ON THE NUMBER OF COMPLEX HORADAM SEQUENCES WITH A FIXED PERIOD

OVIDIU D. BAGDASAR AND PETER J. LARCOMBE

Abstract

The Horadam sequence is a direct generalization of the Fibonacci numbers in the complex plane, depending on a family of four complex parameters: two recurrence coefficients and two initial conditions. Here the Horadam sequences with a given period are enumerated. The result generates a new integer sequence whose representation involves some well-known functions such as Euler's totient function φ and the number of divisors function ω.

1. Introduction

A Horadam sequence $\left\{w_{n}\right\}_{n=0}^{\infty}=\left\{w_{n}(a, b ; p, q)\right\}_{n=0}^{\infty}$ is defined by the recurrence

$$
\begin{equation*}
w_{n+2}-p w_{n+1}+q w_{n}=0, \quad w_{0}=a, w_{1}=b, \tag{1.1}
\end{equation*}
$$

where the parameters a, b, p, q are complex numbers. It is well-known to deliver many longstanding and familiar sequences as particular instances, and has been the object of study in its general form since the 1960's (see the survey article [3]). Periodic orbits of complex Horadam sequences have been characterized in [1], and arise when zeros of the characteristic equation

$$
\begin{equation*}
x^{2}-p x+q=0 \tag{1.2}
\end{equation*}
$$

(called generators) are roots of unity; we denote the form of such roots for convenience as $z_{1}=z_{1}(p, q)=e^{2 \pi i p_{1} / k_{1}}$ and $z_{2}=z_{2}(p, q)=e^{2 \pi i p_{2} / k_{2}}$ where $p_{1}, p_{2}, k_{1}, k_{2}$ are positive integers.

For equal roots $z_{1}=z_{2}$ of (1.2), the general term of Horadam's sequence $\left\{w_{n}\right\}_{n=0}^{\infty}$ is

$$
\begin{equation*}
w_{n}=\left[a+\left(\frac{b}{z}-a\right) n\right] z^{n} . \tag{1.3}
\end{equation*}
$$

In this case the sequence can only be periodic when $b=a z$ and z is a root of unity.
For distinct roots $z_{1} \neq z_{2}$ of (1.2), the general term of Horadam's sequence $\left\{w_{n}\right\}_{n=0}^{\infty}$ is

$$
\begin{equation*}
w_{n}=A z_{1}^{n}+B z_{2}^{n}, \tag{1.4}
\end{equation*}
$$

where the constants A and B can be obtained from the initial condition, as

$$
\begin{equation*}
A=\frac{a z_{2}-b}{z_{2}-z_{1}}, \quad B=\frac{b-a z_{1}}{z_{2}-z_{1}} . \tag{1.5}
\end{equation*}
$$

When $A B=0$, at least one of the generators z_{1} and z_{2} does not appear explicitly in w_{n}, and the orbit of the sequence degenerates to either a regular polygon centered in 0 , or to a point. For $A B \neq 0$, the sequence is periodic when the distinct generators z_{1} and z_{2} are roots of unity.

Here we investigate the number of distinct Horadam sequences which (for arbitrary initial conditions) have a fixed period, giving enumeration formulas in both degenerate and nondegenerate cases. The question of precisely how many such sequences exist is interesting from a theoretical point of view, and is but one of a number of problems highlighted as worthy of study in the analysis of Horadam sequence cyclicity.

THE FIBONACCI QUARTERLY

2. Theory and Results

Let $k \geq 2$ be a positive integer. The enumerating function for the number of Horadam sequences $\left\{w_{n}\right\}_{n=0}^{\infty}$ having period k is denoted by $H_{P}(k)$. Clearly, this number depends on the generators z_{1}, z_{2} and the initial conditions a, b. Throughout this paper the notations (k_{1}, k_{2}) or $\operatorname{gcd}\left(k_{1}, k_{2}\right)$ are used for the greatest common divisor and $\left[k_{1}, k_{2}\right]$ or $\operatorname{lcm}\left(k_{1}, k_{2}\right)$ for the least common multiple of the positive integers k_{1} and k_{2}.

There are two types of (degenerate and non-degenerate) periodic orbits for which to account.
2.1. Degenerate orbits. This case covers periodic sequences producing a degenerated orbit (regular polygon centered in 0 or point). As detailed in [1], this happens when the Horadam sequences $\left\{w_{n}\right\}_{n=0}^{\infty}$ given by (1.3) or (1.4) depend on only one of the generators and this is a root of unity, say $z_{1}=e^{2 \pi i p_{1} / k_{1}}$. The number of distinct sequences having period k is given by

$$
\begin{equation*}
H_{P}(k)=\sharp\left\{\left(p_{1}, k_{1}\right):\left(p_{1}, k_{1}\right)=1, k_{1}=k\right\}=\varphi(k), \tag{2.1}
\end{equation*}
$$

where φ is Euler's well-known totient function [4].
If no generator appears explicitly in the formulas (1.3) or (1.4) (this is when $z_{1} \neq z_{2}, A=0$, $B=0$ or $\left.z_{1}=z_{2}=z, a=0, b=0\right)$, the periodic sequence is constant and the number of generator configurations leading to periodicity $k \geq 2$ is therefore zero.
2.2. Non-Degenerate orbits. Here we cover periodic sequences producing non-degenerated orbits. In this case the generators are distinct roots of unity $z_{1}=e^{2 \pi i p_{1} / k_{1}}$ and $z_{2}=e^{2 \pi i p_{2} / k_{2}}$, and the arbitrary initial conditions a, b are such that $A B \neq 0$ for A, B defined in (1.5).

As established in [1], the period of the Horadam sequence delivered by a generator pair z_{1}, z_{2} is $\left[\operatorname{ord}\left(z_{1}\right), \operatorname{ord}\left(z_{2}\right)\right]=\operatorname{lcm}\left(\operatorname{ord}\left(z_{1}\right), \operatorname{ord}\left(z_{2}\right)\right)(\operatorname{where} \operatorname{ord}(z)$ is the order of $z)$. Representing the pair $\left(z_{1}, z_{2}\right)$ by the quadruple $\left(p_{1}, k_{1}, p_{2}, k_{2}\right)$, we want to select those producing a sequence having period k. To ensure that the enumeration formula generates all the distinct periodic sequences, we shall assume w.l.o.g. that z_{1}, z_{2} are primitive roots of unity and $k_{1} \leq k_{2}$.

The number of distinct sequences having period k can be enumerated from the quadruples

$$
\begin{equation*}
H_{P}(k)=\sharp\left\{\left(p_{1}, k_{1}, p_{2}, k_{2}\right):\left(p_{1}, k_{1}\right)=\left(p_{2}, k_{2}\right)=1,\left[k_{1}, k_{2}\right]=k, k_{1} \leq k_{2}\right\} . \tag{2.2}
\end{equation*}
$$

Some formulas for this expression are identified, based on the properties of pairs (k_{1}, k_{2}) satisfying $\left[k_{1}, k_{2}\right]=k$, and their corresponding generators $z_{1}=e^{2 \pi i p_{1} / k_{1}}$ and $z_{2}=e^{2 \pi i p_{2} / k_{2}}$.
2.3. A first formula for $H_{P}(k)$. To derive this formula we first generate the pairs $\left(k_{1}, k_{2}\right)$ satisfying $\left[k_{1}, k_{2}\right]=k$ and then count the pairs $\left(p_{1}, p_{2}\right)$ such that ($p_{1}, k_{1}, p_{2}, k_{2}$) satisfies (2.2).

The first lemma counts the quadruples $\left(p_{1}, k_{1}, p_{2}, k_{2}\right)$ in (2.2) for which $k_{1}=k_{2}$.
Lemma 2.1. If $k_{1}=k_{2}$ and $\left[k_{1}, k_{2}\right]=k$ then $k_{1}=k_{2}=k$.
The result is not difficult to prove, and shows that the only pair $\left(k_{1}, k_{2}\right)$ s.t. $k_{1}=k_{2}$ is (k, k). The number of quadruples (p_{1}, k, p_{2}, k) fulfilling (2.2) produced in this case is

$$
\begin{equation*}
H_{P}^{\prime}(k)=\sharp\left\{\left(p_{1}, p_{2}\right):\left(p_{1}, k\right)=\left(p_{2}, k\right)=1, p_{1}<p_{2}\right\}=\frac{1}{2} \varphi(k)(\varphi(k)-1) \text {, } \tag{2.3}
\end{equation*}
$$

as the number of choices for each of p_{1} and p_{2} is $\varphi(k)$ and $p_{1}<p_{2}$.
The second lemma counts the quadruples ($p_{1}, k_{1}, p_{2}, k_{2}$) when $k_{1} \neq k_{2}$ and $\left[k_{1}, k_{2}\right]=k$.
Lemma 2.2. If $\left[k_{1}, k_{2}\right]=k$ and $k_{1} \neq k_{2}$, the number of quadruples $\left(p_{1}, k_{1}, p_{2}, k_{2}\right)$ produced is

$$
H_{P}^{\prime \prime}(k)=\sharp\left\{\left(p_{1}, k_{1}, p_{2}, k_{2}\right):\left(p_{1}, k_{1}\right)=\left(p_{2}, k_{2}\right)=1,\left[k_{1}, k_{2}\right]=k\right\}=\varphi\left(k_{1}\right) \varphi\left(k_{2}\right) .
$$

ON THE NUMBER OF COMPLEX HORADAM SEQUENCES WITH A FIXED PERIOD

Proof. As $k_{1} \neq k_{2}$ the primitive roots z_{1} and z_{2} are distinct for all combinations p_{1} and p_{2}. This means that any combination pairs $\left(p_{1}, k_{1}\right)=\left(p_{2}, k_{2}\right)=1$ may be considered. There are $\varphi\left(k_{1}\right)$ pairs $\left(p_{1}, k_{1}\right)$ and $\varphi\left(k_{2}\right)$ pairs (p_{2}, k_{2}), therefore the result.

Theorem 2.3. The number of distinct Horadam sequences of period $k \geq 2$ is equal to

$$
\begin{equation*}
H_{P}(k)=\sum_{\left[k_{1}, k_{2}\right]=k, k_{1}<k_{2}} \varphi\left(k_{1}\right) \varphi\left(k_{2}\right)+\frac{1}{2} \varphi(k)(\varphi(k)-1) . \tag{2.4}
\end{equation*}
$$

To evaluate this formula one needs to generate all ordered pairs $\left(k_{1}, k_{2}\right)$, whose l.c.m is k. Special versions of the formula are computed for periods with particular prime decompositions.

The first few terms of the number sequence $H_{P}(k)$

$$
1,1,3,5,10,11,21,22,33,34,55,46,78,69,92,92,136,105, \ldots
$$

are not currently indexed in the OEIS [5], suggesting that this is a new number sequence.
Example 1. Prime numbers. When k is a prime number we have $\varphi(k)=k-1$. For this number we just have two divisor pairs

$$
\left(k_{1}, k_{2}\right) \in\{(1, k),(k, k)\},
$$

with multiplicities $\varphi(1) \varphi(k)=k-1$ and $\varphi(k)(\varphi(k)-1) / 2=(k-1)(k-2) / 2$, giving the formula

$$
\begin{equation*}
H_{P}(k)=k(k-1) / 2 . \tag{2.5}
\end{equation*}
$$

For example, when $k=23$ there is a total of $23 \cdot 22 / 2=253$ distinct solutions, while for $k=11$ there is a total of $11 \cdot 10 / 2=55$ distinct solutions. Explicitly, for $k=5$ there are 10 solutions given by the fraction pairs

$$
\begin{array}{r}
\left(\frac{p_{1}}{k_{1}}, \frac{p_{2}}{k_{2}}\right) \in\left\{\left(\frac{1}{1}, \frac{1}{5}\right),\left(\frac{1}{1}, \frac{2}{5}\right),\left(\frac{1}{1}, \frac{3}{5}\right),\left(\frac{1}{1}, \frac{4}{5}\right),\left(\frac{1}{5}, \frac{2}{5}\right),\right. \\
\left.\left(\frac{1}{5}, \frac{3}{5}\right),\left(\frac{1}{5}, \frac{4}{5}\right),\left(\frac{2}{5}, \frac{3}{5}\right),\left(\frac{2}{5}, \frac{4}{5}\right),\left(\frac{3}{5}, \frac{4}{5}\right)\right\} .
\end{array}
$$

Example 2. Powers of a prime number. When $k=p^{m}$ with p a prime number and $m \geq 2$ we have $\varphi(k)=p^{m}(1-1 / p)=p^{m}-p^{m-1}$. For this number we have the divisor pairs $\left(k_{1}, k_{2}\right) \in\left\{(1, k),(p, k), \ldots,\left(p^{m-1}, k\right),(k, k)\right\}$, with multiplicities $\varphi\left(p^{j}\right) \varphi(k)$ for $j=0, \ldots, m-1$ and $\varphi(k)(\varphi(k)-1) / 2=(k-k / p)(k-k / p-1) / 2$. Summing we obtain a telescopic sum in which the consecutive terms (up to the last two) cancel out

$$
\begin{align*}
H_{P}(k) & =\left(1+(p-1)+\left(p^{2}-p\right)+\cdots+\left(p^{m-1}-p^{m-2}\right)+\left(p^{m}-p^{m-1}-1\right) / 2\right) \varphi(k) \\
& =\frac{k^{2}-k^{2} / p^{2}-k+k / p}{2}=\frac{\varphi(k)[2 k-\varphi(k)-1]}{2} . \tag{2.6}
\end{align*}
$$

For example, when $k=9=3^{2}$ one obtains $H_{P}(k)=\frac{6[18-6-1]}{2}=33$ while for $k=4$ one obtains $H_{P}(k)=\frac{2[8-2-1]}{2}=5$ and the distinct solutions are

$$
\left(\frac{p_{1}}{k_{1}}, \frac{p_{2}}{k_{2}}\right) \in\left\{\left(\frac{1}{1}, \frac{1}{4}\right),\left(\frac{1}{1}, \frac{3}{4}\right),\left(\frac{1}{2}, \frac{1}{4}\right),\left(\frac{1}{2}, \frac{3}{4}\right),\left(\frac{1}{4}, \frac{3}{4}\right)\right\} .
$$

THE FIBONACCI QUARTERLY

Example 3. Products of two prime numbers. When $k=p q(p<q)$ is the product of two prime numbers, $\varphi(k)=\varphi(p) \varphi(q)$. For this number we have five divisor pairs

$$
\left(k_{1}, k_{2}\right) \in\{(1, k),(p, q),(p, k),(q, k),(k, k)\},
$$

with multiplicities $\varphi(1) \varphi(k), \varphi(p) \varphi(q), \varphi(p) \varphi(k), \varphi(q) \varphi(k)$ and $\varphi(k)(\varphi(k)-1) / 2$, which gives

$$
H_{P}(k)=(p-1)(q-1)(p q+p+q) / 2 .
$$

For example, when $k=6=2 \cdot 3$ the solutions are

$$
\begin{align*}
\left(\frac{p_{1}}{k_{1}}, \frac{p_{2}}{k_{2}}\right) \in\{ & \left(\frac{1}{1}, \frac{1}{6}\right),\left(\frac{1}{1}, \frac{5}{6}\right),\left(\frac{1}{2}, \frac{1}{3}\right),\left(\frac{1}{2}, \frac{2}{3}\right),\left(\frac{1}{2}, \frac{1}{6}\right), \\
& \left.\left(\frac{1}{2}, \frac{5}{6}\right),\left(\frac{1}{3}, \frac{1}{6}\right),\left(\frac{1}{3}, \frac{5}{6}\right),\left(\frac{2}{3}, \frac{1}{6}\right),\left(\frac{2}{3}, \frac{5}{6}\right),\left(\frac{1}{6}, \frac{5}{6}\right)\right\}, \tag{2.7}
\end{align*}
$$

for a total of 11 distinct solutions. Some of the orbits realized for $k=6$ are plotted in Figure 1. One can notice the geometric variety of shapes produced even for small values of k, which range from regular polygons in Figure 1 (a) to more complex orbits in Figure 1 (b), (c), or (d).

Figure 1. The terms of sequence $\left\{w_{n}\right\}_{n=0}^{N}$ obtained from (1.4) for the pairs $\left(\frac{p_{1}}{k_{1}}, \frac{p_{2}}{k_{2}}\right)(a)\left(\frac{1}{1}, \frac{1}{6}\right) ;(b)\left(\frac{1}{2}, \frac{1}{3}\right) ;(c)\left(\frac{1}{3}, \frac{5}{6}\right) ;(d)\left(\frac{2}{3}, \frac{1}{6}\right)$ when $a=2$ and $b=3 i$ (stars). Arrows indicate the direction of the orbit $w_{0}, w_{1}, \ldots, w_{6}=w_{0}$ (circles). Also plotted are generators z_{1}, z_{2} (squares), unit circles (solid line) and boundaries of the annulus $U(0,||A|-|B||,|A|+|B|)$ (dotted line) with A, B from (1.5).

Example 4. More general numbers. The formula for $k=12$ involves the divisor pairs

$$
\left(k_{1}, k_{2}\right) \in\{(1,12),(2,12),(3,4),(3,12),(4,6),(4,12),(6,12),(12,12)\},
$$

with multiplicities $\varphi(p) \varphi(q)$ for each pair (p, q) in the list s.t. $p<q$, and $\varphi(12)(\varphi(12)-1) / 2$ for the pair $(12,12)$. This gives the formula

$$
H_{P}(12)=4+4+4+8+4+8+8+4 \cdot 3 / 2=46 .
$$

Even in this example, the number of divisor pairs for periods with more complicated prime decomposition was high. An equivalent (but more direct) formula for $H_{P}(k)$, which does not require the generation of all quadruples $\left(p_{1}, k_{2}, p_{2}, k_{2}\right)$ is proposed below.
2.4. A second formula for $H_{P}(k)$. One can prove that φ satisfies the formula

$$
\begin{equation*}
\varphi\left(\operatorname{gcd}\left(k_{1}, k_{2}\right)\right) \cdot \varphi\left(\operatorname{lcm}\left(k_{1}, k_{2}\right)\right)=\varphi\left(k_{1}\right) \cdot \varphi\left(k_{2}\right), \tag{2.8}
\end{equation*}
$$

which can be used to derive an algorithmic version of (2.4), in the following steps:

- Choose a divisor d of k, s.t. $1 \leq d<k$,
- Estimate how many pairs k_{1}, k_{2} satisfy $d=\left(k_{1}, k_{2}\right)$ and $k=\left[k_{1}, k_{2}\right]$,
- Sum all the terms $\varphi(d) \varphi(k)$ over d, with the corresponding multiplicity.

Formula (2.4) becomes

$$
\begin{equation*}
H_{P}(k)=\left[\sum_{d \mid k, d<k} \varphi(d) G L(d, k)\right] \varphi(k)+\frac{1}{2} \varphi(k)(\varphi(k)-1), \tag{2.9}
\end{equation*}
$$

where the arithmetic function $G L(d, k)$ is computed in the following lemma.
Lemma 2.4. Let $d<k$ be two natural numbers s.t. $d \mid k$, whose prime decomposition is

$$
d=p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{n}^{d_{n}}, \quad k=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{n}^{m_{n}}, \quad\left(1 \leq d_{i} \leq m_{i}\right) .
$$

The number of pairs of natural numbers k_{1}, k_{2} which satisfy $d=\left(k_{1}, k_{2}\right)$ and $k=\left[k_{1}, k_{2}\right]$ is

$$
\begin{equation*}
G L(d, k)=\sharp\left\{\left(k_{1}, k_{2}\right): d=\left(k_{1}, k_{2}\right) \text { and } k=\left[k_{1}, k_{2}\right]\right\}=2^{\omega(k / d)-1} \text {, } \tag{2.10}
\end{equation*}
$$

where $\omega(x)$ represents the number of distinct prime divisors for the integer x.
Proof. Let the numbers k_{1} and k_{2} be written as

$$
k_{1}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{n}^{\alpha_{n}}, \quad k_{2}=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{n}^{\beta_{n}} .
$$

When $d=\left(k_{1}, k_{2}\right)$ and $k=\left[k_{1}, k_{2}\right]$, for each index $i \in\{1, \ldots, n\}$, we have

$$
\min \left\{\alpha_{i}, \beta_{i}\right\}=d_{i}, \quad \max \left\{\alpha_{i}, \beta_{i}\right\}=m_{i} .
$$

First, numbers k_{1} and k_{2} are distinct or otherwise $d=k$. There are two possibilities.
When $d_{i}=m_{i}$, one has $\alpha_{i}=\beta_{i}=d_{i}=m_{i}$. Each choice of $i \in I=\left\{i \in\{1, \ldots, n\}: d_{i}<m_{i}\right\}$ generates two possible pairs $\left(\alpha_{i}, \beta_{i}\right) \in\left\{\left(d_{i}, m_{i}\right),\left(m_{i}, d_{i}\right)\right\}$, hence in total there are $2^{|I|}$ distinct pairs of powers. The number of pairs $\left(k_{1}, k_{2}\right)$ s.t. $k_{1}<k_{2}$ is therefore $2^{|I|-1}$.

As the prime decomposition of k / d is

$$
k / d=p_{1}^{m_{1}-d_{1}} p_{2}^{m_{2}-d_{2}} \cdots p_{n}^{m_{n}-d_{n}}=\prod_{i \in I} p_{i}^{m_{i}-d_{i}},
$$

one obtains that $|I|=\omega(k / d)$. This ends the proof.

THE FIBONACCI QUARTERLY

Theorem 2.5. Using formula (2.9), $H_{P}(k)$ can be written more compactly as

$$
\begin{equation*}
H_{P}(k)=\left[\sum_{d \mid k, d<k} \varphi(d) 2^{\omega(k / d)}+\varphi(k)-1\right] \frac{\varphi(k)}{2} . \tag{2.11}
\end{equation*}
$$

Example 4. revisited using (2.11). The divisors of $12=2^{2} \cdot 3$ smaller than 12 are

$$
1,2=2^{1}, 3=3^{1}, 4=2^{2}, 6=2 \cdot 3 .
$$

Writing the terms in formula (2.11) explicitly one obtains

$$
\begin{equation*}
\left[\varphi(1) 2^{1}+\varphi(2) 2^{1}+\varphi(3) 2^{0}+\varphi(4) 2^{0}+\varphi(6) 2^{0}\right] \varphi(12)+\frac{\varphi(12)(\varphi(12)-1)}{2}=46 . \tag{2.12}
\end{equation*}
$$

Example 5. Square-free numbers. When k is a square-free positive number $k=p_{1} p_{2} \ldots p_{m}$ for $m \geq 2$ and p_{1}, \ldots, p_{m} prime numbers, a compact formula for $H_{P}(k)$ can be obtained. Each divisor d of k is given by a product $p_{i_{1}} p_{i_{1}} \ldots p_{i_{j}}$, where $1 \leq i_{1} \leq i_{2} \leq \ldots \leq i_{j} \leq m$ for $j=0, \ldots, m$. The corresponding term in formula (2.11) can further be written as

$$
\varphi(d) 2^{\omega(k / d)}=\varphi\left(p_{i_{1}}\right) \varphi\left(p_{i_{2}}\right) \cdots \varphi\left(p_{i_{j}}\right) 2^{m-j} .
$$

Summing over all possible divisors d of k one obtains the formula

$$
\begin{align*}
H_{P}(k) & =\left[\sum_{j=0}^{m-1}\left(\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{j} \leq m} \varphi\left(p_{i_{1}}\right) \varphi\left(p_{i_{2}}\right) \cdots \varphi\left(p_{i_{j}}\right)\right) 2^{m-j}+\varphi\left(p_{1}\right) \cdots \varphi\left(p_{m}\right)-1\right] \frac{\varphi(k)}{2} \\
& =\left[\left(\varphi\left(p_{1}\right)+2\right) \cdots\left(\varphi\left(p_{m}\right)+2\right)-1\right] \frac{\varphi(k)}{2} \\
& =\left[\left(p_{1}+1\right) \cdots\left(p_{m}+1\right)-1\right] \frac{\left(p_{1}-1\right) \cdots\left(p_{m}-1\right)}{2}, \tag{2.13}
\end{align*}
$$

where we have used that $\varphi(k)=\varphi\left(p_{1}\right) \cdots \varphi\left(p_{m}\right)$ and $\varphi(p)=p-1$ for any prime number p.
For example, when $k=30=2 \cdot 3 \cdot 5$ the number of periodic orbits is

$$
H_{P}(k)=[3 \cdot 4 \cdot 6-1] \frac{1 \cdot 2 \cdot 4}{2}=284 .
$$

Remark 2.6. An alternative result for $H_{P}(k)$ can be obtained using the generator pairs $z_{1}=e^{2 \pi i p_{1} / k}$ and $z_{2}=e^{2 \pi i p_{2} / k}$ with $1 \leq p_{1}<p_{2} \leq k$, when these are not necessarily primitive roots of unity. Clearly, $\operatorname{ord}\left(z_{1}\right)=k /\left(p_{1}, k\right)$ and $\operatorname{ord}\left(z_{2}\right)=k /\left(p_{2}, k\right)$. The sequence generated by z_{1} and z_{2} has period k if $\left[\operatorname{ord}\left(z_{1}\right), \operatorname{ord}\left(z_{2}\right)\right]=k$. Using the well-known property $x, y=x y$ (for $x, y \in \mathbb{N}$) for the positive integers $\operatorname{ord}\left(z_{1}\right)$ and $\operatorname{ord}\left(z_{2}\right)$, one obtains the condition

$$
\begin{equation*}
k\left(\frac{k}{\left(p_{1}, k\right)}, \frac{k}{\left(p_{2}, k\right)}\right)=\frac{k}{\left(p_{1}, k\right)} \frac{k}{\left(p_{2}, k\right)} \Longleftrightarrow\left(p_{1}, k\right)\left(p_{2}, k\right)\left(\frac{k}{\left(p_{1}, k\right)}, \frac{k}{\left(p_{2}, k\right)}\right)=k . \tag{2.14}
\end{equation*}
$$

From the property $x(y, z)=(x y, x z)$ (for $x, y, z \in \mathbb{N})$, the above relations are equivalent to

$$
\left(\left(p_{2}, k\right) k,\left(p_{1}, k\right) k\right)=k \Longleftrightarrow\left(\left(p_{1}, k\right),\left(p_{2}, k\right)\right)=1 .
$$

The periodic orbits can therefore be generated from the pairs (p_{1}, p_{2}) satisfying the condition

$$
\begin{equation*}
H_{P}(k)=\sharp\left\{\left(p_{1}, p_{2}\right):\left(\left(p_{1}, k\right),\left(p_{2}, k\right)\right)=1,1 \leq p_{1}<p_{2} \leq k\right\} . \tag{2.15}
\end{equation*}
$$

When written explicitly, this formula yields a result similar to (2.4).

ON THE NUMBER OF COMPLEX HORADAM SEQUENCES WITH A FIXED PERIOD

2.5. Computational comparison of the two formulas for $H_{P}(k)$. To evaluate $H_{P}(k)$ using (2.4), one has to enumerate the ordered pairs of positive integers (k_{1}, k_{2}) s.t. $\left[k_{1}, k_{2}\right]=k$. In the notations of Lemma 2.4, $\left[k_{1}, k_{2}\right]=k$ becomes $\max \left\{\alpha_{i}, \beta_{i}\right\}=m_{i}$ for all $i \in\{1, \ldots, n\}$. As $0 \leq \alpha_{i}, \beta_{i} \leq m_{i}$, there are $\left(m_{i}+1\right)^{2}$ pairs (α_{i}, β_{i}), of which m_{i}^{2} satisfy $0 \leq \alpha_{i}, \beta_{i} \leq m_{i}-1$. The number of pairs $\left(\alpha_{i}, \beta_{i}\right)$ satisfying $\max \left\{\alpha_{i}, \beta_{i}\right\}=m_{i}$ is $\left(m_{i}+1\right)^{2}-m_{i}^{2}=2 m_{i}+1$. Considering $i \in\{1, \ldots, n\}$, the number of all divisor pairs $\left(k_{1}, k_{2}\right)$ is $\left(2 m_{1}+1\right)\left(2 m_{2}+1\right) \cdots\left(2 m_{n}+1\right)$. Apart from (k, k) each pair appeared twice, so the number of ordered pairs in formula (2.4) is

$$
\left[\left(2 m_{1}+1\right)\left(2 m_{2}+1\right) \cdots\left(2 m_{n}+1\right)+1\right] / 2 .
$$

In formula (2.9) one just needs to identify all the distinct divisors d of k, which are exactly

$$
\left(m_{1}+1\right)\left(m_{2}+1\right) \cdots\left(m_{n}+1\right),
$$

and multiply them by the appropriate weights $G L(d, k)$. This suggests that for numbers with many different prime divisors the second formula provides the value $H_{P}(k)$ in fewer steps.

3. Upper and lower bounds for $H_{P}(k)$

The first few terms of the sequence $H_{P}(k)$ are plotted in Figure 2 (a), along with some lower and upper boundaries given by the expressions

$$
\begin{equation*}
\frac{\varphi(k) k}{2} \leq H_{P}(k) \leq \frac{(k-1) k}{2}, \tag{3.1}
\end{equation*}
$$

which can be derived from formulas (2.11) and (2.15) as detailed below.
Formula $k(k-1) / 2$ represents the number of pairs $\left(p_{1}, p_{2}\right)$ satisfying $1 \leq p_{1}<p_{2} \leq k$ in (2.15), so this is an upper bound for $H_{P}(k)$ (with equality attained when k is prime (2.5)). As suggested by the referee, the upper bound is attained only for k prime. Whenever $H_{P}(k)=$ $k(k-1) / 2$, all the pairs $\left(p_{1}, p_{2}\right)$ such that $1 \leq p_{1}<p_{2} \leq k$ have to satisfy the relation $\left(\left(p_{1}, k\right),\left(p_{2}, k\right)\right)=1$ (as shown in (2.15)). If k has a proper divisor $1<d<k$, then the pair $\left(p_{1}, p_{2}\right)=(d, k)$ has the property $((d, k),(k, k))=d$, which is a contradiction.

Figure 2. First 40 terms of the sequences (a) $H_{P}(k)$ (circles), $(k-1) k / 2$ (dashed) and $\frac{\varphi(k) k}{2}$ (dotted); (b) $f(k) / H_{P}(k)$, where $f(k)$ is $H_{P}(k)$ (circles), $(k-1) k / 2$ (dashed), $\frac{\varphi(k) k}{2}$ (dotted) and $\frac{\varphi(k)[2 k-\varphi(k)-1]}{2}$ (dash-dotted).

THE FIBONACCI QUARTERLY

The lower bound can be obtained from (2.11) by writing

$$
\begin{aligned}
H_{P}(k) & =\left[\varphi(1)\left(2^{\omega(k)}-1\right)+\sum_{d \mid k, 1<d<k} \varphi(d)\left(2^{\omega(k / d)}-1\right)+\sum_{d \mid k, d<k} \varphi(d)+\varphi(k)-1\right] \frac{\varphi(k)}{2} \\
& \geq\left[1+\sum_{d \mid k, 1<d<k} \varphi(d)\left(2^{\omega(k / d)}-1\right)\right] \frac{\varphi(k)}{2}+(k-1) \frac{\varphi(k)}{2} \geq \frac{\varphi(k)}{2} k .
\end{aligned}
$$

In the proof we have used the well-known relation $\sum_{d \mid k, 1<d<k} \varphi(d)=k$ and that $2^{\omega(k)} \geq 2$. From (2.5), the lower bound is attained when k is a prime number.

As illustrated in Figure $2(\mathrm{~b})$, a better lower bound for $H_{P}(k)$ seems to be given by formula $\frac{\varphi(k)[2 k-\varphi(k)-1]}{2}(2.6)$, which attains equality when k is a prime power. Here we prove that this is a lower bound for $H_{P}(k)$ whenever $k=p_{1} p_{2} \cdots p_{m}$ is square-free, by using the inequality

$$
\begin{equation*}
\left(p_{1}+1\right)\left(p_{2}+1\right) \ldots\left(p_{m}+1\right)+\left(p_{1}-1\right)\left(p_{2}-1\right) \ldots\left(p_{m}-1\right) \geq 2 p_{1} p_{2} \cdots p_{m} \tag{3.2}
\end{equation*}
$$

which is clearly true because the terms with negative signs cancel out. This can be written as

$$
\begin{equation*}
\left(p_{1}+1\right)\left(p_{2}+1\right) \ldots\left(p_{m}+1\right) \geq 2 k-\varphi(k), \tag{3.3}
\end{equation*}
$$

which by using (2.13) gives the following inequality, valid when k is square-free

$$
\begin{equation*}
H_{P}(k)=\left[\left(p_{1}+1\right) \cdots\left(p_{m}+1\right)-1\right] \frac{\left(p_{1}-1\right) \cdots\left(p_{m}-1\right)}{2} \geq \frac{\varphi(k)[2 k-\varphi(k)-1]}{2} . \tag{3.4}
\end{equation*}
$$

More analysis is required to establish whether this is a lower bound for $H_{P}(k)$ in general. Other bounds can be obtained using the inequalities for $\varphi(k)$ detailed in [4].

4. Summary

In this article we have identified all possible Horadam sequences with a given period $H_{P}(k)$. Two equivalent formulas have been proposed for $H_{P}(k)$, which involved the totient function. The first formula enumerated all the generator pairs, while the second used the divisors of the period to directly count the number of solutions. A new number sequence has been identified, together with some upper and lower bounds.

The research in this paper can be extended towards finding better upper and lower bounds for $H_{P}(k)$. The complexity analysis of the two formulas can also be examined in more detail. A much more challenging problem is counting the number of periodic general order linear recursions, whose characterization has been done by the authors [2].

The issue of cyclic sequence counting also arises in some other work (to be published at a later date) whereby a method is proposed-driven by the roots of so called Catalan polynomials - to automatically generate sets of periodic Horadam sequences which collectively have an easily identified upper bound in number.

References

[1] O. Bagdasar and P. J. Larcombe, On the characterization of periodic complex Horadam sequences, The Fibonacci Quarterly, 51.1 (2013), 28-37.
[2] O. Bagdasar and P. J. Larcombe, On the characterization of periodic generalized Horadam sequences, (submitted).
[3] P. J. Larcombe, O. D. Bagdasar, and E. J. Fennessey, Horadam sequences: a survey, Bulletin of the I.C.A., 67, (2013), 49-72.
[4] D. S. Mitrinovic and J. Sándor, Handbook of Number Theory, Dordrecht, Netherlands: Kluwer (1995).
[5] OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences, http://oeis.org.

ON THE NUMBER OF COMPLEX HORADAM SEQUENCES WITH A FIXED PERIOD MSC2010: 11B39, 11B83, 11N64, 11Y55

School of Computing and Mathematics, University of Derby, Kedleston Road, Derby DE22 1GB, England, U.K.

E-mail address: o.bagdasar@derby.ac.uk
School of Computing and Mathematics, University of Derby, Kedleston Road, Derby DE22 1GB, England, U.K.

E-mail address: p.j.larcombe@derby.ac.uk

