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Abstract. We provide combinatorial proofs of several formulas for the Fibonacci and Lucas
polynomials as determinants of some recently introduced Hessenberg matrices. Our arguments
make use of the basic definition of the determinant as a signed sum over the symmetric group
and generalize prior results, which were shown algebraically using cofactor expansion and
recurrences.

1. Introduction

Let Fn(a, b) be the nth Fibonacci polynomial defined by Fn(a, b) = aFn−1(a, b)+bFn−2(a, b)
if n ≥ 2, with F0(a, b) = 0 and F1(a, b) = 1, where a and b are indeterminates. Let Ln(a, b) be
the Lucas polynomial defined by Ln(a, b) = aLn−1(a, b)+bLn−2(a, b) if n ≥ 2, with L0(a, b) = 2
and L1(a, b) = a. The Fibonacci and Lucas polynomials are also given by the well-known
formulas

Fn(a, b) =

bn−1

2
c∑

k=0

(
n− 1− k

k

)
an−1−2kbk, n ≥ 1,

and

Ln(a, b) =

bn

2
c∑

k=0

n

n− k

(
n− k

k

)
an−2kbk, n ≥ 1.

Note that the Fn(a, b) and Ln(a, b) reduce to the Fibonacci and Lucas sequences Fn and Ln,
respectively, when a = b = 1; see, respectively, sequences A000045 and A000032 in [10].

Given an n×n matrix A, with entries aij, the determinant of A, denoted |A|, is defined by

|A| =
∑

π∈Sn

sgn(π)a1π(1)a2π(2) · · · anπ(n), (1.1)

where Sn is the set of permutations of {1, 2, . . . , n}.
A matrix is said to be (lower) Hessenberg if all of its entries above the superdiagonal are

zero. The Hessenberg matrix [6]

An =




2 1 0 · · · 0

1 2
. . .

. . .
...

...
. . .

. . . 0
1

1 · · · 1 2




n×n

(1.2)

has as its determinant Fn+2. Recently, several Hessenberg matrices have been introduced whose
determinants are Fn(a, 1) and Ln(a, 1), respectively, see [8] and [9]. These determinants were
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obtained by algebraic methods using cofactor expansions, recurrences and properties of the
determinant.

Here, we interpret several of these determinants, combinatorially, as signed sums over vari-
ous classes of compositions. In addition to imparting a more visceral understanding to why an
algebraic expression assumes a particular value, combinatorial proofs, perhaps more impor-
tantly, often allow for further generalizations upon consideration of additional parameters. We
provide here some examples of this technique and generalize, through combinatorial arguments,
the results in [8] and [9] to obtain determinant expressions for Fn(a, b) and Ln(a, b) as well
as additional separate expressions for the Fibonacci and Lucas polynomials of even and odd
index. We remark that combinatorial proofs have recently been given for other determinants,
including those of Vandermonde’s matrix [3], of matrices whose entries are the Fibonacci [1]
and Catalan [2] numbers, and of other matrices related to a class of Fibonacci-type numbers
[5].

By a composition of a positive integer n, we will mean a sequence of positive integers, called
parts, whose sum is n. Given a composition of n, we will call a part j initial if it is the
left-most part of the composition and will call it terminal if it is the right-most part. Let
Fn denote the set of compositions of n with parts belonging to {1, 2} and let Ln denote the
same set of compositions, but where a 2 starting a composition may be marked (which we’ll
indicate by underscoring). For example, the compositions (2, 1, 2) and (1, 2, 2) both belong to
F5 and L5, while (2, 2, 1) ∈ L5 − F5. Members of Fn or Ln may be regarded, equivalently,
as square-and-domino tilings which cover the numbers 1, 2, . . . , n, written either in a straight
line or around a circle, respectively, see [4, Chapters 1 and 2].

Given a composition λ with parts in {1, 2}, let us define the weight of λ by

ν(λ) = aν1(λ)bν2(λ),

where ν1(λ) and ν2(λ) denote the number of parts of λ of sizes 1 and 2, respectively (in the
case that λ ∈ Ln −Fn, the initial marked 2 is also counted by ν2). Recall that

Fn+1(a, b) =
∑

λ∈Fn

ν(λ) and Ln(a, b) =
∑

λ∈Ln

ν(λ), (1.3)

see, e.g., [4], which is easy to show using the defining recurrences. In particular, taking
a = b = 1, we get |Fn| = Fn+1 and |Ln| = Ln; see, e.g., [11, p. 46] and [4, p. 18].

Note that in the case of a Hessenberg matrix A, the term corresponding to π ∈ Sn in the sum
on the right-hand side of (1.1) is non-zero only if each cycle of π is of the form (i, i+1, . . . , i+d)
for some i and d. Note that such permutations are clearly synonymous with compositions of
n, upon ordering the cycles in some manner and identifying cycle lengths as parts. In what
follows, we will denote the subset of Sn consisting of these permutations by Tn, which we’ll
also use to denote the set of compositions of n.

2. Combinatorial Proofs

We first consider two classes of Hessenberg matrices whose determinants may be expressed
in terms of the Fibonacci and Lucas polynomials. If a and b are indeterminates, then let
An = An(a, b) denote the n × n Hessenberg matrix in which all the entries below the main
diagonal and all superdiagonal entries are b and all entries along the main diagonal are a2+ b.
Let Bn = Bn(a, b) be the same as An except that the first row, first column entry is a2 + 3b.
Algebraic proofs have been given establishing the determinants of |An| and |Bn| in the case
when b = 1; see [8] and [9], respectively. The matrices A4 and B4 are shown below.

64 VOLUME 51, NUMBER 1



PROOFS OF DETERMINANT FORMULAS FOR FIBONACCI POLYNOMIALS

A4 =




a2 + b b 0 0
b a2 + b b 0
b b a2 + b b

b b b a2 + b


 ,

B4 =




a2 + 3b b 0 0
b a2 + b b 0
b b a2 + b b

b b b a2 + b


 .

Let Un denote the set of compositions of n, where parts of size 1 may be marked. Given
λ ∈ Un, let α(λ) denote the number of marked parts of size 1 and let β(λ) denote the number
of even parts. Define the (signed) weight of λ, which we’ll denote w(λ), by

w(λ) = (−1)β(λ)a2α(λ)bn−α(λ),

where a and b are indeterminates. In our evaluations of the determinants |An| and |Bn|, we
will need the following two lemmas.

Lemma 2.1. If n ≥ 1, then

|An| =
∑

λ∈Un

w(λ). (2.1)

Proof. By (1.1), showing (2.1) is equivalent to showing
∑

π∈Tn

sgn(π)a1π(1)a2π(2) · · · anπ(n) =
∑

λ∈Un

w(λ), (2.2)

where aij denotes the (i, j)th entry of An. For (2.2), first note that each cycle of length m ≥ 2
within π ∈ Tn contributes a factor of bm towards the product term corresponding to the
permutation π in the sum on the right-hand side. If a cycle has length one, then it contributes
a2 + b towards this product. This may be thought of as differentiating 1-cycles into two types
by marking some subset of them and leaving all other cycles of π unmarked. Then unmarked
cycles contribute weight bm, where m denotes the length of the cycle, with marked 1-cycles
each contributing a2. Note that this yields a member of Un of the same weight, which we’ll
denote by λ, upon identifying cycle lengths of π as parts (where π is understood to have been
written as a product of disjoint cycles arranged in increasing order of smallest elements).

We now show that π and λ have the same sign. Let num(π) be the number of cycles
of π and let numo(π) and nume(π) be the number of cycles of π of odd and even length,

respectively. Then the sign of λ is the same as sgn(π) = (−1)n−num(π) since num(π) −
nume(π) = numo(π) ≡ n (mod 2) implies β(λ) = nume(π) ≡ n − num(π) (mod 2), which
completes the proof of (2.2). �

Let U∗
n denote the subset of Un whose members contain only marked and unmarked 1’s as

parts and in which no two unmarked 1’s are directly adjacent.

Lemma 2.2. If n ≥ 1, then

an−1Fn+2(a, b) =
∑

λ∈U∗

n

w(λ). (2.3)
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Proof. Note first that members of U∗
n have positive sign as they contain no parts of even length.

Let us first add a marked 1 to the end of each λ ∈ U∗
n. We may then identify λ as a member of

Fn+1, upon regarding each occurrence of an unmarked 1 directly followed by a marked 1 as a
“2” and regarding each remaining marked 1 as a “1”. Note that within this member of Fn+1,
all 1’s would have weight a2, except for a terminal 1, which would have unit weight, and all
2’s would have weight a2b, except for a terminal 2, which would have weight b. Then there
are n − 1 additional factors of a which arise when comparing our weighting for a member of
Fn+1 with the usual one in (1.3). This is seen upon considering, separately, the cases when a
member of Fn+1 ends in a 1 or in a 2. Thus, under the present weighting, the total weight of
all the members of Fn+1, and hence, of U∗

n, is given by an−1Fn+2(a, b), which completes the
proof. �

We now evaluate the determinants of the matrices An and Bn.

Proposition 2.3. If n ≥ 1, then

|An| = an−1Fn+2(a, b) and |Bn| = an−2Ln+2(a, b).

Proof. By Lemma 2.1, the first statement is equivalent to
∑

λ∈Un

w(λ) = an−1Fn+2(a, b), n ≥ 1. (2.4)

To prove (2.4), it is enough to define a sign-changing, weight-preserving involution of Un−U∗
n,

by Lemma 2.2. We define the involution as follows. If n ≥ 2, then consider the subset of Un

whose members contain no marked 1’s, which we’ll also denote by Tn. Note that Tn ⊆ Un−U∗
n.

We first define an involution of Tn which we will extend to Un − U∗
n. To do so, we’ll define

separate involutions on Tn − T ′
n and on T ′

n, where T ′
n ⊆ Tn comprises those members which

contain no odd parts greater than or equal 3 and in which no part of size 1 is directly followed
by an even part.

To define the first involution, suppose λ = (λ1, λ2, . . .) ∈ Tn−T ′
n. Let io denote the smallest

index i such that one of the following conditions holds:

(i) λi ≥ 3 is odd or (ii) λi = 1 and λi+1 is even.

Let λ̂ denote the member of Tn − T ′
n obtained by replacing λio with the parts 1, λio − 1 if (i)

occurs and replacing 1, λio+1 with the single part 1+ λio+1 if (ii) occurs. Then w(λ) = −w(λ̂)

and the mapping λ 7→ λ̂ is an involution of Tn − T ′
n.

We now define an involution of T ′
n. First note that if n is even, then members of T ′

n either
end in an even part or in a sequence of consecutive 1’s of even length. Then the mapping
λ 7→ λ̄ obtained by replacing one of these options with the other defines a sign-changing
involution of T ′

n. If n is odd, then all members of T ′
n have final part 1 and we apply the

mapping just described to the compositions of n − 1 obtained by ignoring this 1, which are
clearly synonymous with the members of T ′

n−1. Combining the two mappings yields the desired
involution of Tn. See Figure 1 below.

α = 1 1 5 4 1 3 1 3 → α̂ = 1 1 1 4 4 1 3 1 3

β = 4 2 6 2 1 1 1 1 1 → β̄ = 4 2 6 2 4 1

Figure 1. Examples of the mappings λ 7→ λ̂ and λ 7→ λ̄ when n = 19.
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We now extend this involution to Un − U∗
n. We first express λ ∈ Un − U∗

n as

λ = α11α21 · · ·αr1αr+1,

where marked 1’s are indicated by underscoring and each αi is a (possibly empty) composition
containing no marked 1’s. Let jo denote the smallest index j such that |αj | ≥ 2; note that jo
exists since λ ∈ Un −U∗

n. Let λ̃ be the composition obtained by replacing αjo with α′
jo
, where

the prime denotes the (composite) mapping defined above on Tn. Then the mapping λ 7→ λ̃ is

an involution of Un −U∗
n, with w(λ) = −w(λ̃), which completes the proof of (2.4). See Figure

2 below.
To evaluate |Bn|, we consider the same set of compositions Un, except that now an unmarked

1 starting a composition can come in one of two colors or be left uncolored (any unmarked
1 contributes b towards the weight of a tiling). If such a composition does not start with a
colored 1, then the prior proof shows that there are an−1Fn+2(a, b) possibilities in this case.
If it does start with a colored 1, then there are 2b · an−2Fn+1(a, b) possibilities, by the prior
proof applied to compositions of size n− 1 obtained by deleting the first part. Thus, we have

|Bn| = an−1Fn+2(a, b) + 2an−2bFn+1(a, b) = an−2(aFn+2(a, b) + 2bFn+1(a, b))

= an−2Ln+2(a, b),

by the well-known relation Lm(a, b) = aFm(a, b) + 2bFm−1(a, b), which is easily realized com-
binatorially. �

α = 1 1 1 1 1 1 3 2 1 1 2 4 → α̃ = 1 1 1 1 1 1 1 2 2 1 1 2 4

β = 1 1 1 4 2 1 4 1 2 1 1 → β̃ = 1 1 1 4 1 1 1 4 1 2 1 1

Figure 2. Examples of the mapping λ 7→ λ̃ when n = 19.

Example 2.4. Letting a = b = 1 in Proposition 2.3 implies |An(1, 1)| = Fn+2 and |Bn(1, 1)| =
Ln+2. Letting a = 2 and b = 1 shows that the n × n Hessenberg matrix with 1’s on the

superdiagonal and below the main diagonal and 5’s on the main diagonal has determinant

2n−1Pn+2, where Pn denotes the Pell number sequence (see [10, A000129]) given by the recur-

rence Pn = 2Pn−1 + Pn−2 if n ≥ 2, with P0 = 0 and P1 = 1.

Remark 2.1. Let A′
n be the matrix obtained by replacing a2+b with b in the last main diagonal

entry of An. Then reasoning as in the proof of Proposition 2.3 shows that |A′
n| gives the total

weight of all members of U∗
n which end in an unmarked 1. Since no two unmarked 1’s can

be adjacent, the second-to-last part must be a marked 1, which implies that the total weight is

a2b · an−3Fn(a, b) and thus |A′
n| = an−1bFn(a, b), as shown in [8] in the case b = 1.

Let us now consider the n×n Hessenberg matrix Cn = Cn(a, b) having −b on the superdiag-
onal, a2+b on the main diagonal, and a2 for all entries below the main diagonal. Let Dn denote
the matrix whose entries are all the same as those of Cn except that (a2+3b, a2+2b, . . . , a2+2b)
replaces (a2 + b, a2, . . . , a2) for the entries of the first column. See [8] and [9], where algebraic
proofs were given for the determinants of Cn and Dn in the case when b = 1. The matrices
C4 and D4 are shown below.
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C4 =




a2 + b −b 0 0
a2 a2 + b −b 0
a2 a2 a2 + b −b

a2 a2 a2 a2 + b


 ,

D4 =




a2 + 3b −b 0 0
a2 + 2b a2 + b −b 0
a2 + 2b a2 a2 + b −b

a2 + 2b a2 a2 a2 + b


 .

Proposition 2.5. If n ≥ 1, then

|Cn| = F2n+1(a, b) and |Dn| =
1

a
L2n+1(a, b).

Proof. To show the first statement, note that a cycle of length m ≥ 2 within a member π

of Tn contributes a2bm−1 towards the product in (1.1), with the sign always positive. A 1-
cycle clearly contributes a2 or b towards this product; we subsequently mark the 1-cycles that
contribute b so as to differentiate them from the others.

By a “marked” composition of n, we will mean one in which some of the 1’s may be marked,
the set of which we denote by Un. Then |Cn| gives the sum of the weights of all the members of
Un, where unmarked parts of any size m ≥ 1 have weight a2bm−1 and marked 1’s have weight
b. We convert such compositions of n into members of F2n by replacing each unmarked part
m ≥ 1 with the sequence of parts 12m−11 and replacing each marked 1 with a 2. See Figure
3. This yields all members of F2n, weighted as in (1.3). Since this mapping between Un and
F2n is seen to be a weight-preserving bijection, we have |Cn| = F2n+1(a, b).

1 2 1 1 1 4 → 2 1 2 1 1 1 2 2 1 2 2 2 1 ∈ F20

Figure 3. Example of the mapping on Un when n = 10.

To show the second statement, first let Dn denote the set of “marked colored” compositions
of size n in which some of the 1’s may be marked and an unmarked initial part of any size
m ≥ 1 may be colored in one of two ways (or be left uncolored). An initial colored part of
size m receives weight bm, with all other weights assigned as in the previous paragraph. Then
|Dn| gives the total weight of all the members of Dn. We now convert the members of Dn into
compositions with parts in {1, 2} as before, with the following additional rules: (i) An initial
colored part m ≥ 1 becomes the sequence of parts 2m1, where the first 2 is unmarked if the
initial part is of the first color and is marked if it is of the second; (ii) If the member of Dn

does not start with a colored part, then write a 1 and proceed as before. This operation on Dn

then defines a near weight-preserving bijection with the set L2n+1 having the usual weighting,
see (1.3). Only a factor of a corresponding to the left-most part of size 1 is missing, which
implies the second statement. See Figure 4, where the subscript denotes the choice of color
for an initial colored part within a member of Dn. �

3 1 2 1 1 2 → 1 1 2 2 1 2 1 2 1 1 1 2 1 2 1 ∈ L21

32 1 2 1 1 2 → 2 2 2 1 2 1 2 1 1 1 2 1 2 1 ∈ L21

Figure 4. Example of the mapping on Dn when n = 10.
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Example 2.6. Letting a = b = 1 in Proposition 2.5 implies |Cn(1, 1)| = F2n+1 and |Dn(1, 1)| =
L2n+1. Letting a = 2 and b = 1 shows that the n × n Hessenberg matrix with −1’s on the

superdiagonal, 4’s below the main diagonal, and 5’s on the main diagonal has determinant

P2n+1.

Next, we consider the n× n Hessenberg matrix En having −b on the superdiagonal, a2 for
all entries below the main diagonal, and a2 + b for all entries on the main diagonal, except
the first, which is a2 (we take E1 = [a2]). Let Hn be the matrix with the same entries as En

except that the first row, first column entry is a2 + 2b instead of a2 (we take H1 = [a2 + 2b]).
The matrices En and Hn and their determinants were considered in [8] and [9], respectively,
in the case b = 1. Below are the matrices E4 and H4.

E4 =




a2 −b 0 0
a2 a2 + b −b 0
a2 a2 a2 + b −b

a2 a2 a2 a2 + b


 ,

H4 =




a2 + 2b −b 0 0
a2 a2 + b −b 0
a2 a2 a2 + b −b

a2 a2 a2 a2 + b


 .

Proposition 2.7. If n ≥ 1, then

|En| = aF2n(a, b) and |Hn| = L2n(a, b).

Proof. Reasoning as in the proof above for |Cn|, we see that |En| gives the total weight of
all “marked” compositions of n in which some of the 1’s may be marked, but not an initial
1. These may then be converted as described above to members of F2n which start with a 1,
whose total weight is aF2n(a, b), which gives the first statement.

For the second statement, we again reason as in the proof above for |Cn|, but allow, addi-
tionally, for an initial 1 to be marked in a second way. Then |Hn| gives the total weight of all
such compositions of size n. We convert these compositions into compositions of size 2n with
parts in {1, 2} as before, with the addition that an initial 1 marked in the second way becomes
a marked 2. This yields a bijection now with the set L2n and implies |Hn| = L2n(a, b). �

Finally, let Gn = Gn(a, b, c, d) denote the generalized Fibonacci sequence defined by Gn =
aGn−1+bGn−2 if n ≥ 2, with G0 = c and G1 = d. Let Jn = Jn(a, b, c, d) be the n×nHessenberg
matrix, see [9], whose superdiagonal is d, b, b, . . . and whose main diagonal is c, 0, a, a, . . ., with
all subdiagonal entries −1 and all other entries below the main diagonal zero. The matrix J4
is illustrated below.

J4 =




c d 0 0
−1 0 b 0
0 −1 a b

0 0 −1 a


 .

The following result, see [9], expresses the general sequence Gn as a determinant.

Proposition 2.8. If n ≥ 1, then |Jn| = Gn−1.
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Proof. If n = 1, 2, then the result is clear, so assume n ≥ 3. Let F∗
n ⊆ Fn consist of those

compositions which do not start with two or more 1’s. By (1.1), we see that |Jn| gives the total
weight of all members of F∗

n where individual parts are assigned weights as follows: (i) initial
1’s and 2’s have weights of c and d, respectively, and (ii) all other 1’s and 2’s have weights of
a and b, respectively. Furthermore, note that, from the definition, it is seen that Gn−1 gives
the total weight of all members of Fn−1 where individual parts are assigned weights as follows:
(i) initial 1’s and 2’s have weights of d and bc, respectively, and (ii) all other 1’s and 2’s have
weights of a and b, respectively.

To show |Jn| = Gn−1, it is enough to identify a bijection from F∗
n to Fn−1 which respects

the assigned weights above. To do so, either remove an initial 1 from λ ∈ F∗
n or change an

initial 2 to a 1. The former yields all the members of Fn−1 starting with a 2, while the latter
gives all of those starting with a 1. It is seen that this mapping is a bijection from F∗

n to Fn−1

with the weights as defined. �

3. Conclusion

Here, we have provided combinatorial proofs of two sets of determinant expressions involv-
ing Hessenberg matrices for the Fibonacci and Lucas polynomials. In one case, we made use of
a sign-changing involution when the related determinant sum in (1.1) contained both positive
and negative terms, while in the other where the sum contained only positive terms, it was
a direct enumeration. Comparable formulas involving permanents may also be given, upon
modifying the matrices slightly, as was done in [8] and [9] when b = 1. Similar arguments can
perhaps be given for other combinatorial determinant expressions appearing in the literature.
For example, the formulas appearing in [7] express sequences satisfying general second order
recurrences as determinants of tridiagonal matrices whose entries are simple functions of the
golden ratio α. Perhaps these determinants too may be afforded combinatorial explanations
using a suitable probabilistic interpretation for α, such as the one described in [4, Section 9.3].
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