ON THE COUNTING FUNCTION OF TRIPLES WHOSE PAIRWISE PRODUCTS ARE CLOSE TO FIBONACCI NUMBERS

FLORIAN LUCA AND LASZLO SZALAY

ABSTRACT. For a positive real number x let the Fibonacci distance $||x||_F$ be the distance from x to the closest Fibonacci number. We let

 $f(x) = \#\{(a, b, c) \in \mathbb{Z}^3 : a > b > c \ge 1, \max\{\|ab\|_F, \|ac\|_F, \|bc\|_F\} \le x\}$ and study the function f(x).

1. INTRODUCTION

Let $(F_n)_{n\geq 0}$ be the Fibonacci sequence given by $F_0 = 0$, $F_1 = 1$ and $F_{n+2} = F_{n+1} + F_n$ for all $n \geq 0$. For a positive real number x we let

$$||x||_F = \min\{|x - F_n| : n \ge 0\}.$$
(1.1)

In [1], it was shown that if $a > b > c \ge 1$ are integers then

$$\max\{\|ab\|_F, \|ac\|_F, \|bc\|_F\} > \exp(0.034\sqrt{\log a}).$$
(1.2)

Here, we revisit the Fibonacci distances of ab, ac, and bc for positive integers a, b, and c. We define the function

$$f(x) = \#\{(a, b, c) \in \mathbb{Z}^3 : a > b > c \ge 1, \max\{\|ab\|_F, \|ac\|_F, \|bc\|_F\} \le x\}.$$
 (1.3)

We study the behavior of f(x) as $x \to \infty$. We have the following result.

Theorem 1.1. The estimates

$$x^{3/2} \ll f(x) \le x^{2+o(1)}$$

hold as $x \to \infty$.

For the non-negative integers $x \leq 2$ we obtain the following theorem.

Theorem 1.2.

$$f(0) = 0,$$
 $f(1) = 16,$ $f(2) = 49.$

Throughout the paper, we use the Landau symbols O and o as well as the Vinogradov symbols \ll , \gg , and \asymp with their regular meanings. Recall that F = O(G), $F \ll G$ and $G \gg F$ are all equivalent and mean that the inequality $|F| \leq cG$ holds with some constant c, whereas $F \asymp G$ means that both inequalities $F \ll G$ and $G \ll F$ hold. The constants implied by these symbols are absolute. Further, F = o(G) means that $F/G \to 0$.

Research supported in part by a Balassi Fellowship, a Marcos Moshinsky Fellowship and Projects PAPIIT IN104512, CONACyT 163787 and CONACyT 193539.

COUNTING FUNCTION OF TRIPLES WITH PRODUCTS NEAR FIBONACCI NOS

2. The Proof of Theorem 1.1

Let $x \ge 9$ be any real number. Let $S = \{1, 2, \dots, \lfloor \sqrt{x} \rfloor\}$. Let \mathcal{T} be the set of triples (a, b, c) with a > b > c all in S. If (a, b, c) is such a triple, then

$$\max\{ab, ac, bc\} = ab < x.$$

Since the interval [1, x] contains a Fibonacci number, it follows that if we write

$$ab + u = F_n$$
, $ac + v = F_m$, $bc + w = F_\ell$

for positive integers (ℓ, m, n) such that |u|, |v| and |w| are minimal, then $\max\{|u|, |v|, |w|\} \le x$. In particular, triples (a, b, c) in \mathcal{T} are counted by f(x). It follows that

$$f(x) \ge \binom{\#\mathcal{T}}{3} \gg x^{3/2},$$

which takes care of the lower bound.

For the upper bound, assume that $x \ge 2$ and that (a, b, c) is a triple of integers $a > b > c \ge 1$ such that

$$\max\{\|ab\|_F, \|ac\|_F, \|bc\|_F\} \le x.$$

Using (1.2), we get that

$$\exp(0.034\sqrt{\log a}) < x$$
 therefore, $\log a < 900(\log x)^2$.

It thus follows that if we write $ab + u = F_n$, where $|u| = ||ab||_F$, then

$$F_n < a^2 + x < \exp(1800(\log x)^2) + x < \exp(2000(\log x)^2).$$
 (2.1)

We now use the Binet formula

$$F_s = \frac{\alpha^s - \beta^s}{\alpha - \beta}$$
 valid for all integers $s \ge 0$, (2.2)

where $(\alpha, \beta) = ((1 + \sqrt{5})/2, (1 - \sqrt{5})/2)$. In particular, the inequality

 $F_s \ge \alpha^{s-2}$ holds for all $s \ge 1$.

From inequality (2.1), we get

$$\alpha^{n-2} < \exp(2000(\log x)^2)),$$

which implies that $n < 5000(\log x)^2$. The same conclusions apply to the positive indices ℓ , m such that $ac + v = F_m$, $bc + w = F_\ell$, where $|v| = ||ac||_F$ and $|w| = ||bc||_F$. Thus,

$$\max\{\ell, m, n\} = O((\log x)^2).$$
(2.3)

Since $u, v, w \in [-x, x]$, it follows that (u, v, w) can be chosen in $O(x^3)$ ways, and by inequality (2.3), the triple (ℓ, m, n) can be chosen in $O((\log x)^6)$ ways. Hence, the sextuple (ℓ, m, n, u, v, w) can be chosen in $O(x^3(\log x)^6)$ ways and once these data are chosen then

$$ab = F_n - u, \qquad ac = F_m - v \qquad \text{and} \qquad bc = F_{\ell - w},$$

therefore a, b, and c are uniquely determined. This argument shows that $f(x) \ll x^3 (\log x)^6$. We shall now improve this to $f(x) \leq x^{2+o(1)}$ as $x \to \infty$.

We distinguish two cases.

Case 1. $a < x^{10}$.

In this case, we fix (u, v, n, m). This can be done in $O(x^2(\log x)^4)$ ways. Once these are fixed, then

$$ab = F_n - u$$
, and $ac = F_m - v$

AUGUST 2013

THE FIBONACCI QUARTERLY

are fixed. Clearly, $ab < a^2 + x < 2x^{20}$. Thus, a is a divisor of the number $ab = F_n - u$ which is of size $O(x^{20})$, so the number of choices for a is at most $\tau(F_n - u) = x^{o(1)}$ as $x \to \infty$. Here, $\tau(m)$ is the number of divisors of the positive integer m. Once a is determined, also b and care determined out of knowledge of ab and ac. Hence, the number of triples $a > b > c \ge 1$ in this case is at most $x^{2+o(1)}$ as $x \to \infty$, which is what we wanted.

Case 2. $a \ge x^{10}$.

Fix (u, v, ℓ, m, n) . This can be done in $O(x^2(\log x)^6)$ ways. Let $D = \gcd(ab, ac)$ and let $ab = Db_0$, $ac = Dc_0$. Then $a \mid D$, so we let D = ad. Thus, $b = b_0d \ c = c_0d$. Clearly, b_0 and c_0 are uniquely determined in terms of ab and ac, so it remains to account for the number of choices for d. Observe that

$$\frac{b_0}{c_0} = \frac{ab}{ac} = \frac{F_n - u}{F_m - v},$$
 so $b_0 F_m - c_0 F_n = b_0 v - c_0 u$

Writing F_m and F_n according to the Binet formula (2.2), we have

$$\alpha^{m}(b_{0} - c_{0}\alpha^{n-m}) = \sqrt{5}(b_{0}v - c_{0}u) + \beta^{m}b_{0} - \beta^{n}c_{0}.$$
(2.4)

Observe that

$$F_m = ab - u \ge ab - x > ac + x \ge F_n,$$

where the middle inequality follows because $ab - ac = a(b - c) \ge a > x^{10} > 2x$. Thus, m < n. The number $b_0 - c_0 \alpha^{n-m}$ is a quadratic integer in $\mathbb{Q}[\sqrt{5}]$ which is not zero because if it were, then $\alpha^{n-m} = b_0/c_0 \in \mathbb{Q}$, which is impossible for n > m. The conjugate of $b_0 - c_0 \alpha^{n-m}$ is $b_0 - c_0 \beta^{n-m}$ and so

$$|b_0 - c_0 \alpha^{n-m}| |b_0 - c_0 \beta^{n-m}| \ge 1$$

Inserting the above inequality into (2.4) leads to

$$\alpha^m < |\sqrt{5}(b_0v - c_0u) + \beta^m b_0 - \beta^n c_0||b_0 - c_0\beta^{n-m}| \ll b_0^2x.$$

Since

$$\alpha^m > F_m = ac + v \ge ac - x \ge a/2,$$

we get that $a \ll b_0^2 x$. Thus, $x^{10} \leq a \ll b_0^2 x$, therefore $b_0 \gg x^{4.5}$. We now look at the condition

$$bc + w = F_\ell$$

which we write under the form

$$w = F_{\ell} - bc = F_{\ell} - b_0 c_0 d^2$$

We show that there is at most one d such that $F_{\ell} - b_0 c_0 d^2 = w \in [-x, x]$ for large x. Assume that there were two such d, let us call them $d_1 < d_2$. Then

$$F_{\ell} - b_0 c_0 d_1^2 = w_1, \qquad F_{\ell} - b_0 c_0 d_2^2 = w_2$$

and both $w_1, w_2 \in [-x, x]$. Taking the difference of the above relations, we get

$$b_0 c_0 (d_2 - d_1) (d_2 + d_1) = (F_\ell - b_0 c_0 d_1^2) - (F_\ell - b_0 c_0 d_2^2) = w_1 - w_2 \in [-2x, 2x],$$

which is impossible for $x > x_0$ because the integer on the left above is nonzero and divisible by $b_0c_0 \ge b_0 \gg x^{4.5}$, while the integer on the right is of absolute value at most 4x. This shows that for large x, the quintuple (u, v, ℓ, m, n) determines d (hence, w) uniquely (at most), so the number of possible triples $a > b > c \ge 1$ in this case is $O(x^2(\log x)^6) = O(x^{2+o(1)})$ as $x \to \infty$.

The upper bound from the theorem now follows.

COUNTING FUNCTION OF TRIPLES WITH PRODUCTS NEAR FIBONACCI NOS

3. The Proof of Theorem 1.2

Consider the function (1.3) if x = 2. A computer search provides the results of the theorem. To turn to the details, first let

$$ab + u = F_n, \qquad ac + v = F_m, \qquad bc + w = F_\ell.$$
 (3.1)

The condition $a < \exp(415.62)$ comes from Theorem 1 of [1]. Consequently, $n \le 1730$ since the inequalities $\alpha^{n-2} < F_n < a^2$ hold. Then, we apply a computer search for checking all the candidates (n, m, ℓ) .

We found 222 solutions $(a, b, c, u, v, w, n, m, \ell)$ to the system (3.1) with $|u|, |v|, |w| \leq 2$ belonging to 49 triples (a, b, c). Therefore f(2) = 49. Among the aforementioned 222 solutions, there are 43 for which $|u|, |v|, |w| \leq 1$ (see Table 1). The rows signed by * mean two solutions since $F_1 = F_2 = 1$. Concentrating only on the triples (a, b, c) again, we get f(1) = 16. Finally, we note that f(0) = 0.

4. Comments and an Open Problem

As the referee noted, the upper bound in Theorem 1.1 on f(x) remains valid if we replace the Fibonacci sequence $\{F_n\}_{n\geq 0}$ with any sequence $\mathbf{u} = \{u_n\}_{n\geq 0}$ and then define $||x||_{\mathbf{u}}$ and f(x) in ways analogously to (1.1) and (1.2), respectively. We thank the referee for this observation. Theorem 1.1 shows that

$$\frac{3}{2} \le \liminf_{x \to \infty} \frac{\log f(x)}{\log x} \le \limsup_{x \to \infty} \frac{\log f(x)}{\log x} \le 2$$

We conjecture that $\log f(x)/\log x$ tends to 3/2 as $x \to \infty$, and we leave this as an open question for the reader.

References

 F. Luca and L. Szalay, On the Fibonacci distances of ab, ac and bc, Annales Mathematicae et Informaticae, 41 (2013), 137–163.

THE FIBONACCI QUARTERLY

	a	b	С	u	v	w	F_n	F_m	F_{ℓ}
1	3	2	1	-1	-1	-1	5	2	1*
2	3	2	1	-1	-1	0	5	2	2
3	3	2	1	-1	-1	1	5	$2 \\ 2$	3
4	3	2	1	-1	0	-1	5	3	1*
5	3	2	1	-1	0	0	5	3	2
6	3	2	1	-1	0	1	5	3	3
7	4	2	1	0	-1	-1	8	3	1*
8	4	2	1	0	-1	0	8	3	$\frac{2}{3}$
9	4	2	1	0	-1	1	8	3	3
10	4	2	1	0	1	-1	8	5	1*
11	4	2	1	0	1	0	8	5	$\frac{2}{3}$
12	4	2	1	0	1	1	8	5	3
13	4	3	1	1	-1	-1	13	3	$\frac{2}{3}$
14	4	3	1	1	-1	0	13	3	3
15	4	3	1	1	1	-1	13	5	2
16	4	3	1	1	1	0	13	5	3
17	4	3	2	1	0	-1	13	8	5
18	5	4	1	1	0	-1	21	$\frac{8}{5}$	3
19	5	4	1	1	0	1	21	5	5
20	6	2	1	1	-1	-1	13	5	1^{\star}
21	6	2	1	1	-1	0	13	5	$\frac{2}{3}$
22	6	2	1	1	-1	1	13	5	3
23	7	2	1	-1	1	-1	13	8	1*
24	7	2	1	-1	1	0	13	8	2
25	7	2	1	-1	1	1	13	8	3
26	7	3	1	0	1	-1	21	8	$\frac{2}{3}$
27	7	3	1	0	1	0	21	8	3
28	7	3	2	0	-1	-1	21	13	5
29	7	5	1	-1 -1	1	0	34	8	5
30	8	7	1	-1	0	1	55	8	8
31	9	6	1	1	-1	-1	55	8	5
32	11	3	2	1	-1	-1	34	21	5
33	14	4	1	-1	-1	-1	55	13	3
34	14	4	1	-1	-1	1	55	13	5
35	22	4	1	1	-1	-1	89	21	3
36	22	4	1	1	-1	1	89	21	5
37	54	7	1	-1	1	1	377	55	8

Table 1 $\,$

MSC2010: 11B39

FUNDACIÓN MARCOS MOSHINSKY, INSTITUTO DE CIENCIAS NUCLEARES UNAM, CIRCUITO EXTERIOR, C.U., APDO. POSTAL 70-543, MEXICO D.F. 04510, MEXICO *E-mail address:* fluca@matmor.unam.mx

Institute of Mathematics, University of West Hungary, 9400, Sopron, Ady út 5, Hungary *E-mail address*: laszalay@emk.nyme.hu