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Abstract. The Horadam sequence is a direct generalization of the Fibonacci numbers in the
complex plane, depending on a family of four complex parameters: two recurrence coefficients
and two initial conditions. Here the Horadam sequences with a given period are enumerated.
The result generates a new integer sequence whose representation involves some well-known
functions such as Euler’s totient function ϕ and the number of divisors function ω.

1. Introduction

A Horadam sequence {wn}
∞
n=0 = {wn(a, b; p, q)}

∞
n=0 is defined by the recurrence

wn+2 − pwn+1 + qwn = 0, w0 = a,w1 = b, (1.1)

where the parameters a, b, p, q are complex numbers. It is well-known to deliver many long-
standing and familiar sequences as particular instances, and has been the object of study in its
general form since the 1960’s (see the survey article [3]). Periodic orbits of complex Horadam
sequences have been characterized in [1], and arise when zeros of the characteristic equation

x2 − px+ q = 0 (1.2)

(called generators) are roots of unity; we denote the form of such roots for convenience as
z1 = z1(p, q) = e2πip1/k1 and z2 = z2(p, q) = e2πip2/k2 where p1, p2, k1, k2 are positive integers.

For equal roots z1 = z2 of (1.2), the general term of Horadam’s sequence {wn}
∞
n=0 is

wn =

[

a+

(

b

z
− a

)

n

]

zn. (1.3)

In this case the sequence can only be periodic when b = az and z is a root of unity.
For distinct roots z1 6= z2 of (1.2), the general term of Horadam’s sequence {wn}

∞
n=0 is

wn = Azn1 +Bzn2 , (1.4)

where the constants A and B can be obtained from the initial condition, as

A =
az2 − b

z2 − z1
, B =

b− az1
z2 − z1

. (1.5)

When AB = 0, at least one of the generators z1 and z2 does not appear explicitly in wn, and
the orbit of the sequence degenerates to either a regular polygon centered in 0, or to a point.
For AB 6= 0, the sequence is periodic when the distinct generators z1 and z2 are roots of unity.

Here we investigate the number of distinct Horadam sequences which (for arbitrary initial
conditions) have a fixed period, giving enumeration formulas in both degenerate and non-
degenerate cases. The question of precisely how many such sequences exist is interesting from
a theoretical point of view, and is but one of a number of problems highlighted as worthy of
study in the analysis of Horadam sequence cyclicity.
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2. Theory and Results

Let k ≥ 2 be a positive integer. The enumerating function for the number of Horadam
sequences {wn}

∞
n=0 having period k is denoted by HP (k). Clearly, this number depends on the

generators z1, z2 and the initial conditions a, b. Throughout this paper the notations (k1, k2)
or gcd(k1, k2) are used for the greatest common divisor and [k1, k2] or lcm(k1, k2) for the least
common multiple of the positive integers k1 and k2.

There are two types of (degenerate and non-degenerate) periodic orbits for which to account.

2.1. Degenerate orbits. This case covers periodic sequences producing a degenerated orbit
(regular polygon centered in 0 or point). As detailed in [1], this happens when the Horadam
sequences {wn}

∞
n=0 given by (1.3) or (1.4) depend on only one of the generators and this is a

root of unity, say z1 = e2πip1/k1 . The number of distinct sequences having period k is given by

HP (k) = ]{(p1, k1) : (p1, k1) = 1, k1 = k} = ϕ(k), (2.1)

where ϕ is Euler’s well-known totient function [4].
If no generator appears explicitly in the formulas (1.3) or (1.4) (this is when z1 6= z2, A = 0,

B = 0 or z1 = z2 = z, a = 0, b = 0), the periodic sequence is constant and the number of
generator configurations leading to periodicity k ≥ 2 is therefore zero.

2.2. Non-Degenerate orbits. Here we cover periodic sequences producing non-degenerated
orbits. In this case the generators are distinct roots of unity z1 = e2πip1/k1 and z2 = e2πip2/k2 ,
and the arbitrary initial conditions a, b are such that AB 6= 0 for A,B defined in (1.5).

As established in [1], the period of the Horadam sequence delivered by a generator pair z1, z2
is [ord(z1), ord(z2)] = lcm(ord(z1), ord(z2)) (where ord(z) is the order of z). Representing the
pair (z1, z2) by the quadruple (p1, k1, p2, k2), we want to select those producing a sequence
having period k. To ensure that the enumeration formula generates all the distinct periodic
sequences, we shall assume w.l.o.g. that z1, z2 are primitive roots of unity and k1 ≤ k2.

The number of distinct sequences having period k can be enumerated from the quadruples

HP (k) = ]{(p1, k1, p2, k2) : (p1, k1) = (p2, k2) = 1, [k1, k2] = k, k1 ≤ k2}. (2.2)

Some formulas for this expression are identified, based on the properties of pairs (k1, k2)

satisfying [k1, k2] = k, and their corresponding generators z1 = e2πip1/k1 and z2 = e2πip2/k2 .

2.3. A first formula for HP (k). To derive this formula we first generate the pairs (k1, k2)
satisfying [k1, k2] = k and then count the pairs (p1, p2) such that (p1, k1, p2, k2) satisfies (2.2).

The first lemma counts the quadruples (p1, k1, p2, k2) in (2.2) for which k1 = k2.

Lemma 2.1. If k1 = k2 and [k1, k2] = k then k1 = k2 = k.

The result is not difficult to prove, and shows that the only pair (k1, k2) s.t. k1 = k2 is (k, k).
The number of quadruples (p1, k, p2, k) fulfilling (2.2) produced in this case is

H ′
P (k) = ]{(p1, p2) : (p1, k) = (p2, k) = 1, p1 < p2} =

1

2
ϕ(k) (ϕ(k) − 1) , (2.3)

as the number of choices for each of p1 and p2 is ϕ(k) and p1 < p2.
The second lemma counts the quadruples (p1, k1, p2, k2) when k1 6= k2 and [k1, k2] = k.

Lemma 2.2. If [k1, k2] = k and k1 6= k2, the number of quadruples (p1, k1, p2, k2) produced is

H ′′
P (k) = ]{(p1, k1, p2, k2) : (p1, k1) = (p2, k2) = 1, [k1, k2] = k} = ϕ(k1)ϕ(k2).
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Proof. As k1 6= k2 the primitive roots z1 and z2 are distinct for all combinations p1 and p2.
This means that any combination pairs (p1, k1) = (p2, k2) = 1 may be considered. There are
ϕ(k1) pairs (p1, k1) and ϕ(k2) pairs (p2, k2), therefore the result. �

Theorem 2.3. The number of distinct Horadam sequences of period k ≥ 2 is equal to

HP (k) =
∑

[k1,k2]=k, k1<k2

ϕ(k1)ϕ(k2) +
1

2
ϕ(k) (ϕ(k)− 1) . (2.4)

To evaluate this formula one needs to generate all ordered pairs (k1, k2), whose l.c.m is k.
Special versions of the formula are computed for periods with particular prime decompositions.

The first few terms of the number sequence HP (k)

1, 1, 3, 5, 10, 11, 21, 22, 33, 34, 55, 46, 78, 69, 92, 92, 136, 105, . . .

are not currently indexed in the OEIS [5], suggesting that this is a new number sequence.

Example 1. Prime numbers. When k is a prime number we have ϕ(k) = k − 1. For this
number we just have two divisor pairs

(k1, k2) ∈ {(1, k), (k, k)},

with multiplicities ϕ(1)ϕ(k) = k − 1 and ϕ(k)(ϕ(k) − 1)/2 = (k − 1)(k − 2)/2, giving the
formula

HP (k) = k(k − 1)/2. (2.5)

For example, when k = 23 there is a total of 23 · 22/2 = 253 distinct solutions, while for
k = 11 there is a total of 11 · 10/2 = 55 distinct solutions. Explicitly, for k = 5 there are 10
solutions given by the fraction pairs

(

p1
k1

,
p2
k2

)

∈

{(

1

1
,
1

5

)

,

(

1

1
,
2

5

)

,

(

1

1
,
3

5

)

,

(

1

1
,
4

5

)

,

(

1

5
,
2

5

)

,

(

1

5
,
3

5

)

,

(

1

5
,
4

5

)

,

(

2

5
,
3

5

)

,

(

2

5
,
4

5

)

,

(

3

5
,
4

5

)}

.

Example 2. Powers of a prime number. When k = pm with p a prime number and
m ≥ 2 we have ϕ(k) = pm(1 − 1/p) = pm − pm−1. For this number we have the divisor pairs
(k1, k2) ∈ {(1, k), (p, k), . . . , (pm−1, k), (k, k)}, with multiplicities ϕ(pj)ϕ(k) for j = 0, . . . ,m−1
and ϕ(k)(ϕ(k) − 1)/2 = (k − k/p)(k − k/p − 1)/2. Summing we obtain a telescopic sum in
which the consecutive terms (up to the last two) cancel out

HP (k) =

(

1 + (p− 1) + (p2 − p) + · · ·+ (pm−1 − pm−2) + (pm − pm−1 − 1)/2

)

ϕ(k)

=
k2 − k2/p2 − k + k/p

2
=

ϕ(k)[2k − ϕ(k)− 1]

2
. (2.6)

For example, when k = 9 = 32 one obtains HP (k) =
6[18−6−1]

2 = 33 while for k = 4 one obtains

HP (k) =
2[8−2−1]

2 = 5 and the distinct solutions are
(

p1
k1

,
p2
k2

)

∈

{(

1

1
,
1

4

)

,

(

1

1
,
3

4

)

,

(

1

2
,
1

4

)

,

(

1

2
,
3

4

)

,

(

1

4
,
3

4

)}

.
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Example 3. Products of two prime numbers. When k = pq (p < q) is the product of
two prime numbers, ϕ(k) = ϕ(p)ϕ(q). For this number we have five divisor pairs

(k1, k2) ∈ {(1, k), (p, q), (p, k), (q, k), (k, k)},

with multiplicities ϕ(1)ϕ(k), ϕ(p)ϕ(q), ϕ(p)ϕ(k), ϕ(q)ϕ(k) and ϕ(k)(ϕ(k)− 1)/2, which gives

HP (k) = (p− 1)(q − 1)(pq + p+ q)/2.

For example, when k = 6 = 2 · 3 the solutions are
(

p1
k1

,
p2
k2

)

∈

{(

1

1
,
1

6

)

,

(

1

1
,
5

6

)

,

(

1

2
,
1

3

)

,

(

1

2
,
2

3

)

,

(

1

2
,
1

6

)

,

(

1

2
,
5

6

)

,

(

1

3
,
1

6

)

,

(

1

3
,
5

6

)

,

(

2

3
,
1

6

)

,

(

2

3
,
5

6

)

,

(

1

6
,
5

6

)}

, (2.7)

for a total of 11 distinct solutions. Some of the orbits realized for k = 6 are plotted in Figure
1. One can notice the geometric variety of shapes produced even for small values of k, which
range from regular polygons in Figure 1 (a) to more complex orbits in Figure 1 (b), (c), or
(d).
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Figure 1. The terms of sequence {wn}
N
n=0 obtained from (1.4) for the pairs

( p1k1 ,
p2
k2
) (a) (11 ,

1
6); (b) (

1
2 ,

1
3); (c) (

1
3 ,

5
6); (d) (

2
3 ,

1
6) when a = 2 and b = 3i (stars).

Arrows indicate the direction of the orbit w0, w1, . . . , w6 = w0 (circles). Also
plotted are generators z1, z2 (squares), unit circles (solid line) and boundaries
of the annulus U(0, | |A| − |B| |, |A| + |B|) (dotted line) with A,B from (1.5).
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Example 4. More general numbers. The formula for k = 12 involves the divisor pairs

(k1, k2) ∈ {(1, 12), (2, 12), (3, 4), (3, 12), (4, 6), (4, 12), (6, 12), (12, 12)},

with multiplicities ϕ(p)ϕ(q) for each pair (p, q) in the list s.t. p < q, and ϕ(12)(ϕ(12) − 1)/2
for the pair (12, 12). This gives the formula

HP (12) = 4 + 4 + 4 + 8 + 4 + 8 + 8 + 4 · 3/2 = 46.

Even in this example, the number of divisor pairs for periods with more complicated prime
decomposition was high. An equivalent (but more direct) formula for HP (k), which does not
require the generation of all quadruples (p1, k2, p2, k2) is proposed below.

2.4. A second formula for HP (k). One can prove that ϕ satisfies the formula

ϕ(gcd(k1, k2)) · ϕ(lcm(k1, k2)) = ϕ(k1) · ϕ(k2), (2.8)

which can be used to derive an algorithmic version of (2.4), in the following steps:

• Choose a divisor d of k, s.t. 1 ≤ d < k,
• Estimate how many pairs k1, k2 satisfy d = (k1, k2) and k = [k1, k2],
• Sum all the terms ϕ(d)ϕ(k) over d, with the corresponding multiplicity.

Formula (2.4) becomes

HP (k) =

[

∑

d|k, d<k

ϕ(d)GL(d, k)

]

ϕ(k) +
1

2
ϕ(k) (ϕ(k) − 1) , (2.9)

where the arithmetic function GL(d, k) is computed in the following lemma.

Lemma 2.4. Let d < k be two natural numbers s.t. d|k, whose prime decomposition is

d = pd11 pd22 · · · pdnn , k = pm1

1 pm2

2 · · · pmn
n , (1 ≤ di ≤ mi).

The number of pairs of natural numbers k1, k2 which satisfy d = (k1, k2) and k = [k1, k2] is

GL(d, k) = ]{(k1, k2) : d = (k1, k2) and k = [k1, k2]} = 2ω(k/d)−1, (2.10)

where ω(x) represents the number of distinct prime divisors for the integer x.

Proof. Let the numbers k1 and k2 be written as

k1 = pα1

1 pα2

2 · · · pαn
n , k2 = pβ1

1 pβ2

2 · · · pβn
n .

When d = (k1, k2) and k = [k1, k2], for each index i ∈ {1, . . . , n}, we have

min{αi, βi} = di, max{αi, βi} = mi.

First, numbers k1 and k2 are distinct or otherwise d = k. There are two possibilities.
When di = mi, one has αi = βi = di = mi. Each choice of i ∈ I = {i ∈ {1, . . . , n} : di < mi}

generates two possible pairs (αi, βi) ∈ {(di,mi), (mi, di)}, hence in total there are 2|I| distinct
pairs of powers. The number of pairs (k1, k2) s.t. k1 < k2 is therefore 2|I|−1.

As the prime decomposition of k/d is

k/d = pm1−d1
1 pm2−d2

2 · · · pmn−dn
n =

∏

i∈I

pmi−di
i ,

one obtains that |I| = ω(k/d). This ends the proof. �

NOVEMBER 2013 343



THE FIBONACCI QUARTERLY

Theorem 2.5. Using formula (2.9), HP (k) can be written more compactly as

HP (k) =

[

∑

d|k, d<k

ϕ(d)2ω(k/d) + ϕ(k)− 1

]

ϕ(k)

2
. (2.11)

Example 4. revisited using (2.11). The divisors of 12 = 22 · 3 smaller than 12 are

1, 2 = 21, 3 = 31, 4 = 22, 6 = 2 · 3.

Writing the terms in formula (2.11) explicitly one obtains
[

ϕ(1)21 + ϕ(2)21 + ϕ(3)20 + ϕ(4)20 + ϕ(6)20
]

ϕ(12) +
ϕ(12) (ϕ(12) − 1)

2
= 46. (2.12)

Example 5. Square-free numbers. When k is a square-free positive number k = p1p2 . . . pm
for m ≥ 2 and p1, . . . , pm prime numbers, a compact formula for HP (k) can be obtained. Each
divisor d of k is given by a product pi1pi1 . . . pij , where 1 ≤ i1 ≤ i2 ≤ . . . ≤ ij ≤ m for
j = 0, . . . ,m. The corresponding term in formula (2.11) can further be written as

ϕ(d)2ω(k/d) = ϕ(pi1)ϕ(pi2) · · ·ϕ(pij )2
m−j .

Summing over all possible divisors d of k one obtains the formula

HP (k) =

[m−1
∑

j=0

(

∑

1≤i1≤i2≤···≤ij≤m

ϕ(pi1)ϕ(pi2) · · ·ϕ(pij )

)

2m−j + ϕ(p1) · · ·ϕ(pm)− 1

]

ϕ(k)

2

=

[

(ϕ(p1) + 2) · · · (ϕ(pm) + 2)− 1

]

ϕ(k)

2

=

[

(p1 + 1) · · · (pm + 1)− 1

]

(p1 − 1) · · · (pm − 1)

2
, (2.13)

where we have used that ϕ(k) = ϕ(p1) · · ·ϕ(pm) and ϕ(p) = p− 1 for any prime number p.
For example, when k = 30 = 2 · 3 · 5 the number of periodic orbits is

HP (k) =

[

3 · 4 · 6− 1

]

1 · 2 · 4

2
= 284.

Remark 2.6. An alternative result for HP (k) can be obtained using the generator pairs
z1 = e2πip1/k and z2 = e2πip2/k with 1 ≤ p1 < p2 ≤ k, when these are not necessarily primitive
roots of unity. Clearly, ord(z1) = k/(p1, k) and ord(z2) = k/(p2, k). The sequence generated by
z1 and z2 has period k if [ord(z1), ord(z2)] = k. Using the well-known property [x, y](x, y) = xy
(for x, y ∈ N) for the positive integers ord(z1) and ord(z2), one obtains the condition

k

(

k

(p1, k)
,

k

(p2, k)

)

=
k

(p1, k)

k

(p2, k)
⇐⇒ (p1, k)(p2, k)

(

k

(p1, k)
,

k

(p2, k)

)

= k. (2.14)

From the property x(y, z) = (xy, xz) (for x, y, z ∈ N), the above relations are equivalent to
(

(p2, k)k, (p1, k)k

)

= k ⇐⇒ ((p1, k), (p2, k)) = 1.

The periodic orbits can therefore be generated from the pairs (p1, p2) satisfying the condition

HP (k) = ]{(p1, p2) : ((p1, k), (p2, k)) = 1, 1 ≤ p1 < p2 ≤ k}. (2.15)

When written explicitly, this formula yields a result similar to (2.4).
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2.5. Computational comparison of the two formulas for HP (k). To evaluate HP (k)
using (2.4), one has to enumerate the ordered pairs of positive integers (k1, k2) s.t. [k1, k2] = k.
In the notations of Lemma 2.4, [k1, k2] = k becomes max{αi, βi} = mi for all i ∈ {1, . . . , n}. As
0 ≤ αi, βi ≤ mi, there are (mi+1)2 pairs (αi, βi), of which m2

i satisfy 0 ≤ αi, βi ≤ mi−1. The
number of pairs (αi, βi) satisfying max{αi, βi} = mi is (mi+1)2−m2

i = 2mi+1. Considering
i ∈ {1, . . . , n}, the number of all divisor pairs (k1, k2) is (2m1 + 1)(2m2 + 1) · · · (2mn + 1).
Apart from (k, k) each pair appeared twice, so the number of ordered pairs in formula (2.4) is

[(2m1 + 1)(2m2 + 1) · · · (2mn + 1) + 1]/2.

In formula (2.9) one just needs to identify all the distinct divisors d of k, which are exactly

(m1 + 1)(m2 + 1) · · · (mn + 1),

and multiply them by the appropriate weights GL(d, k). This suggests that for numbers with
many different prime divisors the second formula provides the value HP (k) in fewer steps.

3. Upper and lower bounds for HP (k)

The first few terms of the sequence HP (k) are plotted in Figure 2 (a), along with some
lower and upper boundaries given by the expressions

ϕ(k)k

2
≤ HP (k) ≤

(k − 1)k

2
, (3.1)

which can be derived from formulas (2.11) and (2.15) as detailed below.
Formula k(k − 1)/2 represents the number of pairs (p1, p2) satisfying 1 ≤ p1 < p2 ≤ k in

(2.15), so this is an upper bound for HP (k) (with equality attained when k is prime (2.5)). As
suggested by the referee, the upper bound is attained only for k prime. Whenever HP (k) =
k(k − 1)/2, all the pairs (p1, p2) such that 1 ≤ p1 < p2 ≤ k have to satisfy the relation
((p1, k), (p2, k)) = 1 (as shown in (2.15)). If k has a proper divisor 1 < d < k, then the pair
(p1, p2) = (d, k) has the property ((d, k), (k, k)) = d, which is a contradiction.
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Figure 2. First 40 terms of the sequences (a) HP (k) (circles), (k − 1)k/2

(dashed) and ϕ(k)k
2 (dotted); (b) f(k)/HP (k), where f(k) is HP (k) (circles),

(k − 1)k/2 (dashed), ϕ(k)k
2 (dotted) and ϕ(k)[2k−ϕ(k)−1]

2 (dash-dotted).
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The lower bound can be obtained from (2.11) by writing

HP (k) =

[

ϕ(1)

(

2ω(k) − 1

)

+
∑

d|k, 1<d<k

ϕ(d)

(

2ω(k/d) − 1

)

+
∑

d|k, d<k

ϕ(d) + ϕ(k)− 1

]

ϕ(k)

2

≥

[

1 +
∑

d|k, 1<d<k

ϕ(d)

(

2ω(k/d) − 1

)]

ϕ(k)

2
+ (k − 1)

ϕ(k)

2
≥

ϕ(k)

2
k.

In the proof we have used the well-known relation
∑

d|k, 1<d<k ϕ(d) = k and that 2ω(k) ≥ 2.

From (2.5), the lower bound is attained when k is a prime number.
As illustrated in Figure 2 (b), a better lower bound for HP (k) seems to be given by formula

ϕ(k)[2k−ϕ(k)−1]
2 (2.6), which attains equality when k is a prime power. Here we prove that this

is a lower bound for HP (k) whenever k = p1p2 · · · pm is square-free, by using the inequality

(p1 + 1)(p2 + 1) . . . (pm + 1) + (p1 − 1)(p2 − 1) . . . (pm − 1) ≥ 2p1p2 · · · pm, (3.2)

which is clearly true because the terms with negative signs cancel out. This can be written as

(p1 + 1)(p2 + 1) . . . (pm + 1) ≥ 2k − ϕ(k), (3.3)

which by using (2.13) gives the following inequality, valid when k is square-free

HP (k) =

[

(p1 + 1) · · · (pm + 1)− 1

]

(p1 − 1) · · · (pm − 1)

2
≥

ϕ(k)[2k − ϕ(k)− 1]

2
. (3.4)

More analysis is required to establish whether this is a lower bound for HP (k) in general.
Other bounds can be obtained using the inequalities for ϕ(k) detailed in [4].

4. Summary

In this article we have identified all possible Horadam sequences with a given period HP (k).
Two equivalent formulas have been proposed for HP (k), which involved the totient function.
The first formula enumerated all the generator pairs, while the second used the divisors of the
period to directly count the number of solutions. A new number sequence has been identified,
together with some upper and lower bounds.

The research in this paper can be extended towards finding better upper and lower bounds
for HP (k). The complexity analysis of the two formulas can also be examined in more detail.
A much more challenging problem is counting the number of periodic general order linear
recursions, whose characterization has been done by the authors [2].

The issue of cyclic sequence counting also arises in some other work (to be published
at a later date) whereby a method is proposed—driven by the roots of so called Catalan
polynomials—to automatically generate sets of periodic Horadam sequences which collectively
have an easily identified upper bound in number.
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