ON THE COUNTING FUNCTION OF TRIPLES WHOSE PAIRWISE PRODUCTS ARE CLOSE TO FIBONACCI NUMBERS

FLORIAN LUCA AND LASZLO SZALAY

Abstract. For a positive real number x let the Fibonacci distance $\|x\|_{F}$ be the distance from x to the closest Fibonacci number. We let

$$
f(x)=\#\left\{(a, b, c) \in \mathbb{Z}^{3}: a>b>c \geq 1, \max \left\{\|a b\|_{F},\|a c\|_{F},\|b c\|_{F}\right\} \leq x\right\}
$$

and study the function $f(x)$.

1. Introduction

Let $\left(F_{n}\right)_{n \geq 0}$ be the Fibonacci sequence given by $F_{0}=0, F_{1}=1$ and $F_{n+2}=F_{n+1}+F_{n}$ for all $n \geq 0$. For a positive real number x we let

$$
\begin{equation*}
\|x\|_{F}=\min \left\{\left|x-F_{n}\right|: n \geq 0\right\} \tag{1.1}
\end{equation*}
$$

In [1], it was shown that if $a>b>c \geq 1$ are integers then

$$
\begin{equation*}
\max \left\{\|a b\|_{F},\|a c\|_{F},\|b c\|_{F}\right\}>\exp (0.034 \sqrt{\log a}) . \tag{1.2}
\end{equation*}
$$

Here, we revisit the Fibonacci distances of $a b, a c$, and $b c$ for positive integers a, b, and c. We define the function

$$
\begin{equation*}
f(x)=\#\left\{(a, b, c) \in \mathbb{Z}^{3}: a>b>c \geq 1, \max \left\{\|a b\|_{F},\|a c\|_{F},\|b c\|_{F}\right\} \leq x\right\} \tag{1.3}
\end{equation*}
$$

We study the behavior of $f(x)$ as $x \rightarrow \infty$. We have the following result.
Theorem 1.1. The estimates

$$
x^{3 / 2} \ll f(x) \leq x^{2+o(1)}
$$

hold as $x \rightarrow \infty$.
For the non-negative integers $x \leq 2$ we obtain the following theorem.

Theorem 1.2.

$$
f(0)=0, \quad f(1)=16, \quad f(2)=49 .
$$

Throughout the paper, we use the Landau symbols O and o as well as the Vinogradov symbols \ll, \gg, and \asymp with their regular meanings. Recall that $F=O(G), F \ll G$ and $G \gg F$ are all equivalent and mean that the inequality $|F| \leq c G$ holds with some constant c, whereas $F \asymp G$ means that both inequalities $F \ll G$ and $G \ll F$ hold. The constants implied by these symbols are absolute. Further, $F=o(G)$ means that $F / G \rightarrow 0$.

[^0]
COUNTING FUNCTION OF TRIPLES WITH PRODUCTS NEAR FIBONACCI NOS

2. The Proof of Theorem 1.1

Let $x \geq 9$ be any real number. Let $\mathcal{S}=\{1,2, \ldots,\lfloor\sqrt{x}\rfloor\}$. Let \mathcal{T} be the set of triples (a, b, c) with $a>b>c$ all in \mathcal{S}. If (a, b, c) is such a triple, then

$$
\max \{a b, a c, b c\}=a b<x
$$

Since the interval $[1, x]$ contains a Fibonacci number, it follows that if we write

$$
a b+u=F_{n}, \quad a c+v=F_{m}, \quad b c+w=F_{\ell}
$$

for positive integers (ℓ, m, n) such that $|u|,|v|$ and $|w|$ are minimal, then $\max \{|u|,|v|,|w|\} \leq x$. In particular, triples (a, b, c) in \mathcal{T} are counted by $f(x)$. It follows that

$$
f(x) \geq\binom{ \# \mathcal{T}}{3} \gg x^{3 / 2}
$$

which takes care of the lower bound.
For the upper bound, assume that $x \geq 2$ and that (a, b, c) is a triple of integers $a>b>c \geq 1$ such that

$$
\max \left\{\|a b\|_{F},\|a c\|_{F},\|b c\|_{F}\right\} \leq x .
$$

Using (1.2), we get that

$$
\exp (0.034 \sqrt{\log a})<x \quad \text { therefore }, \quad \log a<900(\log x)^{2} .
$$

It thus follows that if we write $a b+u=F_{n}$, where $|u|=\|a b\|_{F}$, then

$$
\begin{equation*}
F_{n}<a^{2}+x<\exp \left(1800(\log x)^{2}\right)+x<\exp \left(2000(\log x)^{2}\right) . \tag{2.1}
\end{equation*}
$$

We now use the Binet formula

$$
\begin{equation*}
F_{s}=\frac{\alpha^{s}-\beta^{s}}{\alpha-\beta} \quad \text { valid for all integers } \quad s \geq 0 \tag{2.2}
\end{equation*}
$$

where $(\alpha, \beta)=((1+\sqrt{5}) / 2,(1-\sqrt{5}) / 2)$. In particular, the inequality

$$
F_{s} \geq \alpha^{s-2} \quad \text { holds for all } \quad s \geq 1
$$

From inequality (2.1), we get

$$
\left.\alpha^{n-2}<\exp \left(2000(\log x)^{2}\right)\right),
$$

which implies that $n<5000(\log x)^{2}$. The same conclusions apply to the positive indices ℓ, m such that $a c+v=F_{m}, b c+w=F_{\ell}$, where $|v|=\|a c\|_{F}$ and $|w|=\|b c\|_{F}$. Thus,

$$
\begin{equation*}
\max \{\ell, m, n\}=O\left((\log x)^{2}\right) \tag{2.3}
\end{equation*}
$$

Since $u, v, w \in[-x, x]$, it follows that (u, v, w) can be chosen in $O\left(x^{3}\right)$ ways, and by inequality (2.3), the triple (ℓ, m, n) can be chosen in $O\left((\log x)^{6}\right)$ ways. Hence, the sextuple (ℓ, m, n, u, v, w) can be chosen in $O\left(x^{3}(\log x)^{6}\right)$ ways and once these data are chosen then

$$
a b=F_{n}-u, \quad a c=F_{m}-v \quad \text { and } \quad b c=F_{\ell-w}
$$

therefore a, b, and c are uniquely determined. This argument shows that $f(x) \ll x^{3}(\log x)^{6}$. We shall now improve this to $f(x) \leq x^{2+o(1)}$ as $x \rightarrow \infty$.

We distinguish two cases.
Case 1. $a<x^{10}$.
In this case, we fix (u, v, n, m). This can be done in $O\left(x^{2}(\log x)^{4}\right)$ ways. Once these are fixed, then

$$
a b=F_{n}-u, \quad \text { and } \quad a c=F_{m}-v
$$

THE FIBONACCI QUARTERLY

are fixed. Clearly, $a b<a^{2}+x<2 x^{20}$. Thus, a is a divisor of the number $a b=F_{n}-u$ which is of size $O\left(x^{20}\right)$, so the number of choices for a is at most $\tau\left(F_{n}-u\right)=x^{o(1)}$ as $x \rightarrow \infty$. Here, $\tau(m)$ is the number of divisors of the positive integer m. Once a is determined, also b and c are determined out of knowledge of $a b$ and $a c$. Hence, the number of triples $a>b>c \geq 1$ in this case is at most $x^{2+o(1)}$ as $x \rightarrow \infty$, which is what we wanted.

Case 2. $a \geq x^{10}$.
Fix (u, v, ℓ, m, n). This can be done in $O\left(x^{2}(\log x)^{6}\right)$ ways. Let $D=\operatorname{gcd}(a b, a c)$ and let $a b=D b_{0}, a c=D c_{0}$. Then $a \mid D$, so we let $D=a d$. Thus, $b=b_{0} d c=c_{0} d$. Clearly, b_{0} and c_{0} are uniquely determined in terms of $a b$ and $a c$, so it remains to account for the number of choices for d. Observe that

$$
\frac{b_{0}}{c_{0}}=\frac{a b}{a c}=\frac{F_{n}-u}{F_{m}-v}, \quad \text { so } \quad b_{0} F_{m}-c_{0} F_{n}=b_{0} v-c_{0} u .
$$

Writing F_{m} and F_{n} according to the Binet formula (2.2), we have

$$
\begin{equation*}
\alpha^{m}\left(b_{0}-c_{0} \alpha^{n-m}\right)=\sqrt{5}\left(b_{0} v-c_{0} u\right)+\beta^{m} b_{0}-\beta^{n} c_{0} . \tag{2.4}
\end{equation*}
$$

Observe that

$$
F_{m}=a b-u \geq a b-x>a c+x \geq F_{n},
$$

where the middle inequality follows because $a b-a c=a(b-c) \geq a>x^{10}>2 x$. Thus, $m<n$. The number $b_{0}-c_{0} \alpha^{n-m}$ is a quadratic integer in $\mathbb{Q}[\sqrt{5}]$ which is not zero because if it were, then $\alpha^{n-m}=b_{0} / c_{0} \in \mathbb{Q}$, which is impossible for $n>m$. The conjugate of $b_{0}-c_{0} \alpha^{n-m}$ is $b_{0}-c_{0} \beta^{n-m}$ and so

$$
\left|b_{0}-c_{0} \alpha^{n-m}\right|\left|b_{0}-c_{0} \beta^{n-m}\right| \geq 1 .
$$

Inserting the above inequality into (2.4) leads to

$$
\alpha^{m}<\left|\sqrt{5}\left(b_{0} v-c_{0} u\right)+\beta^{m} b_{0}-\beta^{n} c_{0}\right|\left|b_{0}-c_{0} \beta^{n-m}\right| \ll b_{0}^{2} x .
$$

Since

$$
\alpha^{m}>F_{m}=a c+v \geq a c-x \geq a / 2
$$

we get that $a \ll b_{0}^{2} x$. Thus, $x^{10} \leq a \ll b_{0}^{2} x$, therefore $b_{0} \gg x^{4.5}$. We now look at the condition

$$
b c+w=F_{\ell},
$$

which we write under the form

$$
w=F_{\ell}-b c=F_{\ell}-b_{0} c_{0} d^{2} .
$$

We show that there is at most one d such that $F_{\ell}-b_{0} c_{0} d^{2}=w \in[-x, x]$ for large x. Assume that there were two such d, let us call them $d_{1}<d_{2}$. Then

$$
F_{\ell}-b_{0} c_{0} d_{1}^{2}=w_{1}, \quad F_{\ell}-b_{0} c_{0} d_{2}^{2}=w_{2}
$$

and both $w_{1}, w_{2} \in[-x, x]$. Taking the difference of the above relations, we get

$$
b_{0} c_{0}\left(d_{2}-d_{1}\right)\left(d_{2}+d_{1}\right)=\left(F_{\ell}-b_{0} c_{0} d_{1}^{2}\right)-\left(F_{\ell}-b_{0} c_{0} d_{2}^{2}\right)=w_{1}-w_{2} \in[-2 x, 2 x],
$$

which is impossible for $x>x_{0}$ because the integer on the left above is nonzero and divisible by $b_{0} c_{0} \geq b_{0} \gg x^{4.5}$, while the integer on the right is of absolute value at most $4 x$. This shows that for large x, the quintuple (u, v, ℓ, m, n) determines d (hence, w) uniquely (at most), so the number of possible triples $a>b>c \geq 1$ in this case is $O\left(x^{2}(\log x)^{6}\right)=O\left(x^{2+o(1)}\right)$ as $x \rightarrow \infty$.

The upper bound from the theorem now follows.

COUNTING FUNCTION OF TRIPLES WITH PRODUCTS NEAR FIBONACCI NOS

3. The Proof of Theorem 1.2

Consider the function (1.3) if $x=2$. A computer search provides the results of the theorem. To turn to the details, first let

$$
\begin{equation*}
a b+u=F_{n}, \quad a c+v=F_{m}, \quad b c+w=F_{\ell} . \tag{3.1}
\end{equation*}
$$

The condition $a<\exp (415.62)$ comes from Theorem 1 of [1]. Consequently, $n \leq 1730$ since the inequalities $\alpha^{n-2}<F_{n}<a^{2}$ hold. Then, we apply a computer search for checking all the candidates (n, m, ℓ).

We found 222 solutions ($a, b, c, u, v, w, n, m, \ell$) to the system (3.1) with $|u|,|v|,|w| \leq 2$ belonging to 49 triples (a, b, c). Therefore $f(2)=49$. Among the aforementioned 222 solutions, there are 43 for which $|u|,|v|,|w| \leq 1$ (see Table 1). The rows signed by * mean two solutions since $F_{1}=F_{2}=1$. Concentrating only on the triples (a, b, c) again, we get $f(1)=16$. Finally, we note that $f(0)=0$.

4. Comments and an Open Problem

As the referee noted, the upper bound in Theorem 1.1 on $f(x)$ remains valid if we replace the Fibonacci sequence $\left\{F_{n}\right\}_{n \geq 0}$ with any sequence $\mathbf{u}=\left\{u_{n}\right\}_{n \geq 0}$ and then define $\|x\|_{\mathbf{u}}$ and $f(x)$ in ways analogously to (1.1) and (1.2), respectively. We thank the referee for this observation. Theorem 1.1 shows that

$$
\frac{3}{2} \leq \liminf _{x \rightarrow \infty} \frac{\log f(x)}{\log x} \leq \limsup _{x \rightarrow \infty} \frac{\log f(x)}{\log x} \leq 2
$$

We conjecture that $\log f(x) / \log x$ tends to $3 / 2$ as $x \rightarrow \infty$, and we leave this as an open question for the reader.

References

[1] F. Luca and L. Szalay, On the Fibonacci distances of $a b, a c$ and $b c$, Annales Mathematicae et Informaticae, 41 (2013), 137-163.

THE FIBONACCI QUARTERLY

	a	b	c	u	v	w	F_{n}	F_{m}	F_{ℓ}
1	3	2	1	-1	-1	-1	5	2	1^{\star}
2	3	2	1	-1	-1	0	5	2	2
3	3	2	1	-1	-1	1	5	2	3
4	3	2	1	-1	0	-1	5	3	1^{\star}
5	3	2	1	-1	0	0	5	3	2
6	3	2	1	-1	0	1	5	3	3
7	4	2	1	0	-1	-1	8	3	1^{\star}
8	4	2	1	0	-1	0	8	3	2
9	4	2	1	0	-1	1	8	3	3
10	4	2	1	0	1	-1	8	5	1^{\star}
11	4	2	1	0	1	0	8	5	2
12	4	2	1	0	1	1	8	5	3
13	4	3	1	1	-1	-1	13	3	2
14	4	3	1	1	-1	0	13	3	3
15	4	3	1	1	1	-1	13	5	2
16	4	3	1	1	1	0	13	5	3
17	4	3	2	1	0	-1	13	8	5
18	5	4	1	1	0	-1	21	5	3
19	5	4	1	1	0	1	21	5	5
20	6	2	1	1	-1	-1	13	5	1^{\star}
21	6	2	1	1	-1	0	13	5	2
22	6	2	1	1	-1	1	13	5	3
23	7	2	1	-1	1	-1	13	8	1^{\star}
24	7	2	1	-1	1	0	13	8	2
25	7	2	1	-1	1	1	13	8	3
26	7	3	1	0	1	-1	21	8	2
27	7	3	1	0	1	0	21	8	3
28	7	3	2	0	-1	-1	21	13	5
29	7	5	1	-1	1	0	34	8	5
30	8	7	1	-1	0	1	55	8	8
31	9	6	1	1	-1	-1	55	8	5
32	11	3	2	1	-1	-1	34	21	5
33	14	4	1	-1	-1	-1	55	13	3
34	14	4	1	-1	-1	1	55	13	5
35	22	4	1	1	-1	-1	89	21	3
36	22	4	1	1	-1	1	89	21	5
37	54	7	1	-1	1	1	377	55	8

Table 1
MSC2010: 11B39
Fundación Marcos Moshinsky, Instituto de Ciencias Nucleares unAM, Circuito Exterior, C.U., Apdo. Postal 70-543, Mexico D.F. 04510, Mexico

E-mail address: fluca@matmor.unam.mx
Institute of Mathematics, University of West Hungary, 9400, Sopron, Ady út 5, Hungary
E-mail address: laszalay@emk.nyme.hu

[^0]: Research supported in part by a Balassi Fellowship, a Marcos Moshinsky Fellowship and Projects PAPIIT IN104512, CONACyT 163787 and CONACyT 193539.

