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Abstract. In this paper we pose and answer a variety of combinatorial questions concerning
cycle covers and matchings on graph structures. Particularly, we study wheel graphs and
their natural extensions. These problems are motivated by a generalization of a seating
rearrangement model explored by Kennedy and Cooper in the 1990’s. We provide answers
in terms of closed form expressions and demonstrate some interesting relationships between
these counting problems and the Fibonacci numbers.

1. Introduction

1.1. Background. Wheel graphs are a simple and familiar combinatoric structure that give
rise to numerous counting problems. The wheel graph of order n, denoted Wn, is defined as an
n–cycle with one additional vertex that is adjacent to each of the vertices in the cycle. Thus,
Wn has n + 1 vertices and 2n edges (Figure 1). Many counting problems on wheel graphs
have already been considered and can be found in the literature. These problems include
enumerating the number of cycles on a wheel graph, counting the number of matchings on
a wheel graph, and computing the number of spanning trees on a wheel graph. Indeed, the
OEIS has over 20 different entries related to counting problems defined on wheel graphs and
the sequences that these problems generate [10].

In this paper we describe some natural variations of the basic wheel graph and consider a
variety of traditional counting problems applied to these structures. The solutions to these
problems are given as closed form representations that can also be expressed as recurrence
relations. Most of our solutions also include Fibonacci numbers and other well-known com-
binatorial entities. We begin by defining the new structures that we are considering, and by
providing a combinatorial interpretation of the perfect matchings and cycle covers that we are
counting.

Figure 1. W12, with 13 vertices and 24 edges.
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1.2. Motivation. In the 1990’s, Kennedy and Cooper proposed a set of counting problems
based on seating rearrangements [6], motivated by a problem presented by Honsberger [5].
They considered a classroom with desks arranged in an m × n rectangle, and counted the
number of seating rearrangements that could be performed assuming that there was originally
a student in each desk. To construct a permissible rearrangement, the students are each
required to move to an adjacent desk, while remaining in either their original column or row.
In addition, a legitimate rearrangement required that every desk be filled by exactly one
student. In their second paper, Otake, Kennedy, and Cooper provide a closed form solution
to this problem for the general m× n case [11].

This set of problems can be easily restated in graph–theoretic terminology. A seating
rearrangement of an m×n classroom can be described as a cycle cover on a m×n grid graph,
where the graph has been modified by replacing each of its edges with two directed edges, one
in each orientation. This generalization makes it natural to consider rearrangement problems
on non–grid graphs using the following problem statement.

Problem. Given a graph, place a marker on each vertex. We want to count the number of

legitimate “rearrangements” of these markers subject to the following rules:

• Each marker must move to an adjacent vertex.

• After all of the markers have moved, each vertex must contain exactly one marker.

It is also natural to consider counting rearrangements where the markers are permitted to
either move to an adjacent vertex or remain in their original position. This modification can
be performed by adding a self-loop to each vertex in the graph, forming a pseudograph. Then,
the number of cycle covers on the pseudograph is equal to the number of rearrangements,
where each marker either moves to an adjacent vertex, or remains in place. Applying this
procedure to wheel graphs leads to the results contained in this paper.

Counting the number of cycle covers on a digraph is equivalent to computing the permanent
of the adjacency matrix of the digraph [4]. This permanent also counts the number of perfect
matchings in a bipartite graph [4]. However, computing the permanent of a general matrix
is #P–complete [12], although there do exist polynomial–time algorithms for the adjacency
matrices of planar graphs, by reduction to a pfaffian using Kasteleyn’s method [7]. Compu-
tations of perfect matchings on combinatorial objects with permanents and determinants, as
well as pfaffians, are discussed in [7, 8, 9].

1.3. Definitions. This section contains a description of the structures that we are counting
and the notation used to describe them. Throughout this paper, any reference to the Fibonacci
numbers fn will be understood to mean the combinatorial Fibonacci numbers. As was stated
above, Wn will represent the wheel graph of order n. In addition, Pn and Cn will respectively
represent the traditional path and cycle graphs on n vertices. In a wheel graph, the vertex
that is adjacent to each other vertex will be called the center of the graph, while the edges
incident to this vertex will be called the spokes of the graph. The non–center vertices that lie
along the original cycle comprise the rim of the graph.

Motivated by the seating rearrangement problem, in this paper we pose counting problems
not only for traditional, simple graphs, but also on variations of these graphs called pseudo-
graphs. To form a pseudo-graph from a given graph, we will simply add a self-loop to each
vertex. These graphs will be denoted with a superscript p. In addition, we will form directed
graphs from ordinary graphs by replacing each undirected edge between two separate vertices
with two directed edges, one with each orientation. These directed graphs will be denoted
by placing a double-sided arrow, ↔, over the symbol for the respective original graph or
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pseudograph. Thus,
←→
W

p
8 is the directed pseudo-wheel with 9 vertices, while

←→
C8 is the directed

8–cycle (Figure 2).
We will be interested in counting the number of perfect matchings and cycle covers for

each of the graph structures that we have defined. A perfect matching on a given graph,
G = (V,E), is a subset of the edges, M ⊆ E, such that the induced subgraph on M contains
each vertex in V , and each vertex in the induced subgraph has degree 1 [3]. A cycle cover, or
linear subgraph, on a graph is a subset of the edges, C ⊆ E, such that the induced subgraph
of C contains each vertex in V , and each vertex in the induced subgraph lies on exactly one
cycle [4]. Thus, in a cycle cover on an undirected graph each vertex has degree 2, while in a
directed graph each vertex has in–degree 1 and out–degree 1.

(a)
←−→

W10 (b)
←→

C8

Figure 2. Directed Graphs.

2. Counting Problems

2.1. Simple Graphs. In this section we pose and answer a variety of counting problems con-
cerning the structures defined previously. For the sake of completeness, we begin by presenting
some basic results on the number of matchings and cycle covers of the simple wheel graph of
order n.

Proposition 2.1. The number of perfect matchings of Wn is equal to 0 if n is even or n if n

is odd.

Proof. When n is even there are an odd number of vertices in Wn and hence there can be no
perfect matchings in Wn. When n is odd, there are exactly n vertices on the cycle to pair
with the center. This choice uniquely defines the matching and thus there are n total perfect
matchings. �

Proposition 2.2. The number of cycle covers of Wn is equal to n.

Proof. It is easy to see that any cycle cover of Wn must consist of a single cycle that contains
each vertex of Wn. This implies that in a cycle cover, the center vertex must be adjacent to
two consecutive vertices along the original n–cycle. Since there are n such pairs of vertices,
there are exactly n cycle covers on Wn. �

We next consider the number of cycle covers that occur on
←→
Wn. The following proof is

interesting because a separate argument is needed for each parity, but the same expression
counts both cases.
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Theorem 2.3. The number of cycle covers of
←→
Wn is equal to n2.

Proof. Any cycle cover of
←→
Wn must consist of a cycle containing the center and at least one

other vertex. The remaining vertices (if any) must pair up in a series of 2–cycles. Thus, the
number of vertices that do not lie on a cycle with the center vertex must be even. This suggests
we divide our proof into two cases based on the parity of n. Regardless of parity, there are n

ways to choose a vertex, call it v, such that there is an edge oriented from the center to v in
the cycle cover.

Now, assume that n is odd. We must select another vertex, u, not necessarily distinct
from v, along the rim, to have an edge in the cycle cover oriented towards the center, and an
orientation from v to u. Since n is odd, any choice of v and u partitions the rim into two
subsets, one with even parity and one with odd parity. Since there must be an even number
of vertices that do not lie on the cycle that contains the center vertex, and thus on the path
from u to v, there is only one choice of orientation of the (u, v) path. Thus, each choice of v
and u defines a unique cycle cover and there are n · n = n2 cycle covers if n is odd.

Finally, assume that n is even. We must again select a vertex u on the rim that allows us to
create a legitimate cycle cover. Selecting any vertex u along the rim we see that if the distance
from v to u is odd then the rim vertices are partitioned into two sets of odd cardinality while
if the distance between v and u is even the rim vertices are partitioned into two sets with even
cardinality. Thus, in order to construct a legitimate cycle cover, there must be an even number
of vertices that separate vertex u from vertex v along the rim. There are exactly n

2 vertices
that satisfy this condition for any of the n choices for v. However, since v and u partition the
cycle into two even subsets, there are two possible orientations for every permissible choice of v
and u. Thus, there are n

(

n
2 · 2

)

= n2 cycle covers if n is even, which completes the proof. �

Before stating and proving the remaining propositions we need some preliminary results that
define the number of perfect matchings and cycle covers on some simpler graph structures.
Then we can use these components to count our final problems more easily.

Lemma 2.4. The number of cycle covers of
←→
P

p
n is equal to the number of perfect matchings

of P
p
n , and both of these values are equal to fn.

Proof. This follows directly from the interpretation of the combinatorial Fibonacci numbers
as the number of ways to tile a 1× n rectangle with squares and dominoes. We can provide a
bijection between these problems by associating a vertex whose self-edge occurs in the matching
or cycle cover with a square in the tiling and associating each pair of vertices connected by an
edge in the matching or a 2–cycle in the cycle cover to a domino in the tiling. �

Lemma 2.5. The number of perfect matchings of C
p
n is equal to fn + fn−2.

Proof. Using the bijection that was presented in the previous lemma, we see that this problem
is equivalent to “tiling” the graph with “squares” and “dominoes”. Labeling the vertices from
1 to n we can condition on whether or not the edge (1, n) is in the matching. If that edge
is not in the matching then we are left with counting the number of perfect matchings in P

p
n

which we showed in the previous lemma to be fn. If that edge is included in the matching
then we are counting the number of perfect matchings in P

p
n−2 of which there are fn−2. Since

these cases span all possibilities, the number of perfect matchings is their sum fn + fn−2 and
this proof is complete. �

A result equivalent to Lemma 2.5 is presented by Benjamin and Quinn in their book [2].
They present this result as a combinatorial interpretation of the Lucas numbers, ln with
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l0 = 2, l1 = 1 and ln = ln−1 + ln−2 for n ≥ 2. Using the well–known Fibonacci–Lucas identity
ln = fn + fn−2 it is easy to see the relationship between the two motivations [1].

Lemma 2.6. The number of cycle covers of
←→
C

p
n is equal to fn + fn−2 + 2.

Proof. All of the perfect matchings counted in the previous lemma directly correspond to cycle

covers in
←→
C

p
n by simply replacing any edge in a matching between two different vertices by a

2–cycle. However, in
←→
C

p
n there are also the two additional directed cycles that contain each

vertex in the graph. This gives the plus 2 term in the total and this proof is complete. �

2.2. Wheel Graphs.

Theorem 2.7. The number of perfect matchings of W
p
n is equal to fn + nfn−1 + fn−2.

Proof. We can condition on the behavior of the center vertex. If the center vertex is matched
to itself, then we are left counting the number of perfect matchings in C

p
n which we showed

in Lemma 2.5 to be equal to fn + fn−2. If the center is matched to a vertex on the cycle
the remaining vertices from P

p
n−1 and we showed in Lemma 2.4 that there are fn−1 perfect

matchings on this structure. Since we can match the center vertex to any one of the n other
vertices, summing over these cases gives fn + nfn−1 + fn−2 perfect matchings. �

Theorem 2.8. The number of cycle covers of W
p
n is equal to n(n− 1) + 2.

Proof. We can again condition on the behavior of the center vertex. If the center vertex lies
on a 1–cycle then we are counting the number of cycle covers in C

p
n of which there are two:

one where each vertex on the rim is connected, and one where each vertex on the rim lies on
a 1–cycle. If the center vertex lies on a cycle with k ≥ 2 other vertices, then the cycle cover
will consist of that cycle and n − k additional 1–cycles. Thus, each choice of two vertices
to be adjacent to the center, in the cycle cover, determines two unique cycle covers because
there are two available paths along the rim for any choice of two such vertices. Since there are
(

n
2

)

=
n(n− 1)

2
ways to choose the two vertices, there are 2

(

n
2

)

= n(n− 1) cycle covers where

the center vertex is adjacent to at least two other vertices. Summing these two cases gives the
desired result. �

We conclude this section with a most interesting result, uncovering another relationship to
the Fibonacci numbers, by counting the number of rearrangements on a wheel graph when the
markers are permitted either to move to an adjacent vertex or remain in place.

Theorem 2.9. The number of cycle covers of
←→
W

p
n is equal to nfn+2 + fn + fn−2 − 2n+ 2.

Proof. We again condition on the behavior of the center vertex. If the center vertex lies on a

1–cycle then we are counting the number of cycle covers on
←→
C

p
n of which there are fn+fn−2+2

as was shown in Lemma 2.6.
There are n ways the center vertex can lie on a 2–cycle. For each of these the remaining

vertices form
←−→
P

p
n−1 on which there are fn−1 cycle covers.

If the center vertex lies on a cycle that contains k ≥ 2 other vertices, the vertices not on

the cycle form
←−→
P

p
n−k, on which there are fn−k cycle covers by Lemma 2.4. To form a k + 1

cycle containing the center vertex, we select in n ways the vertex adjacent to the center and
either a clockwise or counterclockwise orientation. Thus for each value of 2 ≤ k ≤ n there are
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2n distinct (k+1)–cycles that contain the center, each of which determines fn−k unique cycle
covers.

Thus, there are 2n
∑n

k=2 fn−k cycle covers where the center lies on a cycle of length 3 or
greater. It is a well-known Fibonacci identity that

∑n
i=0 fi = fn+2 − 1 [1]. Applying this

identity to our sum gives the following

2n

n
∑

k=2

fn−k = 2n (fn − 1) = 2nfn − 2n.

We can now combine our three cases to obtain fn + fn−2 + 2 + nfn−1 + 2nfn − 2n. Using
the definition of the Fibonacci numbers, we can simplify our expression as follows:

fn + fn−2 + 2 + nfn−1 + 2nfn − 2n = n((fn−1 + fn) + fn) + fn + fn−2 − 2n+ 2

= n(fn+1 + fn) + fn + fn−2 − 2n+ 2

= nfn+2 + fn + fn−2 − 2n + 2.

Thus, there are nfn+2+fn+fn−2−2n+2 cycle covers on
←→
W

p
n and this proof is complete. �

3. Modified Wheel Graphs

In this section we define two modified types of wheel graphs, flat–wheel graphs and k−wheel
graphs and consider counting problems, similar to those posed above, on these new structures.

As defined previously, the wheel graph of order n can be thought of as an n−cycle with an
additional vertex adjacent to each of the vertices in the cycle. We will define the flat–wheel
graph of order n, denoted FWn, as a similar structure, where the cycle of order n is replaced
with a path on n vertices. Figure 3 displays a flat–wheel graph. We will adopt the convention
that the vertices in the path are labeled from left to right, with the integers 1, 2, . . . , n. Also,
we will refer to the vertex that dominates each of the path vertices as the center to maintain
consistency.

Figure 3. The Flat–Wheel of Order 9.

Additionally, we define the k−wheel graph of order n, denoted kWn, as a different gen-
eralization of the traditional wheel graph. A standard wheel graph can be considered as a
collection of n triangles, each of which share a common vertex, where each triangle further
shares an edge with each of its neighbors. We wish to extend this notion to larger cycles. Thus,

kWn represents n copies of a k−cycle that share a common vertex, and where each k−cycle
shares an edge with its neighboring cycles. Under this definition then, 3Wn is the standard
wheel graph of order n, while 5Wn represents a collection of 5−cycles joined at a vertex and
sharing a single edge between each pair of neighboring cycles (Figure 4).

264 VOLUME 51, NUMBER 3



COUNTING REARRANGEMENTS ON GENERALIZED WHEEL GRAPHS

(a) 5W4 (b) 5W5 (c) 4W5

Figure 4. k−Wheel Graph Examples.

The next two counting problems employ arguments very similar to the one introduced in
Theorem 2.3.

Theorem 3.1. The number of cycle covers on
←−→
FWn is equal to

n2 + 2n+ 1

4
when n is odd

and
n2 + 2n

4
when n is even.

Proof. Any cycle cover on
←−→
FWn must consist of a single cycle of length k ≥ 2 that contains the

center vertex and a pairing of the remaining n+1− k vertices into 2−cycles. Thus, n+1− k

must be even, and the vertices not lying on a cycle with the center vertex must be adjacent
in pairs.

First, assume that n is odd. Then, as noted above the center vertex must lie on a cycle of
even length. In order to construct a cycle of even length that contains the center vertex and
allows the vertices not on the cycle to form adjacent pairs, the vertices adjacent to the center
in the cycle cover must have odd labels. Since n is odd, there are n+1

2 odd labeled vertices. We
can independently select two of these vertices to be adjacent to the center in the cycle cover,

which uniquely defines the cycle cover. Hence, there are n+1
2

n+1
2 = n2+2n+1

4 cycle covers when
n is odd and this case is complete.

Now assume that n is even. Then, the cycle that contains the center vertex must be of odd
length. Note that there are two possible n + 1−cycles that contain every vertex. Similarly,
there are four legitimate n− 1−cycles and more generally, n−m+3 cycles of length m where
m is an odd integer, 3 ≤ m ≤ n+ 1. Thus, the number of cycle covers is equal to

n

2
∑

i=1

2i =
n2 + 2n

4
.

�

Theorem 3.2. The number of cycle covers on
←−→
kWn is equal to 0 when both k and n are even

and n2, otherwise.

Proof. First note that when n and k are both even, the graph is bipartite and has an odd
number of vertices, thus by the pigeonhole principle no cycle covers can exist. In the case
when at least one of k or n is odd we may follow the proof of Theorem 2.3 directly. Note that
Theorem 2.3 is a special case of this Theorem, with k = 3.

AUGUST 2013 265



THE FIBONACCI QUARTERLY

When n is odd, any selection of the vertices to be adjacent to the center determines a unique
cycle cover since this choice again partitions the rim vertices into two sets of opposite parity.
When n is even, any choice of vertex to receive a directed edge from the center in the cycle
cover leaves a choice of n

2 vertices to have an edge oriented towards the center in the cycle
cover. There are two legitimate paths between any two vertices adjacent to the center in a
cycle cover, and hence this proof is complete. �

Theorem 3.3. The number of cycle covers on
←−→
FW

p
n is equal to

fn +
n
∑

`=1

[fn−`(f`+1 − 1) + f`−1(fn−`+1 − 1)].

Proof. We will construct our argument based on the behavior of the center vertex. In the

simplest case, the center vertex lies on a 1−cycle. Then, the remaining vertices form
←→
P p, on

which there are fn cycle covers. Recalling that the path vertices are labeled from 1, . . . , n from
left to right, when the center vertex does not lie on a 1−cycle, it must have a directed edge
towards one of the n path vertices with label `.

The cycle that contains the center vertex and ` must fall into one of three types:

(1) A 2−cycle containing only the center and `.
(2) A cycle of length k > 2 that contains vertex `− 1.
(3) A cycle of length k > 2 that contains vertex `+ 1.

Note that vertex 1 cannot have any rearrangements of type 2, while vertex n cannot have
any rearrangements of type 3.

In case 1 the remaining vertices are partitioned into at most two sets, Pn−l and P`−1. Thus,
there are fn−`f`−1 rearrangements of this form for each 1 ≤ ` ≤ n.

In case 2 there are `−1 cycles of lengths 3 ≤ m ≤ `+1, each of which divides the remaining
vertices into Pn−l and P`−m+1. Thus there are

fn−`

`−2
∑

j=0

fj = fn−`(f` − 1)

cycle covers for each choice of ` of type 2.
Finally, in case 3 there are n− ` cycles of lengths 3 ≤ m ≤ n− `+ 2, each of which divides

the remaining vertices into P`−1 and Pn−`−m+2. Thus, there are

f`−1

n−`−1
∑

k=0

fk = f`−1(fn−`+1 − 1)

cycle covers for each choice of ` of type 3.
Summing over all possible values of ` gives the following:

fn +

n
∑

`=1

[(fn−`(f` − 1)) + (f`−1fn−`) + (f`−1(fn−`+1 − 1))],

which can be simplified by factoring and the Fibonacci recurrence to give the result. �

We conclude with a theorem that generalizes the result of Theorem 2.9 to k−wheel graphs.
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Theorem 3.4. The number of cycle covers on
←−→
kWn

p is equal to

l(k−2)n + 2 + nf(k−2)n−1 + 2nf(n−2)k−(n−1) + 2n

k−2
∑

i=1

f(k−2)(n−i−1)−1.

Proof. We may again condition on the behavior of the center vertex. When the center lies on a

1−cycle, there remaining vertices form
←−−−→
C

p

(k−2)n which we showed in Lemma 2.6 has l(k−2)n+2

cycle covers. Furthermore, there are n ways in which the center vertex lies on a 2−cycle. In
each of these cases the remaining vertices form P(k−2)n−1 which has f(k−2)n−1 cycle covers by
Lemma 2.4.

The center may lie on one of 2n legitimate n−cycles each of which leaves a P(n−2)k−(n−1)

with f(n−2)k−(n−1) cycle covers. When the center vertex lies on a longer cycle, that cycle must
have length l = k+(k−2)i, where i is a positive integer less than k−1. Selecting one of the n
vertices adjacent to the center, and an orientation for the cycle, gives 2n(k−2) legitimate cycles.
Each of these cycles leaves a path of length (k−2)n− (k−2)(i+1)−1 = (k−2)(n− i−1)−1.
Applying Lemma 2.4 a final time and summing over all possible values of i gives the final
result. �

Acknowledgments

I would like to thank Dr. William Webb for his insight and contributions to this paper. In
addition, I sincerely appreciate the efforts and comments of the anonymous referee. This work
was supported by the Washington State University Department of Mathematics and College
of Arts and Sciences.

References

[1] G. Andrews, Number Theory, Dover Publications, New York, 1994.
[2] A. Benjamin and J. Quinn, Proofs That Really Count, MAA, Washington D.C., 2003.
[3] G. Chartrand, L. Lesniak, and P. Zhang, Graphs & Digraphs, Fifth Edition, CRC Press, Boca Raton, 2011.
[4] F. Harary, Determinants, permanents and bipartite graphs, Mathematics Magazine, 42.3 (1969), 146–148.
[5] R. Honsberger, In Pólya’s Footsteps, MAA, New York, 1997.
[6] R. Kennedy and C. Cooper, Variations on a 5×5 seating rearrangement problem, Mathematics in College,

Fall-Winter (1993), 59–67.
[7] G. Kuperberg, An exploration of the permanents–determinant method, Electronic Journal of Combinatorics,

5 (1998), R46: 1–34.
[8] J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press, Cambridge,

2001.
[9] P. Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research

Reports Ume̊a, 12, (1996).
[10] OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
[11] T. Otake, R. Kennedy, and C. Cooper, On a seating rearrangement problem, Mathematics and Informatics

Quarterly, 52 (1996), 63–71.
[12] L. Valiant, The complexity of computing the permanent, Theoretical Computer Science, 8.2 (1979), 189–

201.

MSC2010: 11B39, 05C30, 05A19

Department of Mathematics, Washington State University, Pullman, WA 99164
E-mail address: daryl.deford@email.wsu.edu

AUGUST 2013 267


