A NAIVE PROOF THAT $F_{5 n} \equiv 0(\bmod 5)$

MICHAEL D. HIRSCHHORN

Abstract. We give a new and simple proof of the fact that

$$
F_{5 n} \equiv 0 \quad(\bmod 5)
$$

and more.

1. Introduction

We give a new and simple proof of the fact that, modulo 5

$$
F_{5 n} \equiv 0
$$

as well as the facts that

$$
\begin{aligned}
F_{5 n+1} & \equiv F_{5 n+2} \equiv F_{n+1}+2 F_{n}=F_{n+2}+F_{n} \\
F_{5 n+3} & \equiv-F_{5 n+4} \equiv 2 F_{n+1}-F_{n}=F_{n+1}+F_{n-1}
\end{aligned}
$$

2. Proofs

We have

$$
\begin{aligned}
\sum_{n \geq 0} F_{n} x^{n} & =\frac{x}{1-x-x^{2}} \\
& =\frac{x\left(1-x-x^{2}\right)^{4}}{\left(1-x-x^{2}\right)^{5}} \\
& =\frac{x\left(1-4 x+2 x^{2}+8 x^{3}-5 x^{4}-8 x^{5}+2 x^{6}+4 x^{7}+x^{8}\right)}{\left.1-5 x+5 x^{2}+10 x^{3}-15 x^{4}-11 x^{5}+15 x^{6}+10 x^{7}-5 x^{8}-5 x^{9}-x^{10}\right)} \\
& \equiv \frac{x+x^{2}+2 x^{3}-2 x^{4}+2 x^{6}+2 x^{7}-x^{8}+x^{9}}{1-x^{5}-x^{10}} \quad(\bmod 5)
\end{aligned}
$$

It follows that, modulo 5,

$$
\begin{aligned}
& \sum_{n \geq 0} F_{5 n+1} x^{n} \equiv \frac{1+2 x}{1-x-x^{2}} \\
& \sum_{n \geq 0} F_{5 n+2} x^{n} \equiv \frac{1+2 x}{1-x-x^{2}} \\
& \sum_{n \geq 0} F_{5 n+3} x^{n} \equiv \frac{2-x}{1-x-x^{2}} \\
& \sum_{n \geq 0} F_{5 n+4} x^{n} \equiv \frac{-2+x}{1-x-x^{2}}
\end{aligned}
$$

A NAIVE PROOF THAT $F_{5 n} \equiv 0(\bmod 5)$

$$
\text { and } \sum_{n \geq 0} F_{5 n} x^{n} \equiv 0
$$

It follows that, modulo 5,

$$
\begin{equation*}
F_{5 n} \equiv 0 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{align*}
& F_{5 n+1} \equiv F_{5 n+2} \equiv F_{n+1}+2 F_{n}=F_{n+2}+F_{n}, \tag{2.2}\\
& F_{5 n+3} \equiv-F_{5 n+4} \equiv 2 F_{n+1}-F_{n}=F_{n+1}+F_{n-1} . \tag{2.3}
\end{align*}
$$

3. Comments

In the past, I have proved that $F_{5 n} \equiv 0(\bmod 5)$ by finding the generating function. The method involves a fifth root of unity, η.

Thus, we start by writing

$$
\begin{aligned}
& \frac{x}{1-x-x^{2}} \\
& =\frac{x\left(1-\eta x-\eta^{2} x^{2}\right)\left(1-\eta^{2} x-\eta^{4} x^{2}\right)\left(1-\eta^{3} x-\eta^{6} x^{2}\right)\left(1-\eta^{4} x-\eta^{8} x^{2}\right)}{\left(1-x-x^{2}\right)\left(1-\eta x-\eta^{2} x^{2}\right)\left(1-\eta^{2} x-\eta^{4} x^{2}\right)\left(1-\eta^{3} x-\eta^{6} x^{2}\right)\left(1-\eta^{4} x-\eta^{8} x^{2}\right)} .
\end{aligned}
$$

The idea is that the denominator is now a function of x^{5}. For if we write $D(x)$ for the denominator, then

$$
D(\eta x)=D(x)
$$

If we write

$$
D(x)=\sum_{n \geq 0} d_{n} x^{n}
$$

it follows that

$$
\eta^{n} d_{n}=d_{n},
$$

so

$$
d_{n}=0
$$

whenever $5 \nmid n$.
Indeed, using the facts that

$$
\eta^{5}=1 \text { and } 1+\eta+\eta^{2}+\eta^{3}+\eta^{4}=0,
$$

it is not too hard to show that the above equation becomes

$$
\frac{x}{1-x-x^{2}}=\frac{x\left(1+x+2 x^{2}+3 x^{3}+5 x^{4}-3 x^{5}+2 x^{6}-x^{7}+x^{8}\right)}{1-11 x^{5}-x^{10}} .
$$

Of course, this can be checked by cross-multiplication. Indeed, it can be stated without derivation, and then verified. In any case, we obtain

$$
\begin{aligned}
& \sum_{n \geq 0} F_{5 n+1} x^{n}=\frac{1-3 x}{1-11 x-x^{2}}, \\
& \sum_{n \geq 0} F_{5 n+2} x^{n}=\frac{1+2 x}{1-11 x-x^{2}}, \\
& \sum_{n \geq 0} F_{5 n+3} x^{n}=\frac{2-x}{1-11 x-x^{2}},
\end{aligned}
$$

THE FIBONACCI QUARTERLY

$$
\begin{aligned}
& \quad \sum_{n \geq 0} F_{5 n+4} x^{n}=\frac{3+x}{1-11 x-x^{2}} \\
& \text { and } \quad \sum_{n \geq 0} F_{5 n} x^{n}=\frac{5 x}{1-11 x-x^{2}} .
\end{aligned}
$$

In particular, it follows that

$$
F_{5 n} \equiv 0 \quad(\bmod 5)
$$

The new proof presented in this paper is more naive, in that it does not require reference to roots of unity.

MSC2010: 11B39
School of Mathematics and Statistics, UNSW, Sydney, Australia 2052
E-mail address: m.hirschhorn@unsw.edu.au

