,0, . . . , un,d−1). Note that ui = ui+2s implies that un,i = un,i+2s for all i, n. The result
then follows from (4.2) and Lemma 4.2, using an induction argument similar to the proof of
Theorem 4.1. �

Remark 4.4. In general, part (2) of the above proposition does not exhaust all vanishing
tuples. For example, if K = Fq(x) with q ≥ 3. Suppose 0, 1, α are distinct elements in Fq,
then the tuple (x, x − 1, x − α) is vanishing but is not of the above type. However, the tuple
(x, x−1, x−1), which is very similar to the previous one, is non-vanishing. It will be interesting
to find all vanishing tuples for a general d, which we propose as a challenging problem.

Our final result in this section is a bound on the length for the vanishing tuples. Before we
state our bound, we make precise the meaning of the length.

Definition 4.5. Let u ∈ Kd be a vanishing tuple. The length of u is the positive integer n so
that Dn(u) = 0 but Dn−1(u) 6= 0.

By Remark 3.2 it suffices to consider the case over AK , and we can assume u to be positive
(if u is not positive the length increases by at most one).

Proposition 4.6. Let d = 2st and u = (u0, . . . , ud−1) ∈ Kd be a positive, vanishing d-tuple
such that all ui only have poles at P∞. Let m = maxi(−v∞(ui)), then the length of d is at
most 2s(m+ 1).

Proof. If u is a constant vector, by (4.3) and the idea of proof in Lemma 4.2, it follows that
the length is at most 2s. Now the bound follows by an induction argument using the map φ
as in the proof of Theorem 4.1. �

Remark 4.7. The upper bound in the above proposition can be achieved. For example when
u = (1, 0, . . . , 0) is a constant vector with 2s coordinates, then its length is 2s. For a more
non-trivial example, consider K = Fq(x) with q ≥ 3, P∞ the pole of x. Let 0, 1, α be three
distinct elements in Fq. Then the tuple u = (x, x2 + α, x+ 1, x2 + x, x+ α, x2 + 1) has length
6.

However, experimental data suggests that the above upper bound is far from optimal when
m is large. In fact, if the genus of K is nonzero, there is no function f ∈ K with only a
simple pole at P∞, and the upper bound (for non-constant u) can be improved to 2sm. Using
Riemann-Roch, the upper bound can be further improved to 2s`(mP∞), where `(D) is the
dimension of the vector space L(D), defined by (2.2).
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5. Ducci Sequences Over K∞

In this section we investigate the behavior of Ducci sequences over K∞, which serves as
the function field analogue of R. Since K∞

∼= Fq((π)), by multiplying a suitable power of π,
we reduce ourselves to considering the behavior of Ducci sequences over the power series ring
R := Fq[[π]].

Example 5.1. Let us look at an example of a Ducci sequence over R. Let

u =

(

∞
∑

i=0

πi,

∞
∑

i=1

π2i−1,

∞
∑

i=1

π2i

)

.

Then

D(u) =

(

∞
∑

i=0

π2i,
∞
∑

i=1

(−1)i+1πi, 1 +
∞
∑

i=1

π2i−1

)

,

D2(u) =

(

1 +

∞
∑

i=1

π2i−1,

∞
∑

i=0

π2i,

∞
∑

i=1

(−1)i+1πi

)

,

D3(u) =

(

∞
∑

i=1

(−1)i+1πi, 1 +
∞
∑

i=1

π2i−1,
∞
∑

i=0

π2i

)

,

D4(u) = D(u),

and we obtain a cycle of length 3.

Let v∞ be the normalized valuation at P∞ as usual, then the valuation induces a norm ‖ · ‖

on K∞ by ‖f‖ = q−v∞(f), where q is the number of elements in the constant field of K. It
is easy to see that ‖ · ‖ is a (non-archimedean) norm. Having the norm we are able to talk
about limits and convergence. In particular, a sequence {an} tends to zero if and only if its
valuation tends to (positive) infinity.

The following is an analogue of the main theorem in [7] in our case. Note that our result is
actually quite different from the one in [7] since our norm is non-archimedean.

Theorem 5.2. Let u ∈ Kd
∞. Then exactly one of the following happens:

(1) The sequence Dn(u) tends to zero as n→ ∞,
(2) The sequence Dn(u) is eventually periodic.

Proof. Without loss of generality, we will work over the power series ring R. Let u =
(u0, . . . , ud−1) with the ui being positive. Let mi = v∞(ui), and m = mini{mi}. Similar
to (4.1), define ψ : K∞ → Z to be the following map:

ψ(ui) =

{

1, if mi = m,

0, otherwise.

Then we have

u′ = D(u) ⇒ ψ(u′) = D̃(ψ(u)).

The ψ(u) either vanishes or forms a cycle after a repeat application of D̃. If it vanishes then
m increases, and we repeat the process for the new m. There are two possibilities. Either
ψ(u) vanishes at all valuation, so that the sequence Dn(u) tends to zero and we are in case
(1); or it eventually forms a cycle at some valuation m̃.
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In the second case we may without loss of generality assume that ψ(u) is already in a cycle.
Thus, m = m̃, and u = (u0, . . . , ud−1) with ui = ciπ

m + wi, where ci = 0 or 1 and wi ∈ R
with v∞(wi) > m for all i. As v∞(wi) > m and the ψ(u)πm forms a cycle with valuation m,
we have

Dn(u) = D̃n(ψ(u))πm + (c0w0 + . . .+ cd−1wd−1)

for some ci ∈ Fq. Since there are only finitely many possibilities for the ci, we see that Dn(u)
must form a cycle. This is case (2) and the proof is complete. �

Combining the idea of this proof with Theorem 4.1, we immediately get the following
corollary.

Corollary 5.3. If d is a power of 2, then the sequence Dn(u) either tends to zero as n→ ∞,
or is zero for all sufficiently large n.

Several remarks are in order.

Remark 5.4. Observe that the second part of the proof in the above theorem also works (after
a slight modification) in Proposition 3.5, but using the Riemann-Roch type argument in that
proposition gives a more simple proof. This observation will be used in the proof of Proposition
6.2.

Remark 5.5. In fact, we did not find any example in case (1) of the above theorem. We are
thus led to the following conjecture that every Ducci sequence over K∞ actually forms a cycle
and case (1) does not occur.

Conjecture. Every Ducci sequence over K∞ is eventually periodic.

6. Cycles of Ducci Sequences over K

In this section we consider cycles of Ducci sequences over a function field K. By the period
of a tuple u we mean the period of the cycle generated by the Ducci sequence starting with
u. The first observation is that the periods of these cycles depend on the characteristic of the
field K. We have already seen an example of this phenomenon in Example 3.4, but sometimes
the dependence on the characteristic is not so simple. Consider the following example.

Example 6.1. Let K = Fq(x), P∞ be the pole of x and let α be a nonzero element in Fq.
Consider u = (x2 + 1, x2 + αx, x). The Ducci sequence generated by u is

D(u) = (x− α−1, x2 + (α− 1)x, x2 − x+ 1),

D2(u) = (x2 + (α− 2)x+ α−1, x− α−1, x2 − 2x+ (1 + α−1)),

D3(u) = (x2 + (α− 3)x+ 2α−1, x2 − 3x+ (1 + 2α−1), x− α−1),

D4(u) = (x− α−1, x2 − 4x+ (1 + 3α−1), x2 + (α− 4)x+ 3α−1),

D5(u) = (x2 − 5x+ (1 + 4α−1), x− α−1, x2 + (α− 5)x+ 4α−1),

D6(u) = (x2 − 6x+ (1 + 5α−1), x2 + (α− 6)x+ 5α−1, x− α−1),

D7(u) = (x− α−1, x2 + (α− 7)x+ 6α−1, x2 − 7x+ (1 + 6α−1)),

and so on. In particular,

D4(u) = D(u) + (0,−(α + 3)x+ (3α−1 + 1), (α − 3)x+ (3α−1 − 1)),

D7(u) = D(u) + (0,−6(x − α−1),−6(x − α−1)).
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By induction, we get

D6n+1(u) = D(u) + (0,−6n(x− α−1),−6n(x− α−1)).

Hence, if p denotes the characteristic of K, then the period of u is 3 if α = 1 and p = 2, and
is LCM(6, p) otherwise.

Like the number field case, if d is a power of 2, then from Theorem 4.1 we know that the only
possible cycle is the zero cycle, and hence the only possible period is 1. However, the periods
seem to be much more mysterious than its number field counterpart in general. Let φ be as
in (4.1). It is not difficult to see that if φ(u) has period a, then the period of u is a multiple
of a. On the other hand, we have the following upper bound on the period. We remark that
this upper bound is very weak and there should be plenty of room for improvement.

Proposition 6.2. Let K be a function field whose constant field has q elements. If u ∈ Kd

is such that φ(u) has period a, then u has period at most LCM(a, qd).

Proof. Without loss of generality we assume u = (u0, . . . , ud−1) ∈ Ad
K . We will use the

observation in Remark 5.4. In particular, let m = maxi{−v∞(ui)} and φ be as in (4.1). Write
ui = π−m + wi with 0 ≥ v∞(wi) > −m, we have

Dn(u) = D̃n(φ(u))π−m + (c0w0 + · · ·+ cd−1wd−1).

As φ(u) has period a and c0w0 + · · · + cd−1wd−1 has at most qd distinct values, the result
follows. �

Many properties about these cycles remain mysterious. For example we did not touch the
interesting question of characterizing the cycles: which tuples can appear in a cycle? What
are the possible periods if we start with some vector u? How does the characteristic of K
affect the periods in general? Since these cycles have more structures than those over number
fields, a more detailed study of such cycles would be an interesting further research topic.
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